--- a/src/HOL/Finite_Set.thy Fri Dec 16 16:00:58 2005 +0100
+++ b/src/HOL/Finite_Set.thy Fri Dec 16 16:59:32 2005 +0100
@@ -177,7 +177,7 @@
qed
qed
-lemma finite_Collect_subset: "finite A \<Longrightarrow> finite{x \<in> A. P x}"
+lemma finite_Collect_subset[simp]: "finite A \<Longrightarrow> finite{x \<in> A. P x}"
using finite_subset[of "{x \<in> A. P x}" "A"] by blast
lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)"
@@ -2108,6 +2108,28 @@
by(induct rule:finite_ne_induct)(simp_all add:above_f_conv)
+lemma (in ACIfSLlin) fold1_antimono:
+assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
+shows "fold1 f B \<sqsubseteq> fold1 f A"
+proof(cases)
+ assume "A = B" thus ?thesis by simp
+next
+ assume "A \<noteq> B"
+ have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast
+ have "fold1 f B = fold1 f (A \<union> (B-A))" by(subst B)(rule refl)
+ also have "\<dots> = f (fold1 f A) (fold1 f (B-A))"
+ proof -
+ have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`])
+ moreover have "finite(B-A)" by(blast intro:finite_Diff prems)
+ moreover have "(B-A) \<noteq> {}" using prems by blast
+ moreover have "A Int (B-A) = {}" using prems by blast
+ ultimately show ?thesis using `A \<noteq> {}` by(rule_tac fold1_Un)
+ qed
+ also have "\<dots> \<sqsubseteq> fold1 f A" by(simp add: above_f_conv)
+ finally show ?thesis .
+qed
+
+
subsubsection{* Lattices *}
locale Lattice = lattice +
@@ -2185,27 +2207,30 @@
by(simp add:Sup_def inf_absorb ACIfSL.fold1_belowI[OF ACIfSL_sup])
-lemma (in Distrib_Lattice) sup_Inf1_distrib:
-assumes A: "finite A" "A \<noteq> {}"
-shows "(x \<squnion> \<Sqinter>A) = \<Sqinter>{x \<squnion> a|a. a \<in> A}"
-using A
-proof (induct rule: finite_ne_induct)
- case singleton thus ?case by(simp add:Inf_def)
+lemma (in ACIf) hom_fold1_commute:
+assumes hom: "!!x y. h(f x y) = f (h x) (h y)"
+and N: "finite N" "N \<noteq> {}" shows "h(fold1 f N) = fold1 f (h ` N)"
+using N proof (induct rule: finite_ne_induct)
+ case singleton thus ?case by simp
next
- case (insert y A)
- have fin: "finite {x \<squnion> a |a. a \<in> A}"
- by(fast intro: finite_surj[where f = "%a. x \<squnion> a", OF insert(1)])
- have "x \<squnion> \<Sqinter> (insert y A) = x \<squnion> (y \<sqinter> \<Sqinter> A)"
- using insert by(simp add:ACf.fold1_insert_def[OF ACf_inf Inf_def])
- also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> \<Sqinter> A)" by(rule sup_inf_distrib1)
- also have "x \<squnion> \<Sqinter> A = \<Sqinter>{x \<squnion> a|a. a \<in> A}" using insert by simp
- also have "(x \<squnion> y) \<sqinter> \<dots> = \<Sqinter> (insert (x \<squnion> y) {x \<squnion> a |a. a \<in> A})"
- using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_inf Inf_def fin])
- also have "insert (x\<squnion>y) {x\<squnion>a |a. a \<in> A} = {x\<squnion>a |a. a \<in> insert y A}"
- by blast
+ case (insert n N)
+ have "h(fold1 f (insert n N)) = h(f n (fold1 f N))" using insert by(simp)
+ also have "\<dots> = f (h n) (h(fold1 f N))" by(rule hom)
+ also have "h(fold1 f N) = fold1 f (h ` N)" by(rule insert)
+ also have "f (h n) \<dots> = fold1 f (insert (h n) (h ` N))"
+ using insert by(simp)
+ also have "insert (h n) (h ` N) = h ` insert n N" by simp
finally show ?case .
qed
+lemma (in Distrib_Lattice) sup_Inf1_distrib:
+ "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> (x \<squnion> \<Sqinter>A) = \<Sqinter>{x \<squnion> a|a. a \<in> A}"
+apply(simp add:Inf_def image_def
+ ACIf.hom_fold1_commute[OF ACIf_inf, where h="sup x", OF sup_inf_distrib1])
+apply(rule arg_cong, blast)
+done
+
+
lemma (in Distrib_Lattice) sup_Inf2_distrib:
assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
shows "(\<Sqinter>A \<squnion> \<Sqinter>B) = \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
@@ -2239,6 +2264,47 @@
qed
+lemma (in Distrib_Lattice) inf_Sup1_distrib:
+ "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> (x \<sqinter> \<Squnion>A) = \<Squnion>{x \<sqinter> a|a. a \<in> A}"
+apply(simp add:Sup_def image_def
+ ACIf.hom_fold1_commute[OF ACIf_sup, where h="inf x", OF inf_sup_distrib1])
+apply(rule arg_cong, blast)
+done
+
+
+lemma (in Distrib_Lattice) inf_Sup2_distrib:
+assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
+shows "(\<Squnion>A \<sqinter> \<Squnion>B) = \<Squnion>{a \<sqinter> b|a b. a \<in> A \<and> b \<in> B}"
+using A
+proof (induct rule: finite_ne_induct)
+ case singleton thus ?case
+ by(simp add: inf_Sup1_distrib[OF B] fold1_singleton_def[OF Sup_def])
+next
+ case (insert x A)
+ have finB: "finite {x \<sqinter> b |b. b \<in> B}"
+ by(fast intro: finite_surj[where f = "%b. x \<sqinter> b", OF B(1)])
+ have finAB: "finite {a \<sqinter> b |a b. a \<in> A \<and> b \<in> B}"
+ proof -
+ have "{a \<sqinter> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<sqinter> b})"
+ by blast
+ thus ?thesis by(simp add: insert(1) B(1))
+ qed
+ have ne: "{a \<sqinter> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
+ have "\<Squnion>(insert x A) \<sqinter> \<Squnion>B = (x \<squnion> \<Squnion>A) \<sqinter> \<Squnion>B"
+ using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_sup Sup_def])
+ also have "\<dots> = (x \<sqinter> \<Squnion>B) \<squnion> (\<Squnion>A \<sqinter> \<Squnion>B)" by(rule inf_sup_distrib2)
+ also have "\<dots> = \<Squnion>{x \<sqinter> b|b. b \<in> B} \<squnion> \<Squnion>{a \<sqinter> b|a b. a \<in> A \<and> b \<in> B}"
+ using insert by(simp add:inf_Sup1_distrib[OF B])
+ also have "\<dots> = \<Squnion>({x\<sqinter>b |b. b \<in> B} \<union> {a\<sqinter>b |a b. a \<in> A \<and> b \<in> B})"
+ (is "_ = \<Squnion>?M")
+ using B insert
+ by(simp add:Sup_def ACIf.fold1_Un2[OF ACIf_sup finB _ finAB ne])
+ also have "?M = {a \<sqinter> b |a b. a \<in> insert x A \<and> b \<in> B}"
+ by blast
+ finally show ?case .
+qed
+
+
subsection{*Min and Max*}
text{* As an application of @{text fold1} we define the minimal and
@@ -2338,6 +2404,12 @@
using max.fold1_in
by(fastsimp simp: Max_def max_def)
+lemma Min_antimono: "\<lbrakk> M \<subseteq> N; M \<noteq> {}; finite N \<rbrakk> \<Longrightarrow> Min N \<le> Min M"
+by(simp add:Finite_Set.Min_def min.fold1_antimono)
+
+lemma Max_mono: "\<lbrakk> M \<subseteq> N; M \<noteq> {}; finite N \<rbrakk> \<Longrightarrow> Max M \<le> Max N"
+by(simp add:Max_def max.fold1_antimono)
+
lemma Min_le [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> Min A \<le> x"
by(simp add: Min_def min.fold1_belowI)
@@ -2360,6 +2432,46 @@
"\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Max A) = (\<exists>a\<in>A. x \<le> a)"
by(simp add: Max_def max.fold1_below_iff)
+lemma Min_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
+ \<Longrightarrow> Min (A \<union> B) = min (Min A) (Min B)"
+by(simp add:Min_def min.f.fold1_Un2)
+
+lemma Max_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
+ \<Longrightarrow> Max (A \<union> B) = max (Max A) (Max B)"
+by(simp add:Max_def max.f.fold1_Un2)
+
+
+lemma hom_Min_commute:
+ "(!!x y::'a::linorder. h(min x y) = min (h x) (h y::'a))
+ \<Longrightarrow> finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> h(Min N) = Min(h ` N)"
+by(simp add:Finite_Set.Min_def min.hom_fold1_commute)
+
+lemma hom_Max_commute:
+ "(!!x y::'a::linorder. h(max x y) = max (h x) (h y::'a))
+ \<Longrightarrow> finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> h(Max N) = Max(h ` N)"
+by(simp add:Max_def max.hom_fold1_commute)
+
+
+lemma add_Min_commute: fixes k::"'a::{pordered_ab_semigroup_add,linorder}"
+ shows "finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> k + Min N = Min {k+m|m. m \<in> N}"
+apply(subgoal_tac "!!x y. k + min x y = min (k + x) (k + y)")
+using hom_Min_commute[of "op + k" N]
+apply simp apply(rule arg_cong[where f = Min]) apply blast
+apply(simp add:min_def linorder_not_le)
+apply(blast intro:order.antisym order_less_imp_le add_left_mono)
+done
+
+lemma add_Max_commute: fixes k::"'a::{pordered_ab_semigroup_add,linorder}"
+ shows "finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> k + Max N = Max {k+m|m. m \<in> N}"
+apply(subgoal_tac "!!x y. k + max x y = max (k + x) (k + y)")
+using hom_Max_commute[of "op + k" N]
+apply simp apply(rule arg_cong[where f = Max]) apply blast
+apply(simp add:max_def linorder_not_le)
+apply(blast intro:order.antisym order_less_imp_le add_left_mono)
+done
+
+
+
subsection {* Properties of axclass @{text finite} *}
text{* Many of these are by Brian Huffman. *}
--- a/src/HOL/List.thy Fri Dec 16 16:00:58 2005 +0100
+++ b/src/HOL/List.thy Fri Dec 16 16:59:32 2005 +0100
@@ -628,6 +628,9 @@
lemmas rev_cases = rev_exhaust
+lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
+by(rule rev_cases[of xs]) auto
+
subsubsection {* @{text set} *}
@@ -734,6 +737,10 @@
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
by (induct xs) (auto simp add: le_SucI)
+lemma sum_length_filter_compl:
+ "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
+by(induct xs) simp_all
+
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
by (induct xs) auto
@@ -906,6 +913,9 @@
apply (case_tac n, auto)
done
+lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
+by(cases xs) simp_all
+
lemma list_eq_iff_nth_eq:
"!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
@@ -1202,6 +1212,9 @@
apply (case_tac xs, auto)
done
+lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
+by(simp add: hd_conv_nth)
+
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
by(induct xs)(auto simp:take_Cons split:nat.split)
@@ -1322,6 +1335,14 @@
apply auto
done
+lemma takeWhile_not_last:
+ "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
+apply(induct xs)
+ apply simp
+apply(case_tac xs)
+apply(auto)
+done
+
lemma takeWhile_cong [recdef_cong]:
"[| l = k; !!x. x : set l ==> P x = Q x |]
==> takeWhile P l = takeWhile Q k"
@@ -2044,6 +2065,12 @@
apply(simp add:rotate_drop_take rev_drop rev_take)
done
+lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
+apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
+apply(subgoal_tac "length xs \<noteq> 0")
+ prefer 2 apply simp
+using mod_less_divisor[of "length xs" n] by arith
+
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
@@ -2335,7 +2362,7 @@
"lexn r n =
{(xs,ys). length xs = n \<and> length ys = n \<and>
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
-apply (induct n, simp, blast)
+apply (induct n, simp)
apply (simp add: image_Collect lex_prod_def, safe, blast)
apply (rule_tac x = "ab # xys" in exI, simp)
apply (case_tac xys, simp_all, blast)
--- a/src/HOL/Set.thy Fri Dec 16 16:00:58 2005 +0100
+++ b/src/HOL/Set.thy Fri Dec 16 16:59:32 2005 +0100
@@ -1120,7 +1120,10 @@
by (unfold psubset_def) blast
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
- by auto
+by blast
+
+lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
+by blast
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
by blast