--- a/doc-src/AxClass/generated/Group.tex Mon Oct 23 22:10:36 2000 +0200
+++ b/doc-src/AxClass/generated/Group.tex Mon Oct 23 22:11:24 2000 +0200
@@ -163,14 +163,14 @@
\end{figure}%
\end{isamarkuptext}%
\isacommand{instance}\ monoid\ {\isacharless}\ semigroup\isanewline
-\isacommand{proof}\ intro{\isacharunderscore}classes\isanewline
+\isacommand{proof}\isanewline
\ \ \isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}monoid{\isachardoublequote}\isanewline
\ \ \isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
\ \ \ \ \isacommand{by}\ {\isacharparenleft}rule\ monoid{\isachardot}assoc{\isacharparenright}\isanewline
\isacommand{qed}\isanewline
\isanewline
\isacommand{instance}\ group\ {\isacharless}\ monoid\isanewline
-\isacommand{proof}\ intro{\isacharunderscore}classes\isanewline
+\isacommand{proof}\isanewline
\ \ \isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}group{\isachardoublequote}\isanewline
\ \ \isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
\ \ \ \ \isacommand{by}\ {\isacharparenleft}rule\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
@@ -183,12 +183,12 @@
\medskip The $\INSTANCE$ command sets up an appropriate goal that
represents the class inclusion (or type arity, see
\secref{sec:inst-arity}) to be proven (see also
- \cite{isabelle-isar-ref}). The \isa{intro{\isacharunderscore}classes} proof method
- does back-chaining of class membership statements wrt.\ the hierarchy
- of any classes defined in the current theory; the effect is to reduce
- to the initial statement to a number of goals that directly
- correspond to any class axioms encountered on the path upwards
- through the class hierarchy.%
+ \cite{isabelle-isar-ref}). The initial proof step causes
+ back-chaining of class membership statements wrt.\ the hierarchy of
+ any classes defined in the current theory; the effect is to reduce to
+ the initial statement to a number of goals that directly correspond
+ to any class axioms encountered on the path upwards through the class
+ hierarchy.%
\end{isamarkuptext}%
%
\isamarkupsubsection{Concrete instantiation \label{sec:inst-arity}}
--- a/doc-src/AxClass/generated/Product.tex Mon Oct 23 22:10:36 2000 +0200
+++ b/doc-src/AxClass/generated/Product.tex Mon Oct 23 22:11:24 2000 +0200
@@ -40,8 +40,7 @@
Constants \isa{{\isasymodot}} on some type \isa{{\isasymtau}} are rejected by the
type-checker, unless the arity \isa{{\isasymtau}\ {\isasymColon}\ product} is part of the
type signature. In our example, this arity may be always added when
- required by means of an $\INSTANCE$ with the trivial proof
- $\BY{intro_classes}$.
+ required by means of an $\INSTANCE$ with the default proof $\DDOT$.
\medskip Thus, we may observe the following discipline of using
syntactic classes. Overloaded polymorphic constants have their type
@@ -52,8 +51,7 @@
This is done for class \isa{product} and type \isa{bool} as
follows.%
\end{isamarkuptext}%
-\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ product\isanewline
-\ \ \isacommand{by}\ intro{\isacharunderscore}classes\isanewline
+\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ product\ \isacommand{{\isachardot}{\isachardot}}\isanewline
\isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
\ \ product{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymand}\ y{\isachardoublequote}%
\begin{isamarkuptext}%