tuned;
authorwenzelm
Mon, 07 Nov 2016 21:52:41 +0100
changeset 64475 d751bef76e5c
parent 64474 d072c8169c7c
child 64476 62c807eb009f
tuned;
src/HOL/Isar_Examples/Higher_Order_Logic.thy
--- a/src/HOL/Isar_Examples/Higher_Order_Logic.thy	Mon Nov 07 21:40:43 2016 +0100
+++ b/src/HOL/Isar_Examples/Higher_Order_Logic.thy	Mon Nov 07 21:52:41 2016 +0100
@@ -300,7 +300,7 @@
 
 theorem (in classical) Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
 proof
-  assume a: "(A \<longrightarrow> B) \<longrightarrow> A"
+  assume *: "(A \<longrightarrow> B) \<longrightarrow> A"
   show A
   proof (rule classical)
     assume "\<not> A"
@@ -309,7 +309,7 @@
       assume A
       with \<open>\<not> A\<close> show B by (rule contradiction)
     qed
-    with a show A ..
+    with * show A ..
   qed
 qed