add HOLCF/ex/Concurrency_Monad.thy, which contains resumption/state/powerdomain monad example from my PhD thesis
--- a/src/HOL/HOLCF/IsaMakefile Wed Jun 22 16:35:31 2011 +0200
+++ b/src/HOL/HOLCF/IsaMakefile Wed Jun 22 13:30:28 2011 -0700
@@ -135,6 +135,7 @@
$(LOG)/HOLCF-ex.gz: $(OUT)/HOLCF \
../Library/Nat_Infinity.thy \
+ ex/Concurrency_Monad.thy \
ex/Dagstuhl.thy \
ex/Dnat.thy \
ex/Domain_Proofs.thy \
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/HOLCF/ex/Concurrency_Monad.thy Wed Jun 22 13:30:28 2011 -0700
@@ -0,0 +1,415 @@
+(* Title: HOL/HOLCF/ex/Concurrency_Monad.thy
+ Author: Brian Huffman
+*)
+
+theory Concurrency_Monad
+imports HOLCF
+begin
+
+text {* This file contains the concurrency monad example from
+ Chapter 7 of the author's PhD thesis. *}
+
+subsection {* State/nondeterminism monad, as a type synonym *}
+
+type_synonym ('s, 'a) N = "'s \<rightarrow> ('a u \<otimes> 's u)\<natural>"
+
+definition mapN :: "('a \<rightarrow> 'b) \<rightarrow> ('s, 'a) N \<rightarrow> ('s, 'b) N"
+ where "mapN = (\<Lambda> f. cfun_map\<cdot>ID\<cdot>(convex_map\<cdot>(sprod_map\<cdot>(u_map\<cdot>f)\<cdot>ID)))"
+
+definition unitN :: "'a \<rightarrow> ('s, 'a) N"
+ where "unitN = (\<Lambda> x. (\<Lambda> s. convex_unit\<cdot>(:up\<cdot>x, up\<cdot>s:)))"
+
+definition bindN :: "('s, 'a) N \<rightarrow> ('a \<rightarrow> ('s, 'b) N) \<rightarrow> ('s, 'b) N"
+ where "bindN = (\<Lambda> c k. (\<Lambda> s. convex_bind\<cdot>(c\<cdot>s)\<cdot>(\<Lambda> (:up\<cdot>x, up\<cdot>s':). k\<cdot>x\<cdot>s')))"
+
+definition plusN :: "('s, 'a) N \<rightarrow> ('s, 'a) N \<rightarrow> ('s, 'a) N"
+ where "plusN = (\<Lambda> a b. (\<Lambda> s. convex_plus\<cdot>(a\<cdot>s)\<cdot>(b\<cdot>s)))"
+
+lemma mapN_ID: "mapN\<cdot>ID = ID"
+by (simp add: mapN_def domain_map_ID)
+
+lemma mapN_mapN: "mapN\<cdot>f\<cdot>(mapN\<cdot>g\<cdot>m) = mapN\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>m"
+unfolding mapN_def ID_def
+by (simp add: cfun_map_map convex_map_map sprod_map_map u_map_map eta_cfun)
+
+lemma mapN_unitN: "mapN\<cdot>f\<cdot>(unitN\<cdot>x) = unitN\<cdot>(f\<cdot>x)"
+unfolding mapN_def unitN_def
+by (simp add: cfun_map_def)
+
+lemma bindN_unitN: "bindN\<cdot>(unitN\<cdot>a)\<cdot>f = f\<cdot>a"
+by (simp add: unitN_def bindN_def eta_cfun)
+
+lemma mapN_conv_bindN: "mapN\<cdot>f\<cdot>m = bindN\<cdot>m\<cdot>(unitN oo f)"
+apply (simp add: mapN_def bindN_def unitN_def)
+apply (rule cfun_eqI, simp)
+apply (simp add: convex_map_def)
+apply (rule cfun_arg_cong)
+apply (rule cfun_eqI, simp, rename_tac p)
+apply (case_tac p, simp)
+apply (case_tac x, simp)
+apply (case_tac y, simp)
+apply simp
+done
+
+lemma bindN_unitN_right: "bindN\<cdot>m\<cdot>unitN = m"
+proof -
+ have "mapN\<cdot>ID\<cdot>m = m" by (simp add: mapN_ID)
+ thus ?thesis by (simp add: mapN_conv_bindN)
+qed
+
+lemma bindN_bindN:
+ "bindN\<cdot>(bindN\<cdot>m\<cdot>f)\<cdot>g = bindN\<cdot>m\<cdot>(\<Lambda> x. bindN\<cdot>(f\<cdot>x)\<cdot>g)"
+apply (rule cfun_eqI, rename_tac s)
+apply (simp add: bindN_def)
+apply (simp add: convex_bind_bind)
+apply (rule cfun_arg_cong)
+apply (rule cfun_eqI, rename_tac w)
+apply (case_tac w, simp)
+apply (case_tac x, simp)
+apply (case_tac y, simp)
+apply simp
+done
+
+lemma mapN_bindN: "mapN\<cdot>f\<cdot>(bindN\<cdot>m\<cdot>g) = bindN\<cdot>m\<cdot>(\<Lambda> x. mapN\<cdot>f\<cdot>(g\<cdot>x))"
+by (simp add: mapN_conv_bindN bindN_bindN)
+
+lemma bindN_mapN: "bindN\<cdot>(mapN\<cdot>f\<cdot>m)\<cdot>g = bindN\<cdot>m\<cdot>(\<Lambda> x. g\<cdot>(f\<cdot>x))"
+by (simp add: mapN_conv_bindN bindN_bindN bindN_unitN)
+
+lemma mapN_plusN:
+ "mapN\<cdot>f\<cdot>(plusN\<cdot>a\<cdot>b) = plusN\<cdot>(mapN\<cdot>f\<cdot>a)\<cdot>(mapN\<cdot>f\<cdot>b)"
+unfolding mapN_def plusN_def by (simp add: cfun_map_def)
+
+lemma plusN_commute: "plusN\<cdot>a\<cdot>b = plusN\<cdot>b\<cdot>a"
+unfolding plusN_def by (simp add: convex_plus_commute)
+
+lemma plusN_assoc: "plusN\<cdot>(plusN\<cdot>a\<cdot>b)\<cdot>c = plusN\<cdot>a\<cdot>(plusN\<cdot>b\<cdot>c)"
+unfolding plusN_def by (simp add: convex_plus_assoc)
+
+lemma plusN_absorb: "plusN\<cdot>a\<cdot>a = a"
+unfolding plusN_def by (simp add: eta_cfun)
+
+
+subsection {* Resumption-state-nondeterminism monad *}
+
+domain ('s, 'a) R = Done (lazy "'a") | More (lazy "('s, ('s, 'a) R) N")
+
+thm R.take_induct
+
+lemma R_induct [case_names adm bottom Done More, induct type: R]:
+ fixes P :: "('s, 'a) R \<Rightarrow> bool"
+ assumes adm: "adm P"
+ assumes bottom: "P \<bottom>"
+ assumes Done: "\<And>x. P (Done\<cdot>x)"
+ assumes More: "\<And>p c. (\<And>r::('s, 'a) R. P (p\<cdot>r)) \<Longrightarrow> P (More\<cdot>(mapN\<cdot>p\<cdot>c))"
+ shows "P r"
+proof (induct r rule: R.take_induct)
+ show "adm P" by fact
+next
+ fix n
+ show "P (R_take n\<cdot>r)"
+ proof (induct n arbitrary: r)
+ case 0 show ?case by (simp add: bottom)
+ next
+ case (Suc n r)
+ show ?case
+ apply (cases r)
+ apply (simp add: bottom)
+ apply (simp add: Done)
+ using More [OF Suc]
+ apply (simp add: mapN_def)
+ done
+ qed
+qed
+
+declare R.take_rews(2) [simp del]
+
+lemma R_take_Suc_More [simp]:
+ "R_take (Suc n)\<cdot>(More\<cdot>k) = More\<cdot>(mapN\<cdot>(R_take n)\<cdot>k)"
+by (simp add: mapN_def R.take_rews(2))
+
+
+subsection {* Map function *}
+
+fixrec mapR :: "('a \<rightarrow> 'b) \<rightarrow> ('s, 'a) R \<rightarrow> ('s, 'b) R"
+ where "mapR\<cdot>f\<cdot>(Done\<cdot>a) = Done\<cdot>(f\<cdot>a)"
+ | "mapR\<cdot>f\<cdot>(More\<cdot>k) = More\<cdot>(mapN\<cdot>(mapR\<cdot>f)\<cdot>k)"
+
+lemma mapR_strict [simp]: "mapR\<cdot>f\<cdot>\<bottom> = \<bottom>"
+by fixrec_simp
+
+lemma mapR_mapR: "mapR\<cdot>f\<cdot>(mapR\<cdot>g\<cdot>r) = mapR\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>r"
+by (induct r) (simp_all add: mapN_mapN)
+
+lemma mapR_ID: "mapR\<cdot>ID\<cdot>r = r"
+by (induct r) (simp_all add: mapN_mapN eta_cfun)
+
+lemma "mapR\<cdot>f\<cdot>(mapR\<cdot>g\<cdot>r) = mapR\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>r"
+apply (induct r)
+apply simp
+apply simp
+apply simp
+apply (simp (no_asm))
+apply (simp (no_asm) add: mapN_mapN)
+apply simp
+done
+
+
+subsection {* Monadic bind function *}
+
+fixrec bindR :: "('s, 'a) R \<rightarrow> ('a \<rightarrow> ('s, 'b) R) \<rightarrow> ('s, 'b) R"
+ where "bindR\<cdot>(Done\<cdot>x)\<cdot>k = k\<cdot>x"
+ | "bindR\<cdot>(More\<cdot>c)\<cdot>k = More\<cdot>(mapN\<cdot>(\<Lambda> r. bindR\<cdot>r\<cdot>k)\<cdot>c)"
+
+lemma bindR_strict [simp]: "bindR\<cdot>\<bottom>\<cdot>k = \<bottom>"
+by fixrec_simp
+
+lemma bindR_Done_right: "bindR\<cdot>r\<cdot>Done = r"
+by (induct r) (simp_all add: mapN_mapN eta_cfun)
+
+lemma mapR_conv_bindR: "mapR\<cdot>f\<cdot>r = bindR\<cdot>r\<cdot>(\<Lambda> x. Done\<cdot>(f\<cdot>x))"
+by (induct r) (simp_all add: mapN_mapN)
+
+lemma bindR_bindR: "bindR\<cdot>(bindR\<cdot>r\<cdot>f)\<cdot>g = bindR\<cdot>r\<cdot>(\<Lambda> x. bindR\<cdot>(f\<cdot>x)\<cdot>g)"
+by (induct r) (simp_all add: mapN_mapN)
+
+lemma "bindR\<cdot>(bindR\<cdot>r\<cdot>f)\<cdot>g = bindR\<cdot>r\<cdot>(\<Lambda> x. bindR\<cdot>(f\<cdot>x)\<cdot>g)"
+apply (induct r)
+apply (simp_all add: mapN_mapN)
+done
+
+subsection {* Zip function *}
+
+fixrec zipR :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('s, 'a) R \<rightarrow> ('s, 'b) R \<rightarrow> ('s, 'c) R"
+ where zipR_Done_Done:
+ "zipR\<cdot>f\<cdot>(Done\<cdot>x)\<cdot>(Done\<cdot>y) = Done\<cdot>(f\<cdot>x\<cdot>y)"
+ | zipR_Done_More:
+ "zipR\<cdot>f\<cdot>(Done\<cdot>x)\<cdot>(More\<cdot>b) =
+ More\<cdot>(mapN\<cdot>(\<Lambda> r. zipR\<cdot>f\<cdot>(Done\<cdot>x)\<cdot>r)\<cdot>b)"
+ | zipR_More_Done:
+ "zipR\<cdot>f\<cdot>(More\<cdot>a)\<cdot>(Done\<cdot>y) =
+ More\<cdot>(mapN\<cdot>(\<Lambda> r. zipR\<cdot>f\<cdot>r\<cdot>(Done\<cdot>y))\<cdot>a)"
+ | zipR_More_More:
+ "zipR\<cdot>f\<cdot>(More\<cdot>a)\<cdot>(More\<cdot>b) =
+ More\<cdot>(plusN\<cdot>(mapN\<cdot>(\<Lambda> r. zipR\<cdot>f\<cdot>(More\<cdot>a)\<cdot>r)\<cdot>b)
+ \<cdot>(mapN\<cdot>(\<Lambda> r. zipR\<cdot>f\<cdot>r\<cdot>(More\<cdot>b))\<cdot>a))"
+
+lemma zipR_strict1 [simp]: "zipR\<cdot>f\<cdot>\<bottom>\<cdot>r = \<bottom>"
+by fixrec_simp
+
+lemma zipR_strict2 [simp]: "zipR\<cdot>f\<cdot>r\<cdot>\<bottom> = \<bottom>"
+by (fixrec_simp, cases r, simp_all)
+
+abbreviation apR (infixl "\<diamond>" 70)
+ where "a \<diamond> b \<equiv> zipR\<cdot>ID\<cdot>a\<cdot>b"
+
+text {* Proofs that @{text zipR} satisfies the applicative functor laws: *}
+
+lemma R_homomorphism: "Done\<cdot>f \<diamond> Done\<cdot>x = Done\<cdot>(f\<cdot>x)"
+ by simp
+
+lemma R_identity: "Done\<cdot>ID \<diamond> r = r"
+ by (induct r, simp_all add: mapN_mapN eta_cfun)
+
+lemma R_interchange: "r \<diamond> Done\<cdot>x = Done\<cdot>(\<Lambda> f. f\<cdot>x) \<diamond> r"
+ by (induct r, simp_all add: mapN_mapN)
+
+text {* The associativity rule is the hard one! *}
+
+lemma R_associativity: "Done\<cdot>cfcomp \<diamond> r1 \<diamond> r2 \<diamond> r3 = r1 \<diamond> (r2 \<diamond> r3)"
+proof (induct r1 arbitrary: r2 r3)
+ case (Done x1) thus ?case
+ proof (induct r2 arbitrary: r3)
+ case (Done x2) thus ?case
+ proof (induct r3)
+ case (More p3 c3) thus ?case (* Done/Done/More *)
+ by (simp add: mapN_mapN)
+ qed simp_all
+ next
+ case (More p2 c2) thus ?case
+ proof (induct r3)
+ case (Done x3) thus ?case (* Done/More/Done *)
+ by (simp add: mapN_mapN)
+ next
+ case (More p3 c3) thus ?case (* Done/More/More *)
+ by (simp add: mapN_mapN mapN_plusN)
+ qed simp_all
+ qed simp_all
+next
+ case (More p1 c1) thus ?case
+ proof (induct r2 arbitrary: r3)
+ case (Done y) thus ?case
+ proof (induct r3)
+ case (Done x3) thus ?case
+ by (simp add: mapN_mapN)
+ next
+ case (More p3 c3) thus ?case
+ by (simp add: mapN_mapN)
+ qed simp_all
+ next
+ case (More p2 c2) thus ?case
+ proof (induct r3)
+ case (Done x3) thus ?case
+ by (simp add: mapN_mapN mapN_plusN)
+ next
+ case (More p3 c3) thus ?case
+ by (simp add: mapN_mapN mapN_plusN plusN_assoc)
+ qed simp_all
+ qed simp_all
+qed simp_all
+
+text {* Other miscellaneous properties about @{text zipR}: *}
+
+lemma zipR_Done_left:
+ shows "zipR\<cdot>f\<cdot>(Done\<cdot>x)\<cdot>r = mapR\<cdot>(f\<cdot>x)\<cdot>r"
+by (induct r) (simp_all add: mapN_mapN)
+
+lemma zipR_Done_right:
+ shows "zipR\<cdot>f\<cdot>r\<cdot>(Done\<cdot>y) = mapR\<cdot>(\<Lambda> x. f\<cdot>x\<cdot>y)\<cdot>r"
+by (induct r) (simp_all add: mapN_mapN)
+
+lemma mapR_zipR: "mapR\<cdot>h\<cdot>(zipR\<cdot>f\<cdot>a\<cdot>b) = zipR\<cdot>(\<Lambda> x y. h\<cdot>(f\<cdot>x\<cdot>y))\<cdot>a\<cdot>b"
+apply (induct a arbitrary: b)
+apply simp
+apply simp
+apply (simp add: zipR_Done_left zipR_Done_right mapR_mapR)
+apply (induct_tac b)
+apply simp
+apply simp
+apply (simp add: mapN_mapN)
+apply (simp add: mapN_mapN mapN_plusN)
+done
+
+lemma zipR_mapR_left: "zipR\<cdot>f\<cdot>(mapR\<cdot>h\<cdot>a)\<cdot>b = zipR\<cdot>(\<Lambda> x y. f\<cdot>(h\<cdot>x)\<cdot>y)\<cdot>a\<cdot>b"
+apply (induct a arbitrary: b)
+apply simp
+apply simp
+apply (simp add: zipR_Done_left zipR_Done_right eta_cfun)
+apply (simp add: mapN_mapN)
+apply (induct_tac b)
+apply simp
+apply simp
+apply (simp add: mapN_mapN)
+apply (simp add: mapN_mapN)
+done
+
+lemma zipR_mapR_right: "zipR\<cdot>f\<cdot>a\<cdot>(mapR\<cdot>h\<cdot>b) = zipR\<cdot>(\<Lambda> x y. f\<cdot>x\<cdot>(h\<cdot>y))\<cdot>a\<cdot>b"
+apply (induct b arbitrary: a)
+apply simp
+apply simp
+apply (simp add: zipR_Done_left zipR_Done_right)
+apply (simp add: mapN_mapN)
+apply (induct_tac a)
+apply simp
+apply simp
+apply (simp add: mapN_mapN)
+apply (simp add: mapN_mapN)
+done
+
+lemma zipR_commute:
+ assumes f: "\<And>x y. f\<cdot>x\<cdot>y = g\<cdot>y\<cdot>x"
+ shows "zipR\<cdot>f\<cdot>a\<cdot>b = zipR\<cdot>g\<cdot>b\<cdot>a"
+apply (induct a arbitrary: b)
+apply simp
+apply simp
+apply (simp add: zipR_Done_left zipR_Done_right f [symmetric] eta_cfun)
+apply (induct_tac b)
+apply simp
+apply simp
+apply (simp add: mapN_mapN)
+apply (simp add: mapN_mapN mapN_plusN plusN_commute)
+done
+
+lemma zipR_assoc:
+ fixes a :: "('s, 'a) R" and b :: "('s, 'b) R" and c :: "('s, 'c) R"
+ fixes f :: "'a \<rightarrow> 'b \<rightarrow> 'd" and g :: "'d \<rightarrow> 'c \<rightarrow> 'e"
+ assumes gf: "\<And>x y z. g\<cdot>(f\<cdot>x\<cdot>y)\<cdot>z = h\<cdot>x\<cdot>(k\<cdot>y\<cdot>z)"
+ shows "zipR\<cdot>g\<cdot>(zipR\<cdot>f\<cdot>a\<cdot>b)\<cdot>c = zipR\<cdot>h\<cdot>a\<cdot>(zipR\<cdot>k\<cdot>b\<cdot>c)" (is "?P a b c")
+ apply (induct a arbitrary: b c)
+ apply simp
+ apply simp
+ apply (simp add: zipR_Done_left zipR_Done_right)
+ apply (simp add: zipR_mapR_left mapR_zipR gf)
+ apply (rename_tac pA kA b c)
+ apply (rule_tac x=c in spec)
+ apply (induct_tac b)
+ apply simp
+ apply simp
+ apply (simp add: mapN_mapN)
+ apply (simp add: zipR_Done_left zipR_Done_right eta_cfun)
+ apply (simp add: zipR_mapR_right)
+ apply (rule allI, rename_tac c)
+ apply (induct_tac c)
+ apply simp
+ apply simp
+ apply (rename_tac z)
+ apply (simp add: mapN_mapN)
+ apply (simp add: zipR_mapR_left gf)
+ apply (rename_tac pC kC)
+ apply (simp add: mapN_mapN)
+ apply (simp add: zipR_mapR_left gf)
+ apply (rename_tac pB kB)
+ apply (rule allI, rename_tac c)
+ apply (induct_tac c)
+ apply simp
+ apply simp
+ apply (simp add: mapN_mapN mapN_plusN)
+ apply (rename_tac pC kC)
+ apply (simp add: mapN_mapN mapN_plusN plusN_assoc)
+done
+
+text {* Alternative proof using take lemma. *}
+
+lemma
+ fixes a :: "('s, 'a) R" and b :: "('s, 'b) R" and c :: "('s, 'c) R"
+ fixes f :: "'a \<rightarrow> 'b \<rightarrow> 'd" and g :: "'d \<rightarrow> 'c \<rightarrow> 'e"
+ assumes gf: "\<And>x y z. g\<cdot>(f\<cdot>x\<cdot>y)\<cdot>z = h\<cdot>x\<cdot>(k\<cdot>y\<cdot>z)"
+ shows "zipR\<cdot>g\<cdot>(zipR\<cdot>f\<cdot>a\<cdot>b)\<cdot>c = zipR\<cdot>h\<cdot>a\<cdot>(zipR\<cdot>k\<cdot>b\<cdot>c)"
+ (is "?lhs = ?rhs" is "?P a b c")
+proof (rule R.take_lemma)
+ fix n show "R_take n\<cdot>?lhs = R_take n\<cdot>?rhs"
+ proof (induct n arbitrary: a b c)
+ case (0 a b c)
+ show ?case by simp
+ next
+ case (Suc n a b c)
+ note IH = this
+ let ?P = ?case
+ show ?case
+ proof (cases a)
+ case bottom thus ?P by simp
+ next
+ case (Done x) thus ?P
+ by (simp add: zipR_Done_left zipR_mapR_left mapR_zipR gf)
+ next
+ case (More nA) thus ?P
+ proof (cases b)
+ case bottom thus ?P by simp
+ next
+ case (Done y) thus ?P
+ by (simp add: zipR_Done_left zipR_Done_right
+ zipR_mapR_left zipR_mapR_right gf)
+ next
+ case (More nB) thus ?P
+ proof (cases c)
+ case bottom thus ?P by simp
+ next
+ case (Done z) thus ?P
+ by (simp add: zipR_Done_right mapR_zipR zipR_mapR_right gf)
+ next
+ case (More nC)
+ note H = `a = More\<cdot>nA` `b = More\<cdot>nB` `c = More\<cdot>nC`
+ show ?P
+ apply (simp only: H zipR_More_More)
+ apply (simplesubst zipR_More_More [of f, symmetric])
+ apply (simplesubst zipR_More_More [of k, symmetric])
+ apply (simp only: H [symmetric])
+ apply (simp add: mapN_mapN mapN_plusN plusN_assoc IH)
+ done
+ qed
+ qed
+ qed
+ qed
+qed
+
+end
--- a/src/HOL/HOLCF/ex/ROOT.ML Wed Jun 22 16:35:31 2011 +0200
+++ b/src/HOL/HOLCF/ex/ROOT.ML Wed Jun 22 13:30:28 2011 -0700
@@ -4,6 +4,7 @@
*)
use_thys ["Dnat", "Dagstuhl", "Focus_ex", "Fix2", "Hoare",
+ "Concurrency_Monad",
"Loop", "Powerdomain_ex", "Domain_Proofs",
"Letrec",
"Pattern_Match"];
--- a/src/HOL/IsaMakefile Wed Jun 22 16:35:31 2011 +0200
+++ b/src/HOL/IsaMakefile Wed Jun 22 13:30:28 2011 -0700
@@ -1594,6 +1594,7 @@
HOLCF-ex: HOLCF $(LOG)/HOLCF-ex.gz
$(LOG)/HOLCF-ex.gz: $(OUT)/HOLCF \
+ HOLCF/ex/Concurrency_Monad.thy \
HOLCF/ex/Dagstuhl.thy \
HOLCF/ex/Dnat.thy \
HOLCF/ex/Domain_Proofs.thy \