merged
authorbulwahn
Thu, 29 Oct 2009 14:03:55 +0100 (2009-10-29)
changeset 33331 d8bfa9564a52
parent 33330 d6eb7f19bfc6 (current diff)
parent 33322 6ff4674499ca (diff)
child 33332 9b5286c0fb14
merged
--- a/NEWS	Thu Oct 29 13:59:37 2009 +0100
+++ b/NEWS	Thu Oct 29 14:03:55 2009 +0100
@@ -65,6 +65,10 @@
 of finite and infinite sets. It is shown that they form a complete
 lattice.
 
+* New theory SupInf of the supremum and infimum operators for sets of reals.
+
+* New theory Probability, which contains a development of measure theory, eventually leading to Lebesgue integration and probability.
+
 * Split off prime number ingredients from theory GCD
 to theory Number_Theory/Primes;
 
--- a/doc-src/IsarImplementation/Thy/Integration.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/doc-src/IsarImplementation/Thy/Integration.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -274,7 +274,8 @@
   @{index_ML Isar.state: "unit -> Toplevel.state"} \\
   @{index_ML Isar.exn: "unit -> (exn * string) option"} \\
   @{index_ML Isar.context: "unit -> Proof.context"} \\
-  @{index_ML Isar.goal: "unit -> thm"} \\
+  @{index_ML Isar.goal: "unit ->
+  {context: Proof.context, facts: thm list, goal: thm}"} \\
   \end{mldecls}
 
   \begin{description}
@@ -293,8 +294,9 @@
   "Isar.state ()"}, analogous to @{ML Context.proof_of}
   (\secref{sec:generic-context}).
 
-  \item @{ML "Isar.goal ()"} picks the tactical goal from @{ML
-  "Isar.state ()"}, represented as a theorem according to
+  \item @{ML "Isar.goal ()"} produces the full Isar goal state,
+  consisting of proof context, facts that have been indicated for
+  immediate use, and the tactical goal according to
   \secref{sec:tactical-goals}.
 
   \end{description}
--- a/doc-src/IsarImplementation/Thy/document/Integration.tex	Thu Oct 29 13:59:37 2009 +0100
+++ b/doc-src/IsarImplementation/Thy/document/Integration.tex	Thu Oct 29 14:03:55 2009 +0100
@@ -335,7 +335,8 @@
   \indexdef{}{ML}{Isar.state}\verb|Isar.state: unit -> Toplevel.state| \\
   \indexdef{}{ML}{Isar.exn}\verb|Isar.exn: unit -> (exn * string) option| \\
   \indexdef{}{ML}{Isar.context}\verb|Isar.context: unit -> Proof.context| \\
-  \indexdef{}{ML}{Isar.goal}\verb|Isar.goal: unit -> thm| \\
+  \indexdef{}{ML}{Isar.goal}\verb|Isar.goal: unit ->|\isasep\isanewline%
+\verb|  {context: Proof.context, facts: thm list, goal: thm}| \\
   \end{mldecls}
 
   \begin{description}
@@ -353,7 +354,9 @@
   \item \verb|Isar.context ()| produces the proof context from \verb|Isar.state ()|, analogous to \verb|Context.proof_of|
   (\secref{sec:generic-context}).
 
-  \item \verb|Isar.goal ()| picks the tactical goal from \verb|Isar.state ()|, represented as a theorem according to
+  \item \verb|Isar.goal ()| produces the full Isar goal state,
+  consisting of proof context, facts that have been indicated for
+  immediate use, and the tactical goal according to
   \secref{sec:tactical-goals}.
 
   \end{description}%
--- a/etc/symbols	Thu Oct 29 13:59:37 2009 +0100
+++ b/etc/symbols	Thu Oct 29 14:03:55 2009 +0100
@@ -244,10 +244,10 @@
 \<Inter>                code: 0x0022c2  font: Isabelle  abbrev: Inter
 \<union>                code: 0x00222a  font: Isabelle  abbrev: Un
 \<Union>                code: 0x0022c3  font: Isabelle  abbrev: Union
-\<squnion>              code: 0x002294  font: Isabelle  abbrev: |_|
-\<Squnion>              code: 0x002a06  font: Isabelle  abbrev: |||
-\<sqinter>              code: 0x002293  font: Isabelle  abbrev: &&
-\<Sqinter>              code: 0x002a05  font: Isabelle  abbrev: &&&
+\<squnion>              code: 0x002294  font: Isabelle
+\<Squnion>              code: 0x002a06  font: Isabelle
+\<sqinter>              code: 0x002293  font: Isabelle
+\<Sqinter>              code: 0x002a05  font: Isabelle
 \<setminus>             code: 0x002216  font: Isabelle
 \<propto>               code: 0x00221d  font: Isabelle
 \<uplus>                code: 0x00228e  font: Isabelle
--- a/lib/scripts/getsettings	Thu Oct 29 13:59:37 2009 +0100
+++ b/lib/scripts/getsettings	Thu Oct 29 14:03:55 2009 +0100
@@ -86,7 +86,7 @@
   local COMPONENT="$1"
 
   if [ ! -d "$COMPONENT" ]; then
-    echo >&2 "Bad Isabelle component: $COMPONENT"
+    echo >&2 "Bad Isabelle component: \"$COMPONENT\""
     exit 2
   elif [ -z "$ISABELLE_COMPONENTS" ]; then
     ISABELLE_COMPONENTS="$COMPONENT"
--- a/src/HOL/Code_Numeral.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Code_Numeral.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -3,7 +3,7 @@
 header {* Type of target language numerals *}
 
 theory Code_Numeral
-imports Nat_Numeral
+imports Nat_Numeral Nat_Transfer Divides
 begin
 
 text {*
--- a/src/HOL/Complex_Main.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Complex_Main.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -4,6 +4,7 @@
 imports
   Main
   Real
+  SupInf
   Complex
   Log
   Ln
--- a/src/HOL/Divides.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Divides.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -6,8 +6,16 @@
 header {* The division operators div and mod *}
 
 theory Divides
-imports Nat Power Product_Type
-uses "~~/src/Provers/Arith/cancel_div_mod.ML"
+imports Nat_Numeral Nat_Transfer
+uses
+  "~~/src/Provers/Arith/assoc_fold.ML"
+  "~~/src/Provers/Arith/cancel_numerals.ML"
+  "~~/src/Provers/Arith/combine_numerals.ML"
+  "~~/src/Provers/Arith/cancel_numeral_factor.ML"
+  "~~/src/Provers/Arith/extract_common_term.ML"
+  ("Tools/numeral_simprocs.ML")
+  ("Tools/nat_numeral_simprocs.ML")
+  "~~/src/Provers/Arith/cancel_div_mod.ML"
 begin
 
 subsection {* Syntactic division operations *}
@@ -178,6 +186,9 @@
 lemma dvd_div_mult_self: "a dvd b \<Longrightarrow> (b div a) * a = b"
 by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0)
 
+lemma dvd_mult_div_cancel: "a dvd b \<Longrightarrow> a * (b div a) = b"
+by (drule dvd_div_mult_self) (simp add: mult_commute)
+
 lemma dvd_div_mult: "a dvd b \<Longrightarrow> (b div a) * c = b * c div a"
 apply (cases "a = 0")
  apply simp
@@ -866,79 +877,6 @@
 apply (auto simp add: Suc_diff_le le_mod_geq)
 done
 
-
-subsubsection {* The Divides Relation *}
-
-lemma dvd_1_left [iff]: "Suc 0 dvd k"
-  unfolding dvd_def by simp
-
-lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
-by (simp add: dvd_def)
-
-lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1"
-by (simp add: dvd_def)
-
-lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
-  unfolding dvd_def
-  by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
-
-text {* @{term "op dvd"} is a partial order *}
-
-interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n"
-  proof qed (auto intro: dvd_refl dvd_trans dvd_anti_sym)
-
-lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
-unfolding dvd_def
-by (blast intro: diff_mult_distrib2 [symmetric])
-
-lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
-  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
-  apply (blast intro: dvd_add)
-  done
-
-lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
-by (drule_tac m = m in dvd_diff_nat, auto)
-
-lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
-  apply (rule iffI)
-   apply (erule_tac [2] dvd_add)
-   apply (rule_tac [2] dvd_refl)
-  apply (subgoal_tac "n = (n+k) -k")
-   prefer 2 apply simp
-  apply (erule ssubst)
-  apply (erule dvd_diff_nat)
-  apply (rule dvd_refl)
-  done
-
-lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
-  unfolding dvd_def
-  apply (erule exE)
-  apply (simp add: mult_ac)
-  done
-
-lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
-  apply auto
-   apply (subgoal_tac "m*n dvd m*1")
-   apply (drule dvd_mult_cancel, auto)
-  done
-
-lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
-  apply (subst mult_commute)
-  apply (erule dvd_mult_cancel1)
-  done
-
-lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
-  by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
-
-lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"
-  by (simp add: dvd_eq_mod_eq_0 mult_div_cancel)
-
-lemma power_dvd_imp_le:
-  "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n"
-  apply (rule power_le_imp_le_exp, assumption)
-  apply (erule dvd_imp_le, simp)
-  done
-
 lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
 by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
 
@@ -1162,9 +1100,158 @@
   with j show ?thesis by blast
 qed
 
-lemma nat_dvd_not_less:
-  fixes m n :: nat
-  shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m"
-by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
+lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
+by (auto simp add: numeral_2_eq_2 le_div_geq)
+
+lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
+by (simp add: nat_mult_2 [symmetric])
+
+lemma mod2_Suc_Suc [simp]: "Suc(Suc(m)) mod 2 = m mod 2"
+apply (subgoal_tac "m mod 2 < 2")
+apply (erule less_2_cases [THEN disjE])
+apply (simp_all (no_asm_simp) add: Let_def mod_Suc nat_1)
+done
+
+lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
+proof -
+  { fix n :: nat have  "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (induct n) simp_all }
+  moreover have "m mod 2 < 2" by simp
+  ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
+  then show ?thesis by auto
+qed
+
+text{*These lemmas collapse some needless occurrences of Suc:
+    at least three Sucs, since two and fewer are rewritten back to Suc again!
+    We already have some rules to simplify operands smaller than 3.*}
+
+lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
+by (simp add: Suc3_eq_add_3)
+
+lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
+by (simp add: Suc3_eq_add_3)
+
+lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
+by (simp add: Suc3_eq_add_3)
+
+lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
+by (simp add: Suc3_eq_add_3)
+
+lemmas Suc_div_eq_add3_div_number_of =
+    Suc_div_eq_add3_div [of _ "number_of v", standard]
+declare Suc_div_eq_add3_div_number_of [simp]
+
+lemmas Suc_mod_eq_add3_mod_number_of =
+    Suc_mod_eq_add3_mod [of _ "number_of v", standard]
+declare Suc_mod_eq_add3_mod_number_of [simp]
+
+
+subsection {* Proof Tools setup; Combination and Cancellation Simprocs *}
+
+declare split_div[of _ _ "number_of k", standard, arith_split]
+declare split_mod[of _ _ "number_of k", standard, arith_split]
+
+
+subsubsection{*For @{text combine_numerals}*}
+
+lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
+by (simp add: add_mult_distrib)
+
+
+subsubsection{*For @{text cancel_numerals}*}
+
+lemma nat_diff_add_eq1:
+     "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
+by (simp split add: nat_diff_split add: add_mult_distrib)
+
+lemma nat_diff_add_eq2:
+     "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
+by (simp split add: nat_diff_split add: add_mult_distrib)
+
+lemma nat_eq_add_iff1:
+     "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
+by (auto split add: nat_diff_split simp add: add_mult_distrib)
+
+lemma nat_eq_add_iff2:
+     "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
+by (auto split add: nat_diff_split simp add: add_mult_distrib)
+
+lemma nat_less_add_iff1:
+     "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
+by (auto split add: nat_diff_split simp add: add_mult_distrib)
+
+lemma nat_less_add_iff2:
+     "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
+by (auto split add: nat_diff_split simp add: add_mult_distrib)
+
+lemma nat_le_add_iff1:
+     "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
+by (auto split add: nat_diff_split simp add: add_mult_distrib)
+
+lemma nat_le_add_iff2:
+     "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
+by (auto split add: nat_diff_split simp add: add_mult_distrib)
+
+
+subsubsection{*For @{text cancel_numeral_factors} *}
+
+lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
+by auto
+
+lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
+by auto
+
+lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
+by auto
+
+lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
+by auto
+
+lemma nat_mult_dvd_cancel_disj[simp]:
+  "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
+by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
+
+lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
+by(auto)
+
+
+subsubsection{*For @{text cancel_factor} *}
+
+lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
+by auto
+
+lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
+by auto
+
+lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
+by auto
+
+lemma nat_mult_div_cancel_disj[simp]:
+     "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
+by (simp add: nat_mult_div_cancel1)
+
+
+use "Tools/numeral_simprocs.ML"
+
+use "Tools/nat_numeral_simprocs.ML"
+
+declaration {* 
+  K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
+  #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
+     @{thm nat_0}, @{thm nat_1},
+     @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
+     @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
+     @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
+     @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
+     @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
+     @{thm mult_Suc}, @{thm mult_Suc_right},
+     @{thm add_Suc}, @{thm add_Suc_right},
+     @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
+     @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
+     @{thm if_True}, @{thm if_False}])
+  #> Lin_Arith.add_simprocs (Numeral_Simprocs.assoc_fold_simproc
+      :: Numeral_Simprocs.combine_numerals
+      :: Numeral_Simprocs.cancel_numerals)
+  #> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))
+*}
 
 end
--- a/src/HOL/Fact.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Fact.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -8,7 +8,7 @@
 header{*Factorial Function*}
 
 theory Fact
-imports Nat_Transfer
+imports Main
 begin
 
 class fact =
@@ -266,9 +266,6 @@
 lemma of_nat_fact_not_zero [simp]: "of_nat (fact n) \<noteq> (0::'a::semiring_char_0)"
 by auto
 
-class ordered_semiring_1 = ordered_semiring + semiring_1
-class ordered_semiring_1_strict = ordered_semiring_strict + semiring_1
-
 lemma of_nat_fact_gt_zero [simp]: "(0::'a::{ordered_semidom}) < of_nat(fact n)" by auto
 
 lemma of_nat_fact_ge_zero [simp]: "(0::'a::ordered_semidom) \<le> of_nat(fact n)"
--- a/src/HOL/Fun.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Fun.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -7,7 +7,6 @@
 
 theory Fun
 imports Complete_Lattice
-uses ("Tools/transfer.ML")
 begin
 
 text{*As a simplification rule, it replaces all function equalities by
@@ -604,16 +603,6 @@
 *}
 
 
-subsection {* Generic transfer procedure *}
-
-definition TransferMorphism:: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> bool"
-  where "TransferMorphism a B \<longleftrightarrow> True"
-
-use "Tools/transfer.ML"
-
-setup Transfer.setup
-
-
 subsection {* Code generator setup *}
 
 types_code
--- a/src/HOL/GCD.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/GCD.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -28,7 +28,7 @@
 header {* GCD *}
 
 theory GCD
-imports Fact
+imports Fact Parity
 begin
 
 declare One_nat_def [simp del]
--- a/src/HOL/Groebner_Basis.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Groebner_Basis.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -5,7 +5,7 @@
 header {* Semiring normalization and Groebner Bases *}
 
 theory Groebner_Basis
-imports Nat_Numeral
+imports IntDiv
 uses
   "Tools/Groebner_Basis/misc.ML"
   "Tools/Groebner_Basis/normalizer_data.ML"
--- a/src/HOL/Int.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Int.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -13,12 +13,6 @@
   ("Tools/numeral.ML")
   ("Tools/numeral_syntax.ML")
   ("Tools/int_arith.ML")
-  "~~/src/Provers/Arith/assoc_fold.ML"
-  "~~/src/Provers/Arith/cancel_numerals.ML"
-  "~~/src/Provers/Arith/combine_numerals.ML"
-  "~~/src/Provers/Arith/cancel_numeral_factor.ML"
-  "~~/src/Provers/Arith/extract_common_term.ML"
-  ("Tools/numeral_simprocs.ML")
 begin
 
 subsection {* The equivalence relation underlying the integers *}
@@ -1093,7 +1087,7 @@
 lemmas double_eq_0_iff = double_zero
 
 lemma odd_nonzero:
-  "1 + z + z \<noteq> (0::int)";
+  "1 + z + z \<noteq> (0::int)"
 proof (cases z rule: int_cases)
   case (nonneg n)
   have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) 
@@ -1163,7 +1157,7 @@
 qed
 
 lemma odd_less_0:
-  "(1 + z + z < 0) = (z < (0::int))";
+  "(1 + z + z < 0) = (z < (0::int))"
 proof (cases z rule: int_cases)
   case (nonneg n)
   thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
@@ -1368,7 +1362,7 @@
 
 lemma Ints_odd_less_0: 
   assumes in_Ints: "a \<in> Ints"
-  shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))";
+  shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))"
 proof -
   from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
   then obtain z where a: "a = of_int z" ..
@@ -1503,8 +1497,6 @@
   of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult
   of_int_0 of_int_1 of_int_add of_int_mult
 
-use "Tools/numeral_simprocs.ML"
-
 use "Tools/int_arith.ML"
 setup {* Int_Arith.global_setup *}
 declaration {* K Int_Arith.setup *}
@@ -1540,11 +1532,7 @@
 
 text{*Lemmas for specialist use, NOT as default simprules*}
 lemma mult_2: "2 * z = (z+z::'a::number_ring)"
-proof -
-  have "2*z = (1 + 1)*z" by simp
-  also have "... = z+z" by (simp add: left_distrib)
-  finally show ?thesis .
-qed
+unfolding one_add_one_is_two [symmetric] left_distrib by simp
 
 lemma mult_2_right: "z * 2 = (z+z::'a::number_ring)"
 by (subst mult_commute, rule mult_2)
@@ -1830,14 +1818,15 @@
  apply (frule pos_zmult_eq_1_iff_lemma, auto) 
 done
 
-(* Could be simplified but Presburger only becomes available too late *)
-lemma infinite_UNIV_int: "~finite(UNIV::int set)"
+lemma infinite_UNIV_int: "\<not> finite (UNIV::int set)"
 proof
-  assume "finite(UNIV::int set)"
-  moreover have "~(EX i::int. 2*i = 1)"
-    by (auto simp: pos_zmult_eq_1_iff)
-  ultimately show False using finite_UNIV_inj_surj[of "%n::int. n+n"]
-    by (simp add:inj_on_def surj_def) (blast intro:sym)
+  assume "finite (UNIV::int set)"
+  moreover have "inj (\<lambda>i\<Colon>int. 2 * i)"
+    by (rule injI) simp
+  ultimately have "surj (\<lambda>i\<Colon>int. 2 * i)"
+    by (rule finite_UNIV_inj_surj)
+  then obtain i :: int where "1 = 2 * i" by (rule surjE)
+  then show False by (simp add: pos_zmult_eq_1_iff)
 qed
 
 
@@ -1995,6 +1984,135 @@
 lemmas half_gt_zero [simp] = half_gt_zero_iff [THEN iffD2, standard]
 
 
+subsection {* The divides relation *}
+
+lemma zdvd_anti_sym:
+    "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)"
+  apply (simp add: dvd_def, auto)
+  apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff)
+  done
+
+lemma zdvd_dvd_eq: assumes "a \<noteq> 0" and "(a::int) dvd b" and "b dvd a" 
+  shows "\<bar>a\<bar> = \<bar>b\<bar>"
+proof-
+  from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast 
+  from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast 
+  from k k' have "a = a*k*k'" by simp
+  with mult_cancel_left1[where c="a" and b="k*k'"]
+  have kk':"k*k' = 1" using `a\<noteq>0` by (simp add: mult_assoc)
+  hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
+  thus ?thesis using k k' by auto
+qed
+
+lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
+  apply (subgoal_tac "m = n + (m - n)")
+   apply (erule ssubst)
+   apply (blast intro: dvd_add, simp)
+  done
+
+lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
+apply (rule iffI)
+ apply (erule_tac [2] dvd_add)
+ apply (subgoal_tac "n = (n + k * m) - k * m")
+  apply (erule ssubst)
+  apply (erule dvd_diff)
+  apply(simp_all)
+done
+
+lemma dvd_imp_le_int:
+  fixes d i :: int
+  assumes "i \<noteq> 0" and "d dvd i"
+  shows "\<bar>d\<bar> \<le> \<bar>i\<bar>"
+proof -
+  from `d dvd i` obtain k where "i = d * k" ..
+  with `i \<noteq> 0` have "k \<noteq> 0" by auto
+  then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto
+  then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono)
+  with `i = d * k` show ?thesis by (simp add: abs_mult)
+qed
+
+lemma zdvd_not_zless:
+  fixes m n :: int
+  assumes "0 < m" and "m < n"
+  shows "\<not> n dvd m"
+proof
+  from assms have "0 < n" by auto
+  assume "n dvd m" then obtain k where k: "m = n * k" ..
+  with `0 < m` have "0 < n * k" by auto
+  with `0 < n` have "0 < k" by (simp add: zero_less_mult_iff)
+  with k `0 < n` `m < n` have "n * k < n * 1" by simp
+  with `0 < n` `0 < k` show False unfolding mult_less_cancel_left by auto
+qed
+
+lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
+  shows "m dvd n"
+proof-
+  from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
+  {assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
+    with h have False by (simp add: mult_assoc)}
+  hence "n = m * h" by blast
+  thus ?thesis by simp
+qed
+
+theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
+proof -
+  have "\<And>k. int y = int x * k \<Longrightarrow> x dvd y"
+  proof -
+    fix k
+    assume A: "int y = int x * k"
+    then show "x dvd y" proof (cases k)
+      case (1 n) with A have "y = x * n" by (simp add: of_nat_mult [symmetric])
+      then show ?thesis ..
+    next
+      case (2 n) with A have "int y = int x * (- int (Suc n))" by simp
+      also have "\<dots> = - (int x * int (Suc n))" by (simp only: mult_minus_right)
+      also have "\<dots> = - int (x * Suc n)" by (simp only: of_nat_mult [symmetric])
+      finally have "- int (x * Suc n) = int y" ..
+      then show ?thesis by (simp only: negative_eq_positive) auto
+    qed
+  qed
+  then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left of_nat_mult)
+qed
+
+lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \<bar>x\<bar> = 1)"
+proof
+  assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by simp
+  hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
+  hence "nat \<bar>x\<bar> = 1"  by simp
+  thus "\<bar>x\<bar> = 1" by (cases "x < 0", auto)
+next
+  assume "\<bar>x\<bar>=1"
+  then have "x = 1 \<or> x = -1" by auto
+  then show "x dvd 1" by (auto intro: dvdI)
+qed
+
+lemma zdvd_mult_cancel1: 
+  assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
+proof
+  assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m" 
+    by (cases "n >0", auto simp add: minus_dvd_iff minus_equation_iff)
+next
+  assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
+  from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
+qed
+
+lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
+  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
+
+lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
+  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
+
+lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
+  by (auto simp add: dvd_int_iff)
+
+lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
+  apply (rule_tac z=n in int_cases)
+  apply (auto simp add: dvd_int_iff)
+  apply (rule_tac z=z in int_cases)
+  apply (auto simp add: dvd_imp_le)
+  done
+
+
 subsection {* Configuration of the code generator *}
 
 code_datatype Pls Min Bit0 Bit1 "number_of \<Colon> int \<Rightarrow> int"
--- a/src/HOL/IntDiv.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/IntDiv.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -1024,139 +1024,16 @@
 lemmas zdvd_iff_zmod_eq_0_number_of [simp] =
   dvd_eq_mod_eq_0 [of "number_of x::int" "number_of y::int", standard]
 
-lemma zdvd_anti_sym:
-    "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)"
-  apply (simp add: dvd_def, auto)
-  apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff)
-  done
-
-lemma zdvd_dvd_eq: assumes "a \<noteq> 0" and "(a::int) dvd b" and "b dvd a" 
-  shows "\<bar>a\<bar> = \<bar>b\<bar>"
-proof-
-  from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast 
-  from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast 
-  from k k' have "a = a*k*k'" by simp
-  with mult_cancel_left1[where c="a" and b="k*k'"]
-  have kk':"k*k' = 1" using `a\<noteq>0` by (simp add: mult_assoc)
-  hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
-  thus ?thesis using k k' by auto
-qed
-
-lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
-  apply (subgoal_tac "m = n + (m - n)")
-   apply (erule ssubst)
-   apply (blast intro: dvd_add, simp)
-  done
-
-lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
-apply (rule iffI)
- apply (erule_tac [2] dvd_add)
- apply (subgoal_tac "n = (n + k * m) - k * m")
-  apply (erule ssubst)
-  apply (erule dvd_diff)
-  apply(simp_all)
-done
-
 lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n"
   by (rule dvd_mod) (* TODO: remove *)
 
 lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)"
   by (rule dvd_mod_imp_dvd) (* TODO: remove *)
 
-lemma dvd_imp_le_int: "(i::int) ~= 0 ==> d dvd i ==> abs d <= abs i"
-apply(auto simp:abs_if)
-   apply(clarsimp simp:dvd_def mult_less_0_iff)
-  using mult_le_cancel_left_neg[of _ "-1::int"]
-  apply(clarsimp simp:dvd_def mult_less_0_iff)
- apply(clarsimp simp:dvd_def mult_less_0_iff
-         minus_mult_right simp del: mult_minus_right)
-apply(clarsimp simp:dvd_def mult_less_0_iff)
-done
-
-lemma zdvd_not_zless: "0 < m ==> m < n ==> \<not> n dvd (m::int)"
-  apply (auto elim!: dvdE)
-  apply (subgoal_tac "0 < n")
-   prefer 2
-   apply (blast intro: order_less_trans)
-  apply (simp add: zero_less_mult_iff)
-  done
-
 lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
   using zmod_zdiv_equality[where a="m" and b="n"]
   by (simp add: algebra_simps)
 
-lemma zdvd_mult_div_cancel:"(n::int) dvd m \<Longrightarrow> n * (m div n) = m"
-apply (subgoal_tac "m mod n = 0")
- apply (simp add: zmult_div_cancel)
-apply (simp only: dvd_eq_mod_eq_0)
-done
-
-lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
-  shows "m dvd n"
-proof-
-  from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
-  {assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
-    with h have False by (simp add: mult_assoc)}
-  hence "n = m * h" by blast
-  thus ?thesis by simp
-qed
-
-theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
-proof -
-  have "\<And>k. int y = int x * k \<Longrightarrow> x dvd y"
-  proof -
-    fix k
-    assume A: "int y = int x * k"
-    then show "x dvd y" proof (cases k)
-      case (1 n) with A have "y = x * n" by (simp add: zmult_int)
-      then show ?thesis ..
-    next
-      case (2 n) with A have "int y = int x * (- int (Suc n))" by simp
-      also have "\<dots> = - (int x * int (Suc n))" by (simp only: mult_minus_right)
-      also have "\<dots> = - int (x * Suc n)" by (simp only: zmult_int)
-      finally have "- int (x * Suc n) = int y" ..
-      then show ?thesis by (simp only: negative_eq_positive) auto
-    qed
-  qed
-  then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left int_mult)
-qed
-
-lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \<bar>x\<bar> = 1)"
-proof
-  assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by simp
-  hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
-  hence "nat \<bar>x\<bar> = 1"  by simp
-  thus "\<bar>x\<bar> = 1" by (cases "x < 0", auto)
-next
-  assume "\<bar>x\<bar>=1" thus "x dvd 1" 
-    by(cases "x < 0",simp_all add: minus_equation_iff dvd_eq_mod_eq_0)
-qed
-lemma zdvd_mult_cancel1: 
-  assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
-proof
-  assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m" 
-    by (cases "n >0", auto simp add: minus_dvd_iff minus_equation_iff)
-next
-  assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
-  from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
-qed
-
-lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
-  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
-
-lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
-  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
-
-lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
-  by (auto simp add: dvd_int_iff)
-
-lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
-  apply (rule_tac z=n in int_cases)
-  apply (auto simp add: dvd_int_iff)
-  apply (rule_tac z=z in int_cases)
-  apply (auto simp add: dvd_imp_le)
-  done
-
 lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m"
 apply (induct "y", auto)
 apply (rule zmod_zmult1_eq [THEN trans])
@@ -1182,6 +1059,12 @@
 lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y"
 by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
 
+lemma zdvd_mult_div_cancel:"(n::int) dvd m \<Longrightarrow> n * (m div n) = m"
+apply (subgoal_tac "m mod n = 0")
+ apply (simp add: zmult_div_cancel)
+apply (simp only: dvd_eq_mod_eq_0)
+done
+
 text{*Suggested by Matthias Daum*}
 lemma int_power_div_base:
      "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
@@ -1318,6 +1201,73 @@
   thus  ?lhs by simp
 qed
 
+lemma div_nat_number_of [simp]:
+     "(number_of v :: nat)  div  number_of v' =  
+          (if neg (number_of v :: int) then 0  
+           else nat (number_of v div number_of v'))"
+  unfolding nat_number_of_def number_of_is_id neg_def
+  by (simp add: nat_div_distrib)
+
+lemma one_div_nat_number_of [simp]:
+     "Suc 0 div number_of v' = nat (1 div number_of v')" 
+by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
+
+lemma mod_nat_number_of [simp]:
+     "(number_of v :: nat)  mod  number_of v' =  
+        (if neg (number_of v :: int) then 0  
+         else if neg (number_of v' :: int) then number_of v  
+         else nat (number_of v mod number_of v'))"
+  unfolding nat_number_of_def number_of_is_id neg_def
+  by (simp add: nat_mod_distrib)
+
+lemma one_mod_nat_number_of [simp]:
+     "Suc 0 mod number_of v' =  
+        (if neg (number_of v' :: int) then Suc 0
+         else nat (1 mod number_of v'))"
+by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
+
+lemmas dvd_eq_mod_eq_0_number_of =
+  dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard]
+
+declare dvd_eq_mod_eq_0_number_of [simp]
+
+
+subsection {* Transfer setup *}
+
+lemma transfer_nat_int_functions:
+    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
+    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
+  by (auto simp add: nat_div_distrib nat_mod_distrib)
+
+lemma transfer_nat_int_function_closures:
+    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
+    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
+  apply (cases "y = 0")
+  apply (auto simp add: pos_imp_zdiv_nonneg_iff)
+  apply (cases "y = 0")
+  apply auto
+done
+
+declare TransferMorphism_nat_int[transfer add return:
+  transfer_nat_int_functions
+  transfer_nat_int_function_closures
+]
+
+lemma transfer_int_nat_functions:
+    "(int x) div (int y) = int (x div y)"
+    "(int x) mod (int y) = int (x mod y)"
+  by (auto simp add: zdiv_int zmod_int)
+
+lemma transfer_int_nat_function_closures:
+    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
+    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
+  by (simp_all only: is_nat_def transfer_nat_int_function_closures)
+
+declare TransferMorphism_int_nat[transfer add return:
+  transfer_int_nat_functions
+  transfer_int_nat_function_closures
+]
+
 
 subsection {* Code generation *}
 
--- a/src/HOL/IsaMakefile	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/IsaMakefile	Thu Oct 29 14:03:55 2009 +0100
@@ -51,6 +51,7 @@
   HOL-Nominal-Examples \
   HOL-Number_Theory \
   HOL-Old_Number_Theory \
+  HOL-Probability \
   HOL-Prolog \
   HOL-SET_Protocol \
   HOL-SMT-Examples \
@@ -137,7 +138,6 @@
 PLAIN_DEPENDENCIES = $(BASE_DEPENDENCIES)\
   Complete_Lattice.thy \
   Datatype.thy \
-  Divides.thy \
   Extraction.thy \
   Finite_Set.thy \
   Fun.thy \
@@ -223,7 +223,6 @@
   Tools/sat_funcs.ML \
   Tools/sat_solver.ML \
   Tools/split_rule.ML \
-  Tools/transfer.ML \
   Tools/typecopy.ML \
   Tools/typedef_codegen.ML \
   Tools/typedef.ML \
@@ -245,6 +244,7 @@
   ATP_Linkup.thy \
   Code_Evaluation.thy \
   Code_Numeral.thy \
+  Divides.thy \
   Equiv_Relations.thy \
   Groebner_Basis.thy \
   Hilbert_Choice.thy \
@@ -254,6 +254,7 @@
   Main.thy \
   Map.thy \
   Nat_Numeral.thy \
+  Nat_Transfer.thy \
   Presburger.thy \
   Predicate_Compile.thy \
   Quickcheck.thy \
@@ -275,6 +276,7 @@
   Tools/Groebner_Basis/misc.ML \
   Tools/Groebner_Basis/normalizer.ML \
   Tools/Groebner_Basis/normalizer_data.ML \
+  Tools/choice_specification.ML \
   Tools/int_arith.ML \
   Tools/list_code.ML \
   Tools/meson.ML \
@@ -298,7 +300,6 @@
   Tools/Qelim/presburger.ML \
   Tools/Qelim/qelim.ML \
   Tools/recdef.ML \
-  Tools/choice_specification.ML \
   Tools/res_atp.ML \
   Tools/res_axioms.ML \
   Tools/res_clause.ML \
@@ -306,6 +307,7 @@
   Tools/res_reconstruct.ML \
   Tools/string_code.ML \
   Tools/string_syntax.ML \
+  Tools/transfer.ML \
   Tools/TFL/casesplit.ML \
   Tools/TFL/dcterm.ML \
   Tools/TFL/post.ML \
@@ -333,7 +335,6 @@
   Log.thy \
   Lubs.thy \
   MacLaurin.thy \
-  Nat_Transfer.thy \
   NthRoot.thy \
   PReal.thy \
   Parity.thy \
@@ -345,6 +346,7 @@
   RealVector.thy \
   SEQ.thy \
   Series.thy \
+  SupInf.thy \
   Taylor.thy \
   Transcendental.thy \
   Tools/float_syntax.ML \
@@ -1067,6 +1069,20 @@
   Multivariate_Analysis/Convex_Euclidean_Space.thy
 	@cd Multivariate_Analysis; $(ISABELLE_TOOL) usedir -b -g true $(OUT)/HOL HOL-Multivariate_Analysis
 
+
+## HOL-Probability
+
+HOL-Probability: HOL $(LOG)/HOL-Probability.gz
+
+$(LOG)/HOL-Probability.gz: $(OUT)/HOL Probability/ROOT.ML \
+  Probability/Probability.thy \
+  Probability/Sigma_Algebra.thy \
+  Probability/SeriesPlus.thy \
+  Probability/Caratheodory.thy \
+  Probability/Measure.thy
+	@$(ISABELLE_TOOL) usedir -g true $(OUT)/HOL Probability
+
+
 ## HOL-Nominal
 
 HOL-Nominal: HOL $(OUT)/HOL-Nominal
--- a/src/HOL/Library/FuncSet.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Library/FuncSet.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -101,6 +101,19 @@
 lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
 by auto
 
+lemma prod_final:
+  assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C"
+  shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)"
+proof (rule Pi_I) 
+  fix z
+  assume z: "z \<in> A" 
+  have "f z = (fst (f z), snd (f z))" 
+    by simp
+  also have "...  \<in> B z \<times> C z"
+    by (metis SigmaI PiE o_apply 1 2 z) 
+  finally show "f z \<in> B z \<times> C z" .
+qed
+
 
 subsection{*Composition With a Restricted Domain: @{term compose}*}
 
--- a/src/HOL/List.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/List.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -3587,8 +3587,8 @@
 by (blast intro: listrel.intros)
 
 lemma listrel_Cons:
-     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
-by (auto simp add: set_Cons_def intro: listrel.intros) 
+     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})"
+by (auto simp add: set_Cons_def intro: listrel.intros)
 
 
 subsection {* Size function *}
@@ -3615,6 +3615,45 @@
 by (induct xs) force+
 
 
+subsection {* Transfer *}
+
+definition
+  embed_list :: "nat list \<Rightarrow> int list"
+where
+  "embed_list l = map int l"
+
+definition
+  nat_list :: "int list \<Rightarrow> bool"
+where
+  "nat_list l = nat_set (set l)"
+
+definition
+  return_list :: "int list \<Rightarrow> nat list"
+where
+  "return_list l = map nat l"
+
+lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow>
+    embed_list (return_list l) = l"
+  unfolding embed_list_def return_list_def nat_list_def nat_set_def
+  apply (induct l)
+  apply auto
+done
+
+lemma transfer_nat_int_list_functions:
+  "l @ m = return_list (embed_list l @ embed_list m)"
+  "[] = return_list []"
+  unfolding return_list_def embed_list_def
+  apply auto
+  apply (induct l, auto)
+  apply (induct m, auto)
+done
+
+(*
+lemma transfer_nat_int_fold1: "fold f l x =
+    fold (%x. f (nat x)) (embed_list l) x";
+*)
+
+
 subsection {* Code generator *}
 
 subsubsection {* Setup *}
@@ -4017,5 +4056,4 @@
   "list_ex P [i..j] = (~ all_from_to_int (%x. ~P x) i j)"
 by(simp add: all_from_to_int_iff_ball list_ex_iff)
 
-
 end
--- a/src/HOL/Mirabelle/Tools/mirabelle.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Mirabelle/Tools/mirabelle.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -151,11 +151,11 @@
 
 (* Mirabelle utility functions *)
 
-val goal_thm_of = snd o snd o Proof.get_goal
+val goal_thm_of = #goal o Proof.raw_goal  (* FIXME ?? *)
 
 fun can_apply time tac st =
   let
-    val (ctxt, (facts, goal)) = Proof.get_goal st
+    val {context = ctxt, facts, goal} = Proof.raw_goal st   (* FIXME ?? *)
     val full_tac = HEADGOAL (Method.insert_tac facts THEN' tac ctxt)
   in
     (case TimeLimit.timeLimit time (Seq.pull o full_tac) goal of
--- a/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -301,13 +301,13 @@
 
 fun run_sh prover hard_timeout timeout dir st =
   let
-    val (ctxt, goal) = Proof.get_goal st
+    val {context = ctxt, facts, goal} = Proof.raw_goal st   (* FIXME ?? *)
     val change_dir = (fn SOME d => Config.put ATP_Wrapper.destdir d | _ => I)
     val ctxt' =
       ctxt
       |> change_dir dir
       |> Config.put ATP_Wrapper.measure_runtime true
-    val problem = ATP_Wrapper.problem_of_goal (! ATP_Manager.full_types) 1 (ctxt', goal);
+    val problem = ATP_Wrapper.problem_of_goal (! ATP_Manager.full_types) 1 (ctxt', (facts, goal));
 
     val time_limit =
       (case hard_timeout of
@@ -424,7 +424,7 @@
   end
 
 fun sledgehammer_action args id (st as {log, pre, name, ...}: Mirabelle.run_args) =
-  let val goal = Thm.major_prem_of(snd(snd(Proof.get_goal pre))) in
+  let val goal = Thm.major_prem_of (#goal (Proof.raw_goal pre))  (* FIXME ?? *) in
   if can Logic.dest_conjunction goal orelse can Logic.dest_equals goal
   then () else
   let
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -1133,7 +1133,7 @@
     hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1]
       apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE)
       apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto  }
-  thus ?thesis unfolding convex_def cone_def by blast
+  thus ?thesis unfolding convex_def cone_def by auto
 qed
 
 lemma affine_dependent_biggerset: fixes s::"(real^'n::finite) set"
@@ -1742,17 +1742,16 @@
     using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]
     using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast)
   hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)
-  def k \<equiv> "rsup ((\<lambda>x. inner a x) ` t)"
+  def k \<equiv> "Sup ((\<lambda>x. inner a x) ` t)"
   show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI)
     apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof-
     from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)"
       apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto
-    hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac rsup) using assms(5) by auto
+    hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac Sup) using assms(5) by auto
     fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto
   next
     fix x assume "x\<in>s" 
-    hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac rsup_le) using assms(5)
-      unfolding setle_def
+    hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac Sup_least) using assms(5)
       using ab[THEN bspec[where x=x]] by auto
     thus "k + b / 2 < inner a x" using `0 < b` by auto
   qed
@@ -1794,11 +1793,20 @@
   assumes "convex s" "convex (t::(real^'n::finite) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
   shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)"
 proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
-  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x"  using assms(3-5) by auto 
-  hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x" apply- apply(rule, rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)
-  thus ?thesis apply(rule_tac x=a in exI, rule_tac x="rsup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0`
-    apply(rule) apply(rule,rule) apply(rule rsup[THEN isLubD2]) prefer 4 apply(rule,rule rsup_le) unfolding setle_def
-    prefer 4 using assms(3-5) by blast+ qed
+  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x" 
+    using assms(3-5) by auto 
+  hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x"
+    by (force simp add: inner_diff)
+  thus ?thesis
+    apply(rule_tac x=a in exI, rule_tac x="Sup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0`
+    apply auto
+    apply (rule Sup[THEN isLubD2]) 
+    prefer 4
+    apply (rule Sup_least) 
+     using assms(3-5) apply (auto simp add: setle_def)
+    apply (metis COMBC_def Collect_def Collect_mem_eq) 
+    done
+qed
 
 subsection {* More convexity generalities. *}
 
@@ -2571,12 +2579,17 @@
     thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm 
       by(auto simp add: vector_component_simps) qed
   hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous)
-    apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) by auto
-  thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball] using `d>0` by auto qed
-
-subsection {* Line segments, starlike sets etc.                                         *)
-(* Use the same overloading tricks as for intervals, so that                 *)
-(* segment[a,b] is closed and segment(a,b) is open relative to affine hull. *}
+    apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball)
+    apply force
+    done
+  thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball]
+    using `d>0` by auto 
+qed
+
+subsection {* Line segments, Starlike Sets, etc.*}
+
+(* Use the same overloading tricks as for intervals, so that 
+   segment[a,b] is closed and segment(a,b) is open relative to affine hull. *)
 
 definition
   midpoint :: "real ^ 'n::finite \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where
--- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -2297,242 +2297,9 @@
   ultimately show ?thesis by metis
 qed
 
-(* Supremum and infimum of real sets *)
-
-
-definition rsup:: "real set \<Rightarrow> real" where
-  "rsup S = (SOME a. isLub UNIV S a)"
-
-lemma rsup_alt: "rsup S = (SOME a. (\<forall>x \<in> S. x \<le> a) \<and> (\<forall>b. (\<forall>x \<in> S. x \<le> b) \<longrightarrow> a \<le> b))"  by (auto simp  add: isLub_def rsup_def leastP_def isUb_def setle_def setge_def)
-
-lemma rsup: assumes Se: "S \<noteq> {}" and b: "\<exists>b. S *<= b"
-  shows "isLub UNIV S (rsup S)"
-using Se b
-unfolding rsup_def
-apply clarify
-apply (rule someI_ex)
-apply (rule reals_complete)
-by (auto simp add: isUb_def setle_def)
-
-lemma rsup_le: assumes Se: "S \<noteq> {}" and Sb: "S *<= b" shows "rsup S \<le> b"
-proof-
-  from Sb have bu: "isUb UNIV S b" by (simp add: isUb_def setle_def)
-  from rsup[OF Se] Sb have "isLub UNIV S (rsup S)"  by blast
-  then show ?thesis using bu by (auto simp add: isLub_def leastP_def setle_def setge_def)
-qed
-
-lemma rsup_finite_Max: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "rsup S = Max S"
-using fS Se
-proof-
-  let ?m = "Max S"
-  from Max_ge[OF fS] have Sm: "\<forall> x\<in> S. x \<le> ?m" by metis
-  with rsup[OF Se] have lub: "isLub UNIV S (rsup S)" by (metis setle_def)
-  from Max_in[OF fS Se] lub have mrS: "?m \<le> rsup S"
-    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def)
-  moreover
-  have "rsup S \<le> ?m" using Sm lub
-    by (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def)
-  ultimately  show ?thesis by arith
-qed
-
-lemma rsup_finite_in: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "rsup S \<in> S"
-  using rsup_finite_Max[OF fS Se] Max_in[OF fS Se] by metis
-
-lemma rsup_finite_Ub: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "isUb S S (rsup S)"
-  using rsup_finite_Max[OF fS Se] rsup_finite_in[OF fS Se] Max_ge[OF fS]
-  unfolding isUb_def setle_def by metis
-
-lemma rsup_finite_ge_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a \<le> rsup S \<longleftrightarrow> (\<exists> x \<in> S. a \<le> x)"
-using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def)
-
-lemma rsup_finite_le_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a \<ge> rsup S \<longleftrightarrow> (\<forall> x \<in> S. a \<ge> x)"
-using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def)
-
-lemma rsup_finite_gt_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a < rsup S \<longleftrightarrow> (\<exists> x \<in> S. a < x)"
-using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def)
-
-lemma rsup_finite_lt_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a > rsup S \<longleftrightarrow> (\<forall> x \<in> S. a > x)"
-using rsup_finite_Ub[OF fS Se] by (auto simp add: isUb_def setle_def)
-
-lemma rsup_unique: assumes b: "S *<= b" and S: "\<forall>b' < b. \<exists>x \<in> S. b' < x"
-  shows "rsup S = b"
-using b S
-unfolding setle_def rsup_alt
-apply -
-apply (rule some_equality)
-apply (metis  linorder_not_le order_eq_iff[symmetric])+
-done
-
-lemma rsup_le_subset: "S\<noteq>{} \<Longrightarrow> S \<subseteq> T \<Longrightarrow> (\<exists>b. T *<= b) \<Longrightarrow> rsup S \<le> rsup T"
-  apply (rule rsup_le)
-  apply simp
-  using rsup[of T] by (auto simp add: isLub_def leastP_def setge_def setle_def isUb_def)
-
-lemma isUb_def': "isUb R S = (\<lambda>x. S *<= x \<and> x \<in> R)"
-  apply (rule ext)
-  by (metis isUb_def)
-
-lemma UNIV_trivial: "UNIV x" using UNIV_I[of x] by (metis mem_def)
-lemma rsup_bounds: assumes Se: "S \<noteq> {}" and l: "a <=* S" and u: "S *<= b"
-  shows "a \<le> rsup S \<and> rsup S \<le> b"
-proof-
-  from rsup[OF Se] u have lub: "isLub UNIV S (rsup S)" by blast
-  hence b: "rsup S \<le> b" using u by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def')
-  from Se obtain y where y: "y \<in> S" by blast
-  from lub l have "a \<le> rsup S" apply (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def')
-    apply (erule ballE[where x=y])
-    apply (erule ballE[where x=y])
-    apply arith
-    using y apply auto
-    done
-  with b show ?thesis by blast
-qed
-
-lemma rsup_abs_le: "S \<noteq> {} \<Longrightarrow> (\<forall>x\<in>S. \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>rsup S\<bar> \<le> a"
-  unfolding abs_le_interval_iff  using rsup_bounds[of S "-a" a]
-  by (auto simp add: setge_def setle_def)
-
-lemma rsup_asclose: assumes S:"S \<noteq> {}" and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" shows "\<bar>rsup S - l\<bar> \<le> e"
-proof-
-  have th: "\<And>(x::real) l e. \<bar>x - l\<bar> \<le> e \<longleftrightarrow> l - e \<le> x \<and> x \<le> l + e" by arith
-  show ?thesis using S b rsup_bounds[of S "l - e" "l+e"] unfolding th
-    by  (auto simp add: setge_def setle_def)
-qed
-
-definition rinf:: "real set \<Rightarrow> real" where
-  "rinf S = (SOME a. isGlb UNIV S a)"
-
-lemma rinf_alt: "rinf S = (SOME a. (\<forall>x \<in> S. x \<ge> a) \<and> (\<forall>b. (\<forall>x \<in> S. x \<ge> b) \<longrightarrow> a \<ge> b))"  by (auto simp  add: isGlb_def rinf_def greatestP_def isLb_def setle_def setge_def)
-
-lemma reals_complete_Glb: assumes Se: "\<exists>x. x \<in> S" and lb: "\<exists> y. isLb UNIV S y"
-  shows "\<exists>(t::real). isGlb UNIV S t"
-proof-
-  let ?M = "uminus ` S"
-  from lb have th: "\<exists>y. isUb UNIV ?M y" apply (auto simp add: isUb_def isLb_def setle_def setge_def)
-    by (rule_tac x="-y" in exI, auto)
-  from Se have Me: "\<exists>x. x \<in> ?M" by blast
-  from reals_complete[OF Me th] obtain t where t: "isLub UNIV ?M t" by blast
-  have "isGlb UNIV S (- t)" using t
-    apply (auto simp add: isLub_def isGlb_def leastP_def greatestP_def setle_def setge_def isUb_def isLb_def)
-    apply (erule_tac x="-y" in allE)
-    apply auto
-    done
-  then show ?thesis by metis
-qed
-
-lemma rinf: assumes Se: "S \<noteq> {}" and b: "\<exists>b. b <=* S"
-  shows "isGlb UNIV S (rinf S)"
-using Se b
-unfolding rinf_def
-apply clarify
-apply (rule someI_ex)
-apply (rule reals_complete_Glb)
-apply (auto simp add: isLb_def setle_def setge_def)
-done
-
-lemma rinf_ge: assumes Se: "S \<noteq> {}" and Sb: "b <=* S" shows "rinf S \<ge> b"
-proof-
-  from Sb have bu: "isLb UNIV S b" by (simp add: isLb_def setge_def)
-  from rinf[OF Se] Sb have "isGlb UNIV S (rinf S)"  by blast
-  then show ?thesis using bu by (auto simp add: isGlb_def greatestP_def setle_def setge_def)
-qed
-
-lemma rinf_finite_Min: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "rinf S = Min S"
-using fS Se
-proof-
-  let ?m = "Min S"
-  from Min_le[OF fS] have Sm: "\<forall> x\<in> S. x \<ge> ?m" by metis
-  with rinf[OF Se] have glb: "isGlb UNIV S (rinf S)" by (metis setge_def)
-  from Min_in[OF fS Se] glb have mrS: "?m \<ge> rinf S"
-    by (auto simp add: isGlb_def greatestP_def setle_def setge_def isLb_def)
-  moreover
-  have "rinf S \<ge> ?m" using Sm glb
-    by (auto simp add: isGlb_def greatestP_def isLb_def setle_def setge_def)
-  ultimately  show ?thesis by arith
-qed
-
-lemma rinf_finite_in: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "rinf S \<in> S"
-  using rinf_finite_Min[OF fS Se] Min_in[OF fS Se] by metis
-
-lemma rinf_finite_Lb: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "isLb S S (rinf S)"
-  using rinf_finite_Min[OF fS Se] rinf_finite_in[OF fS Se] Min_le[OF fS]
-  unfolding isLb_def setge_def by metis
-
-lemma rinf_finite_ge_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a \<le> rinf S \<longleftrightarrow> (\<forall> x \<in> S. a \<le> x)"
-using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def)
-
-lemma rinf_finite_le_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a \<ge> rinf S \<longleftrightarrow> (\<exists> x \<in> S. a \<ge> x)"
-using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def)
-
-lemma rinf_finite_gt_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a < rinf S \<longleftrightarrow> (\<forall> x \<in> S. a < x)"
-using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def)
-
-lemma rinf_finite_lt_iff: assumes fS: "finite S" and Se: "S \<noteq> {}"
-  shows "a > rinf S \<longleftrightarrow> (\<exists> x \<in> S. a > x)"
-using rinf_finite_Lb[OF fS Se] by (auto simp add: isLb_def setge_def)
-
-lemma rinf_unique: assumes b: "b <=* S" and S: "\<forall>b' > b. \<exists>x \<in> S. b' > x"
-  shows "rinf S = b"
-using b S
-unfolding setge_def rinf_alt
-apply -
-apply (rule some_equality)
-apply (metis  linorder_not_le order_eq_iff[symmetric])+
-done
-
-lemma rinf_ge_subset: "S\<noteq>{} \<Longrightarrow> S \<subseteq> T \<Longrightarrow> (\<exists>b. b <=* T) \<Longrightarrow> rinf S >= rinf T"
-  apply (rule rinf_ge)
-  apply simp
-  using rinf[of T] by (auto simp add: isGlb_def greatestP_def setge_def setle_def isLb_def)
-
-lemma isLb_def': "isLb R S = (\<lambda>x. x <=* S \<and> x \<in> R)"
-  apply (rule ext)
-  by (metis isLb_def)
-
-lemma rinf_bounds: assumes Se: "S \<noteq> {}" and l: "a <=* S" and u: "S *<= b"
-  shows "a \<le> rinf S \<and> rinf S \<le> b"
-proof-
-  from rinf[OF Se] l have lub: "isGlb UNIV S (rinf S)" by blast
-  hence b: "a \<le> rinf S" using l by (auto simp add: isGlb_def greatestP_def setle_def setge_def isLb_def')
-  from Se obtain y where y: "y \<in> S" by blast
-  from lub u have "b \<ge> rinf S" apply (auto simp add: isGlb_def greatestP_def setle_def setge_def isLb_def')
-    apply (erule ballE[where x=y])
-    apply (erule ballE[where x=y])
-    apply arith
-    using y apply auto
-    done
-  with b show ?thesis by blast
-qed
-
-lemma rinf_abs_ge: "S \<noteq> {} \<Longrightarrow> (\<forall>x\<in>S. \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>rinf S\<bar> \<le> a"
-  unfolding abs_le_interval_iff  using rinf_bounds[of S "-a" a]
-  by (auto simp add: setge_def setle_def)
-
-lemma rinf_asclose: assumes S:"S \<noteq> {}" and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" shows "\<bar>rinf S - l\<bar> \<le> e"
-proof-
-  have th: "\<And>(x::real) l e. \<bar>x - l\<bar> \<le> e \<longleftrightarrow> l - e \<le> x \<and> x \<le> l + e" by arith
-  show ?thesis using S b rinf_bounds[of S "l - e" "l+e"] unfolding th
-    by  (auto simp add: setge_def setle_def)
-qed
-
-
-
 subsection{* Operator norm. *}
 
-definition "onorm f = rsup {norm (f x)| x. norm x = 1}"
+definition "onorm f = Sup {norm (f x)| x. norm x = 1}"
 
 lemma norm_bound_generalize:
   fixes f:: "real ^'n::finite \<Rightarrow> real^'m::finite"
@@ -2578,7 +2345,7 @@
     have Se: "?S \<noteq> {}" using  norm_basis by auto
     from linear_bounded[OF lf] have b: "\<exists> b. ?S *<= b"
       unfolding norm_bound_generalize[OF lf, symmetric] by (auto simp add: setle_def)
-    {from rsup[OF Se b, unfolded onorm_def[symmetric]]
+    {from Sup[OF Se b, unfolded onorm_def[symmetric]]
       show "norm (f x) <= onorm f * norm x"
         apply -
         apply (rule spec[where x = x])
@@ -2586,7 +2353,7 @@
         by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
     {
       show "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
-        using rsup[OF Se b, unfolded onorm_def[symmetric]]
+        using Sup[OF Se b, unfolded onorm_def[symmetric]]
         unfolding norm_bound_generalize[OF lf, symmetric]
         by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
   }
@@ -2612,7 +2379,7 @@
     by(auto intro: vector_choose_size set_ext)
   show ?thesis
     unfolding onorm_def th
-    apply (rule rsup_unique) by (simp_all  add: setle_def)
+    apply (rule Sup_unique) by (simp_all  add: setle_def)
 qed
 
 lemma onorm_pos_lt: assumes lf: "linear (f::real ^ 'n::finite \<Rightarrow> real ^'m::finite)"
@@ -3055,31 +2822,6 @@
 qed
 
 (* ------------------------------------------------------------------------- *)
-(* Relate max and min to sup and inf.                                        *)
-(* ------------------------------------------------------------------------- *)
-
-lemma real_max_rsup: "max x y = rsup {x,y}"
-proof-
-  have f: "finite {x, y}" "{x,y} \<noteq> {}"  by simp_all
-  from rsup_finite_le_iff[OF f, of "max x y"] have "rsup {x,y} \<le> max x y" by simp
-  moreover
-  have "max x y \<le> rsup {x,y}" using rsup_finite_ge_iff[OF f, of "max x y"]
-    by (simp add: linorder_linear)
-  ultimately show ?thesis by arith
-qed
-
-lemma real_min_rinf: "min x y = rinf {x,y}"
-proof-
-  have f: "finite {x, y}" "{x,y} \<noteq> {}"  by simp_all
-  from rinf_finite_le_iff[OF f, of "min x y"] have "rinf {x,y} \<le> min x y"
-    by (simp add: linorder_linear)
-  moreover
-  have "min x y \<le> rinf {x,y}" using rinf_finite_ge_iff[OF f, of "min x y"]
-    by simp
-  ultimately show ?thesis by arith
-qed
-
-(* ------------------------------------------------------------------------- *)
 (* Geometric progression.                                                    *)
 (* ------------------------------------------------------------------------- *)
 
@@ -5048,7 +4790,7 @@
 
 (* Infinity norm.                                                            *)
 
-definition "infnorm (x::real^'n::finite) = rsup {abs(x$i) |i. i\<in> (UNIV :: 'n set)}"
+definition "infnorm (x::real^'n::finite) = Sup {abs(x$i) |i. i\<in> (UNIV :: 'n set)}"
 
 lemma numseg_dimindex_nonempty: "\<exists>i. i \<in> (UNIV :: 'n set)"
   by auto
@@ -5065,7 +4807,7 @@
 
 lemma infnorm_pos_le: "0 \<le> infnorm (x::real^'n::finite)"
   unfolding infnorm_def
-  unfolding rsup_finite_ge_iff[ OF infnorm_set_lemma]
+  unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma]
   unfolding infnorm_set_image
   by auto
 
@@ -5076,13 +4818,13 @@
   have th2: "\<And>x (y::real). abs(x + y) - abs(x) <= abs(y)" by arith
   show ?thesis
   unfolding infnorm_def
-  unfolding rsup_finite_le_iff[ OF infnorm_set_lemma]
+  unfolding Sup_finite_le_iff[ OF infnorm_set_lemma]
   apply (subst diff_le_eq[symmetric])
-  unfolding rsup_finite_ge_iff[ OF infnorm_set_lemma]
+  unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma]
   unfolding infnorm_set_image bex_simps
   apply (subst th)
   unfolding th1
-  unfolding rsup_finite_ge_iff[ OF infnorm_set_lemma]
+  unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma]
 
   unfolding infnorm_set_image ball_simps bex_simps
   apply simp
@@ -5094,7 +4836,7 @@
 proof-
   have "infnorm x <= 0 \<longleftrightarrow> x = 0"
     unfolding infnorm_def
-    unfolding rsup_finite_le_iff[OF infnorm_set_lemma]
+    unfolding Sup_finite_le_iff[OF infnorm_set_lemma]
     unfolding infnorm_set_image ball_simps
     by vector
   then show ?thesis using infnorm_pos_le[of x] by simp
@@ -5105,7 +4847,7 @@
 
 lemma infnorm_neg: "infnorm (- x) = infnorm x"
   unfolding infnorm_def
-  apply (rule cong[of "rsup" "rsup"])
+  apply (rule cong[of "Sup" "Sup"])
   apply blast
   apply (rule set_ext)
   apply auto
@@ -5140,14 +4882,15 @@
     apply (rule finite_imageI) unfolding Collect_def mem_def by simp
   have S0: "?S \<noteq> {}" by blast
   have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast
-  from rsup_finite_in[OF fS S0] rsup_finite_Ub[OF fS S0]
-  show ?thesis unfolding infnorm_def isUb_def setle_def
-    unfolding infnorm_set_image ball_simps by auto
+  from Sup_finite_in[OF fS S0] 
+  show ?thesis unfolding infnorm_def infnorm_set_image 
+    by (metis Sup_finite_ge_iff finite finite_imageI UNIV_not_empty image_is_empty 
+              rangeI real_le_refl)
 qed
 
 lemma infnorm_mul_lemma: "infnorm(a *s x) <= \<bar>a\<bar> * infnorm x"
   apply (subst infnorm_def)
-  unfolding rsup_finite_le_iff[OF infnorm_set_lemma]
+  unfolding Sup_finite_le_iff[OF infnorm_set_lemma]
   unfolding infnorm_set_image ball_simps
   apply (simp add: abs_mult)
   apply (rule allI)
@@ -5180,7 +4923,7 @@
 (* Prove that it differs only up to a bound from Euclidean norm.             *)
 
 lemma infnorm_le_norm: "infnorm x \<le> norm x"
-  unfolding infnorm_def rsup_finite_le_iff[OF infnorm_set_lemma]
+  unfolding infnorm_def Sup_finite_le_iff[OF infnorm_set_lemma]
   unfolding infnorm_set_image  ball_simps
   by (metis component_le_norm)
 lemma card_enum: "card {1 .. n} = n" by auto
@@ -5200,7 +4943,7 @@
     apply (rule setsum_bounded)
     apply (rule power_mono)
     unfolding abs_of_nonneg[OF infnorm_pos_le]
-    unfolding infnorm_def  rsup_finite_ge_iff[OF infnorm_set_lemma]
+    unfolding infnorm_def  Sup_finite_ge_iff[OF infnorm_set_lemma]
     unfolding infnorm_set_image bex_simps
     apply blast
     by (rule abs_ge_zero)
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -2100,59 +2100,54 @@
   shows "bounded S \<longleftrightarrow>  (\<exists>a. \<forall>x\<in>S. abs x <= a)"
   by (simp add: bounded_iff)
 
-lemma bounded_has_rsup: assumes "bounded S" "S \<noteq> {}"
-  shows "\<forall>x\<in>S. x <= rsup S" and "\<forall>b. (\<forall>x\<in>S. x <= b) \<longrightarrow> rsup S <= b"
+lemma bounded_has_Sup:
+  fixes S :: "real set"
+  assumes "bounded S" "S \<noteq> {}"
+  shows "\<forall>x\<in>S. x <= Sup S" and "\<forall>b. (\<forall>x\<in>S. x <= b) \<longrightarrow> Sup S <= b"
+proof
+  fix x assume "x\<in>S"
+  thus "x \<le> Sup S"
+    by (metis SupInf.Sup_upper abs_le_D1 assms(1) bounded_real)
+next
+  show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b" using assms
+    by (metis SupInf.Sup_least)
+qed
+
+lemma Sup_insert:
+  fixes S :: "real set"
+  shows "bounded S ==> Sup(insert x S) = (if S = {} then x else max x (Sup S))" 
+by auto (metis Int_absorb Sup_insert_nonempty assms bounded_has_Sup(1) disjoint_iff_not_equal) 
+
+lemma Sup_insert_finite:
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> Sup(insert x S) = (if S = {} then x else max x (Sup S))"
+  apply (rule Sup_insert)
+  apply (rule finite_imp_bounded)
+  by simp
+
+lemma bounded_has_Inf:
+  fixes S :: "real set"
+  assumes "bounded S"  "S \<noteq> {}"
+  shows "\<forall>x\<in>S. x >= Inf S" and "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> Inf S >= b"
 proof
   fix x assume "x\<in>S"
   from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_real by auto
-  hence *:"S *<= a" using setleI[of S a] by (metis abs_le_interval_iff mem_def)
-  thus "x \<le> rsup S" using rsup[OF `S\<noteq>{}`] using assms(1)[unfolded bounded_real] using isLubD2[of UNIV S "rsup S" x] using `x\<in>S` by auto
-next
-  show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> rsup S \<le> b" using assms
-  using rsup[of S, unfolded isLub_def isUb_def leastP_def setle_def setge_def]
-  apply (auto simp add: bounded_real)
-  by (auto simp add: isLub_def isUb_def leastP_def setle_def setge_def)
-qed
-
-lemma rsup_insert: assumes "bounded S"
-  shows "rsup(insert x S) = (if S = {} then x else max x (rsup S))"
-proof(cases "S={}")
-  case True thus ?thesis using rsup_finite_in[of "{x}"] by auto
+  thus "x \<ge> Inf S" using `x\<in>S`
+    by (metis Inf_lower_EX abs_le_D2 minus_le_iff)
 next
-  let ?S = "insert x S"
-  case False
-  hence *:"\<forall>x\<in>S. x \<le> rsup S" using bounded_has_rsup(1)[of S] using assms by auto
-  hence "insert x S *<= max x (rsup S)" unfolding setle_def by auto
-  hence "isLub UNIV ?S (rsup ?S)" using rsup[of ?S] by auto
-  moreover
-  have **:"isUb UNIV ?S (max x (rsup S))" unfolding isUb_def setle_def using * by auto
-  { fix y assume as:"isUb UNIV (insert x S) y"
-    hence "max x (rsup S) \<le> y" unfolding isUb_def using rsup_le[OF `S\<noteq>{}`]
-      unfolding setle_def by auto  }
-  hence "max x (rsup S) <=* isUb UNIV (insert x S)" unfolding setge_def Ball_def mem_def by auto
-  hence "isLub UNIV ?S (max x (rsup S))" using ** isLubI2[of UNIV ?S "max x (rsup S)"] unfolding Collect_def by auto
-  ultimately show ?thesis using real_isLub_unique[of UNIV ?S] using `S\<noteq>{}` by auto
-qed
-
-lemma sup_insert_finite: "finite S \<Longrightarrow> rsup(insert x S) = (if S = {} then x else max x (rsup S))"
-  apply (rule rsup_insert)
-  apply (rule finite_imp_bounded)
-  by simp
-
-lemma bounded_has_rinf:
-  assumes "bounded S"  "S \<noteq> {}"
-  shows "\<forall>x\<in>S. x >= rinf S" and "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> rinf S >= b"
-proof
-  fix x assume "x\<in>S"
-  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_real by auto
-  hence *:"- a <=* S" using setgeI[of S "-a"] unfolding abs_le_interval_iff by auto
-  thus "x \<ge> rinf S" using rinf[OF `S\<noteq>{}`] using isGlbD2[of UNIV S "rinf S" x] using `x\<in>S` by auto
-next
-  show "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> rinf S \<ge> b" using assms
-  using rinf[of S, unfolded isGlb_def isLb_def greatestP_def setle_def setge_def]
-  apply (auto simp add: bounded_real)
-  by (auto simp add: isGlb_def isLb_def greatestP_def setle_def setge_def)
-qed
+  show "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> Inf S \<ge> b" using assms
+    by (metis SupInf.Inf_greatest)
+qed
+
+lemma Inf_insert:
+  fixes S :: "real set"
+  shows "bounded S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))" 
+by auto (metis Int_absorb Inf_insert_nonempty bounded_has_Inf(1) disjoint_iff_not_equal) 
+lemma Inf_insert_finite:
+  fixes S :: "real set"
+  shows "finite S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))"
+  by (rule Inf_insert, rule finite_imp_bounded, simp)
+
 
 (* TODO: Move this to RComplete.thy -- would need to include Glb into RComplete *)
 lemma real_isGlb_unique: "[| isGlb R S x; isGlb R S y |] ==> x = (y::real)"
@@ -2161,29 +2156,6 @@
   apply (blast intro!: order_antisym dest!: isGlb_le_isLb)
   done
 
-lemma rinf_insert: assumes "bounded S"
-  shows "rinf(insert x S) = (if S = {} then x else min x (rinf S))" (is "?lhs = ?rhs")
-proof(cases "S={}")
-  case True thus ?thesis using rinf_finite_in[of "{x}"] by auto
-next
-  let ?S = "insert x S"
-  case False
-  hence *:"\<forall>x\<in>S. x \<ge> rinf S" using bounded_has_rinf(1)[of S] using assms by auto
-  hence "min x (rinf S) <=* insert x S" unfolding setge_def by auto
-  hence "isGlb UNIV ?S (rinf ?S)" using rinf[of ?S] by auto
-  moreover
-  have **:"isLb UNIV ?S (min x (rinf S))" unfolding isLb_def setge_def using * by auto
-  { fix y assume as:"isLb UNIV (insert x S) y"
-    hence "min x (rinf S) \<ge> y" unfolding isLb_def using rinf_ge[OF `S\<noteq>{}`]
-      unfolding setge_def by auto  }
-  hence "isLb UNIV (insert x S) *<= min x (rinf S)" unfolding setle_def Ball_def mem_def by auto
-  hence "isGlb UNIV ?S (min x (rinf S))" using ** isGlbI2[of UNIV ?S "min x (rinf S)"] unfolding Collect_def by auto
-  ultimately show ?thesis using real_isGlb_unique[of UNIV ?S] using `S\<noteq>{}` by auto
-qed
-
-lemma inf_insert_finite: "finite S ==> rinf(insert x S) = (if S = {} then x else min x (rinf S))"
-  by (rule rinf_insert, rule finite_imp_bounded, simp)
-
 subsection{* Compactness (the definition is the one based on convegent subsequences). *}
 
 definition
@@ -4120,30 +4092,35 @@
   shows "\<exists>x \<in> s. \<forall>y \<in> s. y \<le> x"
 proof-
   from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto
-  { fix e::real assume as: "\<forall>x\<in>s. x \<le> rsup s" "rsup s \<notin> s"  "0 < e" "\<forall>x'\<in>s. x' = rsup s \<or> \<not> rsup s - x' < e"
-    have "isLub UNIV s (rsup s)" using rsup[OF assms(2)] unfolding setle_def using as(1) by auto
-    moreover have "isUb UNIV s (rsup s - e)" unfolding isUb_def unfolding setle_def using as(4,2) by auto
-    ultimately have False using isLub_le_isUb[of UNIV s "rsup s" "rsup s - e"] using `e>0` by auto  }
-  thus ?thesis using bounded_has_rsup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="rsup s"]]
-    apply(rule_tac x="rsup s" in bexI) by auto
-qed
+  { fix e::real assume as: "\<forall>x\<in>s. x \<le> Sup s" "Sup s \<notin> s"  "0 < e" "\<forall>x'\<in>s. x' = Sup s \<or> \<not> Sup s - x' < e"
+    have "isLub UNIV s (Sup s)" using Sup[OF assms(2)] unfolding setle_def using as(1) by auto
+    moreover have "isUb UNIV s (Sup s - e)" unfolding isUb_def unfolding setle_def using as(4,2) by auto
+    ultimately have False using isLub_le_isUb[of UNIV s "Sup s" "Sup s - e"] using `e>0` by auto  }
+  thus ?thesis using bounded_has_Sup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="Sup s"]]
+    apply(rule_tac x="Sup s" in bexI) by auto
+qed
+
+lemma Inf:
+  fixes S :: "real set"
+  shows "S \<noteq> {} ==> (\<exists>b. b <=* S) ==> isGlb UNIV S (Inf S)"
+by (auto simp add: isLb_def setle_def setge_def isGlb_def greatestP_def) 
 
 lemma compact_attains_inf:
   fixes s :: "real set"
   assumes "compact s" "s \<noteq> {}"  shows "\<exists>x \<in> s. \<forall>y \<in> s. x \<le> y"
 proof-
   from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto
-  { fix e::real assume as: "\<forall>x\<in>s. x \<ge> rinf s"  "rinf s \<notin> s"  "0 < e"
-      "\<forall>x'\<in>s. x' = rinf s \<or> \<not> abs (x' - rinf s) < e"
-    have "isGlb UNIV s (rinf s)" using rinf[OF assms(2)] unfolding setge_def using as(1) by auto
+  { fix e::real assume as: "\<forall>x\<in>s. x \<ge> Inf s"  "Inf s \<notin> s"  "0 < e"
+      "\<forall>x'\<in>s. x' = Inf s \<or> \<not> abs (x' - Inf s) < e"
+    have "isGlb UNIV s (Inf s)" using Inf[OF assms(2)] unfolding setge_def using as(1) by auto
     moreover
     { fix x assume "x \<in> s"
-      hence *:"abs (x - rinf s) = x - rinf s" using as(1)[THEN bspec[where x=x]] by auto
-      have "rinf s + e \<le> x" using as(4)[THEN bspec[where x=x]] using as(2) `x\<in>s` unfolding * by auto }
-    hence "isLb UNIV s (rinf s + e)" unfolding isLb_def and setge_def by auto
-    ultimately have False using isGlb_le_isLb[of UNIV s "rinf s" "rinf s + e"] using `e>0` by auto  }
-  thus ?thesis using bounded_has_rinf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="rinf s"]]
-    apply(rule_tac x="rinf s" in bexI) by auto
+      hence *:"abs (x - Inf s) = x - Inf s" using as(1)[THEN bspec[where x=x]] by auto
+      have "Inf s + e \<le> x" using as(4)[THEN bspec[where x=x]] using as(2) `x\<in>s` unfolding * by auto }
+    hence "isLb UNIV s (Inf s + e)" unfolding isLb_def and setge_def by auto
+    ultimately have False using isGlb_le_isLb[of UNIV s "Inf s" "Inf s + e"] using `e>0` by auto  }
+  thus ?thesis using bounded_has_Inf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="Inf s"]]
+    apply(rule_tac x="Inf s" in bexI) by auto
 qed
 
 lemma continuous_attains_sup:
@@ -4413,7 +4390,7 @@
 
 text{* We can state this in terms of diameter of a set.                          *}
 
-definition "diameter s = (if s = {} then 0::real else rsup {norm(x - y) | x y. x \<in> s \<and> y \<in> s})"
+definition "diameter s = (if s = {} then 0::real else Sup {norm(x - y) | x y. x \<in> s \<and> y \<in> s})"
   (* TODO: generalize to class metric_space *)
 
 lemma diameter_bounded:
@@ -4427,12 +4404,22 @@
     hence "norm (x - y) \<le> 2 * a" using norm_triangle_ineq[of x "-y", unfolded norm_minus_cancel] a[THEN bspec[where x=x]] a[THEN bspec[where x=y]] by (auto simp add: ring_simps)  }
   note * = this
   { fix x y assume "x\<in>s" "y\<in>s"  hence "s \<noteq> {}" by auto
-    have lub:"isLub UNIV ?D (rsup ?D)" using * rsup[of ?D] using `s\<noteq>{}` unfolding setle_def by auto
+    have lub:"isLub UNIV ?D (Sup ?D)" using * Sup[of ?D] using `s\<noteq>{}` unfolding setle_def
+      apply auto    (*FIXME: something horrible has happened here!*)
+      apply atomize
+      apply safe
+      apply metis +
+      done
     have "norm(x - y) \<le> diameter s" unfolding diameter_def using `s\<noteq>{}` *[OF `x\<in>s` `y\<in>s`] `x\<in>s` `y\<in>s` isLubD1[OF lub] unfolding setle_def by auto  }
   moreover
   { fix d::real assume "d>0" "d < diameter s"
     hence "s\<noteq>{}" unfolding diameter_def by auto
-    hence lub:"isLub UNIV ?D (rsup ?D)" using * rsup[of ?D] unfolding setle_def by auto
+    hence lub:"isLub UNIV ?D (Sup ?D)" using * Sup[of ?D] unfolding setle_def 
+      apply auto    (*FIXME: something horrible has happened here!*)
+      apply atomize
+      apply safe
+      apply metis +
+      done
     have "\<exists>d' \<in> ?D. d' > d"
     proof(rule ccontr)
       assume "\<not> (\<exists>d'\<in>{norm (x - y) |x y. x \<in> s \<and> y \<in> s}. d < d')"
@@ -4456,8 +4443,8 @@
 proof-
   have b:"bounded s" using assms(1) by (rule compact_imp_bounded)
   then obtain x y where xys:"x\<in>s" "y\<in>s" and xy:"\<forall>u\<in>s. \<forall>v\<in>s. norm (u - v) \<le> norm (x - y)" using compact_sup_maxdistance[OF assms] by auto
-  hence "diameter s \<le> norm (x - y)" using rsup_le[of "{norm (x - y) |x y. x \<in> s \<and> y \<in> s}" "norm (x - y)"]
-    unfolding setle_def and diameter_def by auto
+  hence "diameter s \<le> norm (x - y)" 
+    by (force simp add: diameter_def intro!: Sup_least) 
   thus ?thesis using diameter_bounded(1)[OF b, THEN bspec[where x=x], THEN bspec[where x=y], OF xys] and xys by auto
 qed
 
--- a/src/HOL/Nat.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Nat.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -8,7 +8,7 @@
 header {* Natural numbers *}
 
 theory Nat
-imports Inductive Ring_and_Field
+imports Inductive Product_Type Ring_and_Field
 uses
   "~~/src/Tools/rat.ML"
   "~~/src/Provers/Arith/cancel_sums.ML"
@@ -1600,6 +1600,75 @@
 Least_Suc}, since there appears to be no need.*}
 
 
+subsection {* The divides relation on @{typ nat} *}
+
+lemma dvd_1_left [iff]: "Suc 0 dvd k"
+unfolding dvd_def by simp
+
+lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
+by (simp add: dvd_def)
+
+lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1"
+by (simp add: dvd_def)
+
+lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
+  unfolding dvd_def
+  by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
+
+text {* @{term "op dvd"} is a partial order *}
+
+interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n"
+  proof qed (auto intro: dvd_refl dvd_trans dvd_anti_sym)
+
+lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
+unfolding dvd_def
+by (blast intro: diff_mult_distrib2 [symmetric])
+
+lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
+  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
+  apply (blast intro: dvd_add)
+  done
+
+lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
+by (drule_tac m = m in dvd_diff_nat, auto)
+
+lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
+  apply (rule iffI)
+   apply (erule_tac [2] dvd_add)
+   apply (rule_tac [2] dvd_refl)
+  apply (subgoal_tac "n = (n+k) -k")
+   prefer 2 apply simp
+  apply (erule ssubst)
+  apply (erule dvd_diff_nat)
+  apply (rule dvd_refl)
+  done
+
+lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
+  unfolding dvd_def
+  apply (erule exE)
+  apply (simp add: mult_ac)
+  done
+
+lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
+  apply auto
+   apply (subgoal_tac "m*n dvd m*1")
+   apply (drule dvd_mult_cancel, auto)
+  done
+
+lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
+  apply (subst mult_commute)
+  apply (erule dvd_mult_cancel1)
+  done
+
+lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
+by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
+
+lemma nat_dvd_not_less:
+  fixes m n :: nat
+  shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m"
+by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
+
+
 subsection {* size of a datatype value *}
 
 class size =
--- a/src/HOL/Nat_Numeral.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Nat_Numeral.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -6,8 +6,7 @@
 header {* Binary numerals for the natural numbers *}
 
 theory Nat_Numeral
-imports IntDiv
-uses ("Tools/nat_numeral_simprocs.ML")
+imports Int
 begin
 
 subsection {* Numerals for natural numbers *}
@@ -246,12 +245,12 @@
 lemma power2_sum:
   fixes x y :: "'a::number_ring"
   shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y"
-  by (simp add: ring_distribs power2_eq_square)
+  by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute)
 
 lemma power2_diff:
   fixes x y :: "'a::number_ring"
   shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y"
-  by (simp add: ring_distribs power2_eq_square)
+  by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute)
 
 
 subsection {* Predicate for negative binary numbers *}
@@ -417,45 +416,6 @@
   by (simp add: nat_mult_distrib)
 
 
-subsubsection{*Quotient *}
-
-lemma div_nat_number_of [simp]:
-     "(number_of v :: nat)  div  number_of v' =  
-          (if neg (number_of v :: int) then 0  
-           else nat (number_of v div number_of v'))"
-  unfolding nat_number_of_def number_of_is_id neg_def
-  by (simp add: nat_div_distrib)
-
-lemma one_div_nat_number_of [simp]:
-     "Suc 0 div number_of v' = nat (1 div number_of v')" 
-by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
-
-
-subsubsection{*Remainder *}
-
-lemma mod_nat_number_of [simp]:
-     "(number_of v :: nat)  mod  number_of v' =  
-        (if neg (number_of v :: int) then 0  
-         else if neg (number_of v' :: int) then number_of v  
-         else nat (number_of v mod number_of v'))"
-  unfolding nat_number_of_def number_of_is_id neg_def
-  by (simp add: nat_mod_distrib)
-
-lemma one_mod_nat_number_of [simp]:
-     "Suc 0 mod number_of v' =  
-        (if neg (number_of v' :: int) then Suc 0
-         else nat (1 mod number_of v'))"
-by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
-
-
-subsubsection{* Divisibility *}
-
-lemmas dvd_eq_mod_eq_0_number_of =
-  dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard]
-
-declare dvd_eq_mod_eq_0_number_of [simp]
-
-
 subsection{*Comparisons*}
 
 subsubsection{*Equals (=) *}
@@ -687,21 +647,16 @@
 lemma power_number_of_even:
   fixes z :: "'a::number_ring"
   shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)"
-unfolding Let_def nat_number_of_def number_of_Bit0
-apply (rule_tac x = "number_of w" in spec, clarify)
-apply (case_tac " (0::int) <= x")
-apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square)
-done
+by (cases "w \<ge> 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id
+  nat_add_distrib power_add simp del: nat_number_of)
 
 lemma power_number_of_odd:
   fixes z :: "'a::number_ring"
   shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w
      then (let w = z ^ (number_of w) in z * w * w) else 1)"
-unfolding Let_def nat_number_of_def number_of_Bit1
-apply (rule_tac x = "number_of w" in spec, auto)
-apply (simp only: nat_add_distrib nat_mult_distrib)
-apply simp
-apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc)
+apply (auto simp add: Let_def Bit1_def nat_number_of_def number_of_is_id
+  mult_assoc nat_add_distrib power_add not_le simp del: nat_number_of)
+apply (simp add: not_le mult_2 [symmetric] add_assoc)
 done
 
 lemmas zpower_number_of_even = power_number_of_even [where 'a=int]
@@ -713,11 +668,6 @@
 lemmas power_number_of_odd_number_of [simp] =
     power_number_of_odd [of "number_of v", standard]
 
-
-(* Enable arith to deal with div/mod k where k is a numeral: *)
-declare split_div[of _ _ "number_of k", standard, arith_split]
-declare split_mod[of _ _ "number_of k", standard, arith_split]
-
 lemma nat_number_of_Pls: "Numeral0 = (0::nat)"
   by (simp add: number_of_Pls nat_number_of_def)
 
@@ -727,22 +677,24 @@
 
 lemma nat_number_of_Bit0:
     "number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)"
-  unfolding nat_number_of_def number_of_is_id numeral_simps Let_def
-  by auto
+by (cases "w \<ge> 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id
+  nat_add_distrib simp del: nat_number_of)
 
 lemma nat_number_of_Bit1:
   "number_of (Int.Bit1 w) =
     (if neg (number_of w :: int) then 0
      else let n = number_of w in Suc (n + n))"
-  unfolding nat_number_of_def number_of_is_id numeral_simps neg_def Let_def
-  by auto
+apply (auto simp add: Let_def Bit1_def nat_number_of_def number_of_is_id neg_def
+  nat_add_distrib simp del: nat_number_of)
+apply (simp add: mult_2 [symmetric] add_assoc)
+done
 
 lemmas nat_number =
   nat_number_of_Pls nat_number_of_Min
   nat_number_of_Bit0 nat_number_of_Bit1
 
 lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
-  by (simp add: Let_def)
+  by (fact Let_def)
 
 lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring})"
   by (simp only: number_of_Min power_minus1_even)
@@ -750,6 +702,20 @@
 lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring})"
   by (simp only: number_of_Min power_minus1_odd)
 
+lemma nat_number_of_add_left:
+     "number_of v + (number_of v' + (k::nat)) =  
+         (if neg (number_of v :: int) then number_of v' + k  
+          else if neg (number_of v' :: int) then number_of v + k  
+          else number_of (v + v') + k)"
+by (auto simp add: neg_def)
+
+lemma nat_number_of_mult_left:
+     "number_of v * (number_of v' * (k::nat)) =  
+         (if v < Int.Pls then 0
+          else number_of (v * v') * k)"
+by (auto simp add: not_less Pls_def nat_number_of_def number_of_is_id
+  nat_mult_distrib simp del: nat_number_of)
+
 
 subsection{*Literal arithmetic and @{term of_nat}*}
 
@@ -765,7 +731,7 @@
          (if 0 \<le> (number_of v :: int) 
           then (number_of v :: 'a :: number_ring)
           else 0)"
-by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat);
+by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat)
 
 lemma of_nat_number_of_eq [simp]:
      "of_nat (number_of v :: nat) =  
@@ -774,124 +740,6 @@
 by (simp only: of_nat_number_of_lemma neg_def, simp) 
 
 
-subsection {*Lemmas for the Combination and Cancellation Simprocs*}
-
-lemma nat_number_of_add_left:
-     "number_of v + (number_of v' + (k::nat)) =  
-         (if neg (number_of v :: int) then number_of v' + k  
-          else if neg (number_of v' :: int) then number_of v + k  
-          else number_of (v + v') + k)"
-  unfolding nat_number_of_def number_of_is_id neg_def
-  by auto
-
-lemma nat_number_of_mult_left:
-     "number_of v * (number_of v' * (k::nat)) =  
-         (if v < Int.Pls then 0
-          else number_of (v * v') * k)"
-by simp
-
-
-subsubsection{*For @{text combine_numerals}*}
-
-lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
-by (simp add: add_mult_distrib)
-
-
-subsubsection{*For @{text cancel_numerals}*}
-
-lemma nat_diff_add_eq1:
-     "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
-by (simp split add: nat_diff_split add: add_mult_distrib)
-
-lemma nat_diff_add_eq2:
-     "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
-by (simp split add: nat_diff_split add: add_mult_distrib)
-
-lemma nat_eq_add_iff1:
-     "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
-by (auto split add: nat_diff_split simp add: add_mult_distrib)
-
-lemma nat_eq_add_iff2:
-     "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
-by (auto split add: nat_diff_split simp add: add_mult_distrib)
-
-lemma nat_less_add_iff1:
-     "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
-by (auto split add: nat_diff_split simp add: add_mult_distrib)
-
-lemma nat_less_add_iff2:
-     "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
-by (auto split add: nat_diff_split simp add: add_mult_distrib)
-
-lemma nat_le_add_iff1:
-     "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
-by (auto split add: nat_diff_split simp add: add_mult_distrib)
-
-lemma nat_le_add_iff2:
-     "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
-by (auto split add: nat_diff_split simp add: add_mult_distrib)
-
-
-subsubsection{*For @{text cancel_numeral_factors} *}
-
-lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
-by auto
-
-lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
-by auto
-
-lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
-by auto
-
-lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
-by auto
-
-lemma nat_mult_dvd_cancel_disj[simp]:
-  "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
-by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
-
-lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
-by(auto)
-
-
-subsubsection{*For @{text cancel_factor} *}
-
-lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
-by auto
-
-lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
-by auto
-
-lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
-by auto
-
-lemma nat_mult_div_cancel_disj[simp]:
-     "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
-by (simp add: nat_mult_div_cancel1)
-
-
-subsection {* Simprocs for the Naturals *}
-
-use "Tools/nat_numeral_simprocs.ML"
-
-declaration {* 
-  K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
-  #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
-     @{thm nat_0}, @{thm nat_1},
-     @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
-     @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
-     @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
-     @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
-     @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
-     @{thm mult_Suc}, @{thm mult_Suc_right},
-     @{thm add_Suc}, @{thm add_Suc_right},
-     @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
-     @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
-     @{thm if_True}, @{thm if_False}])
-  #> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))
-*}
-
-
 subsubsection{*For simplifying @{term "Suc m - K"} and  @{term "K - Suc m"}*}
 
 text{*Where K above is a literal*}
@@ -977,35 +825,14 @@
 
 text{*Lemmas for specialist use, NOT as default simprules*}
 lemma nat_mult_2: "2 * z = (z+z::nat)"
-proof -
-  have "2*z = (1 + 1)*z" by simp
-  also have "... = z+z" by (simp add: left_distrib)
-  finally show ?thesis .
-qed
+unfolding nat_1_add_1 [symmetric] left_distrib by simp
 
 lemma nat_mult_2_right: "z * 2 = (z+z::nat)"
 by (subst mult_commute, rule nat_mult_2)
 
 text{*Case analysis on @{term "n<2"}*}
 lemma less_2_cases: "(n::nat) < 2 ==> n = 0 | n = Suc 0"
-by arith
-
-lemma div2_Suc_Suc [simp]: "Suc(Suc m) div 2 = Suc (m div 2)"
-by arith
-
-lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
-by (simp add: nat_mult_2 [symmetric])
-
-lemma mod2_Suc_Suc [simp]: "Suc(Suc(m)) mod 2 = m mod 2"
-apply (subgoal_tac "m mod 2 < 2")
-apply (erule less_2_cases [THEN disjE])
-apply (simp_all (no_asm_simp) add: Let_def mod_Suc nat_1)
-done
-
-lemma mod2_gr_0 [simp]: "!!m::nat. (0 < m mod 2) = (m mod 2 = 1)"
-apply (subgoal_tac "m mod 2 < 2")
-apply (force simp del: mod_less_divisor, simp)
-done
+by (auto simp add: nat_1_add_1 [symmetric])
 
 text{*Removal of Small Numerals: 0, 1 and (in additive positions) 2*}
 
@@ -1019,29 +846,4 @@
 lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"
 by simp
 
-
-text{*These lemmas collapse some needless occurrences of Suc:
-    at least three Sucs, since two and fewer are rewritten back to Suc again!
-    We already have some rules to simplify operands smaller than 3.*}
-
-lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
-by (simp add: Suc3_eq_add_3)
-
-lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
-by (simp add: Suc3_eq_add_3)
-
-lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
-by (simp add: Suc3_eq_add_3)
-
-lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
-by (simp add: Suc3_eq_add_3)
-
-lemmas Suc_div_eq_add3_div_number_of =
-    Suc_div_eq_add3_div [of _ "number_of v", standard]
-declare Suc_div_eq_add3_div_number_of [simp]
-
-lemmas Suc_mod_eq_add3_mod_number_of =
-    Suc_mod_eq_add3_mod [of _ "number_of v", standard]
-declare Suc_mod_eq_add3_mod_number_of [simp]
-
 end
--- a/src/HOL/Nat_Transfer.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Nat_Transfer.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -1,15 +1,26 @@
 
 (* Authors: Jeremy Avigad and Amine Chaieb *)
 
-header {* Sets up transfer from nats to ints and back. *}
+header {* Generic transfer machinery;  specific transfer from nats to ints and back. *}
 
 theory Nat_Transfer
-imports Main Parity
+imports Nat_Numeral
+uses ("Tools/transfer.ML")
 begin
 
+subsection {* Generic transfer machinery *}
+
+definition TransferMorphism:: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> bool"
+  where "TransferMorphism a B \<longleftrightarrow> True"
+
+use "Tools/transfer.ML"
+
+setup Transfer.setup
+
+
 subsection {* Set up transfer from nat to int *}
 
-(* set up transfer direction *)
+text {* set up transfer direction *}
 
 lemma TransferMorphism_nat_int: "TransferMorphism nat (op <= (0::int))"
   by (simp add: TransferMorphism_def)
@@ -20,7 +31,7 @@
   labels: natint
 ]
 
-(* basic functions and relations *)
+text {* basic functions and relations *}
 
 lemma transfer_nat_int_numerals:
     "(0::nat) = nat 0"
@@ -43,31 +54,20 @@
     "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)"
     "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)"
     "(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)"
-    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
-    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
   by (auto simp add: eq_nat_nat_iff nat_mult_distrib
-      nat_power_eq nat_div_distrib nat_mod_distrib tsub_def)
+      nat_power_eq tsub_def)
 
 lemma transfer_nat_int_function_closures:
     "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0"
     "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0"
     "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0"
     "(x::int) >= 0 \<Longrightarrow> x^n >= 0"
-    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
-    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
     "(0::int) >= 0"
     "(1::int) >= 0"
     "(2::int) >= 0"
     "(3::int) >= 0"
     "int z >= 0"
   apply (auto simp add: zero_le_mult_iff tsub_def)
-  apply (case_tac "y = 0")
-  apply auto
-  apply (subst pos_imp_zdiv_nonneg_iff, auto)
-  apply (case_tac "y = 0")
-  apply force
-  apply (rule pos_mod_sign)
-  apply arith
 done
 
 lemma transfer_nat_int_relations:
@@ -89,7 +89,21 @@
 ]
 
 
-(* first-order quantifiers *)
+text {* first-order quantifiers *}
+
+lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"
+  by (simp split add: split_nat)
+
+lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"
+proof
+  assume "\<exists>x. P x"
+  then obtain x where "P x" ..
+  then have "int x \<ge> 0 \<and> P (nat (int x))" by simp
+  then show "\<exists>x\<ge>0. P (nat x)" ..
+next
+  assume "\<exists>x\<ge>0. P (nat x)"
+  then show "\<exists>x. P x" by auto
+qed
 
 lemma transfer_nat_int_quantifiers:
     "(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))"
@@ -110,7 +124,7 @@
   cong: all_cong ex_cong]
 
 
-(* if *)
+text {* if *}
 
 lemma nat_if_cong: "(if P then (nat x) else (nat y)) =
     nat (if P then x else y)"
@@ -119,7 +133,7 @@
 declare TransferMorphism_nat_int [transfer add return: nat_if_cong]
 
 
-(* operations with sets *)
+text {* operations with sets *}
 
 definition
   nat_set :: "int set \<Rightarrow> bool"
@@ -132,8 +146,6 @@
     "A Un B = nat ` (int ` A Un int ` B)"
     "A Int B = nat ` (int ` A Int int ` B)"
     "{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
-    "{..n} = nat ` {0..int n}"
-    "{m..n} = nat ` {int m..int n}"  (* need all variants of these! *)
   apply (rule card_image [symmetric])
   apply (auto simp add: inj_on_def image_def)
   apply (rule_tac x = "int x" in bexI)
@@ -144,17 +156,12 @@
   apply auto
   apply (rule_tac x = "int x" in exI)
   apply auto
-  apply (rule_tac x = "int x" in bexI)
-  apply auto
-  apply (rule_tac x = "int x" in bexI)
-  apply auto
 done
 
 lemma transfer_nat_int_set_function_closures:
     "nat_set {}"
     "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
     "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
-    "x >= 0 \<Longrightarrow> nat_set {x..y}"
     "nat_set {x. x >= 0 & P x}"
     "nat_set (int ` C)"
     "nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *)
@@ -167,7 +174,6 @@
     "(A = B) = (int ` A = int ` B)"
     "(A < B) = (int ` A < int ` B)"
     "(A <= B) = (int ` A <= int ` B)"
-
   apply (rule iffI)
   apply (erule finite_imageI)
   apply (erule finite_imageD)
@@ -194,7 +200,7 @@
 ]
 
 
-(* setsum and setprod *)
+text {* setsum and setprod *}
 
 (* this handles the case where the *domain* of f is nat *)
 lemma transfer_nat_int_sum_prod:
@@ -262,52 +268,10 @@
     transfer_nat_int_sum_prod_closure
   cong: transfer_nat_int_sum_prod_cong]
 
-(* lists *)
-
-definition
-  embed_list :: "nat list \<Rightarrow> int list"
-where
-  "embed_list l = map int l";
-
-definition
-  nat_list :: "int list \<Rightarrow> bool"
-where
-  "nat_list l = nat_set (set l)";
-
-definition
-  return_list :: "int list \<Rightarrow> nat list"
-where
-  "return_list l = map nat l";
-
-thm nat_0_le;
-
-lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow>
-    embed_list (return_list l) = l";
-  unfolding embed_list_def return_list_def nat_list_def nat_set_def
-  apply (induct l);
-  apply auto;
-done;
-
-lemma transfer_nat_int_list_functions:
-  "l @ m = return_list (embed_list l @ embed_list m)"
-  "[] = return_list []";
-  unfolding return_list_def embed_list_def;
-  apply auto;
-  apply (induct l, auto);
-  apply (induct m, auto);
-done;
-
-(*
-lemma transfer_nat_int_fold1: "fold f l x =
-    fold (%x. f (nat x)) (embed_list l) x";
-*)
-
-
-
 
 subsection {* Set up transfer from int to nat *}
 
-(* set up transfer direction *)
+text {* set up transfer direction *}
 
 lemma TransferMorphism_int_nat: "TransferMorphism int (UNIV :: nat set)"
   by (simp add: TransferMorphism_def)
@@ -319,7 +283,11 @@
 ]
 
 
-(* basic functions and relations *)
+text {* basic functions and relations *}
+
+lemma UNIV_apply:
+  "UNIV x = True"
+  by (simp add: top_fun_eq top_bool_eq)
 
 definition
   is_nat :: "int \<Rightarrow> bool"
@@ -338,17 +306,13 @@
     "(int x) * (int y) = int (x * y)"
     "tsub (int x) (int y) = int (x - y)"
     "(int x)^n = int (x^n)"
-    "(int x) div (int y) = int (x div y)"
-    "(int x) mod (int y) = int (x mod y)"
-  by (auto simp add: int_mult tsub_def int_power zdiv_int zmod_int)
+  by (auto simp add: int_mult tsub_def int_power)
 
 lemma transfer_int_nat_function_closures:
     "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)"
     "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)"
     "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)"
     "is_nat x \<Longrightarrow> is_nat (x^n)"
-    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
-    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
     "is_nat 0"
     "is_nat 1"
     "is_nat 2"
@@ -361,12 +325,7 @@
     "(int x < int y) = (x < y)"
     "(int x <= int y) = (x <= y)"
     "(int x dvd int y) = (x dvd y)"
-    "(even (int x)) = (even x)"
-  by (auto simp add: zdvd_int even_nat_def)
-
-lemma UNIV_apply:
-  "UNIV x = True"
-  by (simp add: top_fun_eq top_bool_eq)
+  by (auto simp add: zdvd_int)
 
 declare TransferMorphism_int_nat[transfer add return:
   transfer_int_nat_numerals
@@ -377,7 +336,7 @@
 ]
 
 
-(* first-order quantifiers *)
+text {* first-order quantifiers *}
 
 lemma transfer_int_nat_quantifiers:
     "(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))"
@@ -392,7 +351,7 @@
   return: transfer_int_nat_quantifiers]
 
 
-(* if *)
+text {* if *}
 
 lemma int_if_cong: "(if P then (int x) else (int y)) =
     int (if P then x else y)"
@@ -402,7 +361,7 @@
 
 
 
-(* operations with sets *)
+text {* operations with sets *}
 
 lemma transfer_int_nat_set_functions:
     "nat_set A \<Longrightarrow> card A = card (nat ` A)"
@@ -410,7 +369,6 @@
     "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)"
     "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)"
     "{x. x >= 0 & P x} = int ` {x. P(int x)}"
-    "is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}"
        (* need all variants of these! *)
   by (simp_all only: is_nat_def transfer_nat_int_set_functions
           transfer_nat_int_set_function_closures
@@ -421,7 +379,6 @@
     "nat_set {}"
     "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
     "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
-    "is_nat x \<Longrightarrow> nat_set {x..y}"
     "nat_set {x. x >= 0 & P x}"
     "nat_set (int ` C)"
     "nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x"
@@ -454,7 +411,7 @@
 ]
 
 
-(* setsum and setprod *)
+text {* setsum and setprod *}
 
 (* this handles the case where the *domain* of f is int *)
 lemma transfer_int_nat_sum_prod:
--- a/src/HOL/Nominal/nominal_datatype.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Nominal/nominal_datatype.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -567,13 +567,16 @@
     val rep_set_names'' = map (Sign.full_bname thy3) rep_set_names';
 
     val ({raw_induct = rep_induct, intrs = rep_intrs, ...}, thy4) =
-        Inductive.add_inductive_global (serial ())
+      thy3
+      |> Sign.map_naming Name_Space.conceal
+      |> Inductive.add_inductive_global (serial ())
           {quiet_mode = false, verbose = false, kind = Thm.internalK,
            alt_name = Binding.name big_rep_name, coind = false, no_elim = true, no_ind = false,
            skip_mono = true, fork_mono = false}
           (map (fn (s, T) => ((Binding.name s, T --> HOLogic.boolT), NoSyn))
              (rep_set_names' ~~ recTs'))
-          [] (map (fn x => (Attrib.empty_binding, x)) intr_ts) [] thy3;
+          [] (map (fn x => (Attrib.empty_binding, x)) intr_ts) []
+      ||> Sign.restore_naming thy3;
 
     (**** Prove that representing set is closed under permutation ****)
 
@@ -1508,15 +1511,17 @@
           ([], [], [], [], 0);
 
     val ({intrs = rec_intrs, elims = rec_elims, raw_induct = rec_induct, ...}, thy11) =
-      thy10 |>
-        Inductive.add_inductive_global (serial ())
+      thy10
+      |> Sign.map_naming Name_Space.conceal
+      |> Inductive.add_inductive_global (serial ())
           {quiet_mode = #quiet config, verbose = false, kind = Thm.internalK,
            alt_name = Binding.name big_rec_name, coind = false, no_elim = false, no_ind = false,
            skip_mono = true, fork_mono = false}
           (map (fn (s, T) => ((Binding.name s, T), NoSyn)) (rec_set_names' ~~ rec_set_Ts))
           (map dest_Free rec_fns)
-          (map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) [] ||>
-      PureThy.hide_fact true (Long_Name.append (Sign.full_bname thy10 big_rec_name) "induct");
+          (map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) []
+      ||> PureThy.hide_fact true (Long_Name.append (Sign.full_bname thy10 big_rec_name) "induct")
+      ||> Sign.restore_naming thy10;
 
     (** equivariance **)
 
--- a/src/HOL/Parity.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Parity.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -28,6 +28,13 @@
 
 end
 
+lemma transfer_int_nat_relations:
+  "even (int x) \<longleftrightarrow> even x"
+  by (simp add: even_nat_def)
+
+declare TransferMorphism_int_nat[transfer add return:
+  transfer_int_nat_relations
+]
 
 lemma even_zero_int[simp]: "even (0::int)" by presburger
 
@@ -310,6 +317,8 @@
 
 subsection {* General Lemmas About Division *}
 
+(*FIXME move to Divides.thy*)
+
 lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" 
 apply (induct "m")
 apply (simp_all add: mod_Suc)
--- a/src/HOL/Plain.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Plain.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -1,7 +1,7 @@
 header {* Plain HOL *}
 
 theory Plain
-imports Datatype FunDef Record Extraction Divides
+imports Datatype FunDef Record Extraction
 begin
 
 text {*
--- a/src/HOL/Power.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Power.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -452,6 +452,12 @@
   from power_strict_increasing_iff [OF this] less show ?thesis ..
 qed
 
+lemma power_dvd_imp_le:
+  "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n"
+  apply (rule power_le_imp_le_exp, assumption)
+  apply (erule dvd_imp_le, simp)
+  done
+
 
 subsection {* Code generator tweak *}
 
--- a/src/HOL/Presburger.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Presburger.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -385,20 +385,6 @@
 
 text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
 
-lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"
-  by (simp split add: split_nat)
-
-lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"
-proof
-  assume "\<exists>x. P x"
-  then obtain x where "P x" ..
-  then have "int x \<ge> 0 \<and> P (nat (int x))" by simp
-  then show "\<exists>x\<ge>0. P (nat x)" ..
-next
-  assume "\<exists>x\<ge>0. P (nat x)"
-  then show "\<exists>x. P x" by auto
-qed
-
 lemma zdiff_int_split: "P (int (x - y)) =
   ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))"
   by (case_tac "y \<le> x", simp_all add: zdiff_int)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Caratheodory.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,993 @@
+header {*Caratheodory Extension Theorem*}
+
+theory Caratheodory
+  imports Sigma_Algebra SupInf SeriesPlus
+
+begin
+
+text{*From the Hurd/Coble measure theory development, translated by Lawrence Paulson.*}
+
+subsection {* Measure Spaces *}
+
+text {*A measure assigns a nonnegative real to every measurable set. 
+       It is countably additive for disjoint sets.*}
+
+record 'a measure_space = "'a algebra" +
+  measure:: "'a set \<Rightarrow> real"
+
+definition
+  disjoint_family  where
+  "disjoint_family A \<longleftrightarrow> (\<forall>m n. m \<noteq> n \<longrightarrow> A m \<inter> A n = {})"
+
+definition
+  positive  where
+  "positive M f \<longleftrightarrow> f {} = (0::real) & (\<forall>x \<in> sets M. 0 \<le> f x)"
+
+definition
+  additive  where
+  "additive M f \<longleftrightarrow> 
+    (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<inter> y = {} 
+    \<longrightarrow> f (x \<union> y) = f x + f y)"
+
+definition
+  countably_additive  where
+  "countably_additive M f \<longleftrightarrow> 
+    (\<forall>A. range A \<subseteq> sets M \<longrightarrow> 
+         disjoint_family A \<longrightarrow>
+         (\<Union>i. A i) \<in> sets M \<longrightarrow> 
+         (\<lambda>n. f (A n))  sums  f (\<Union>i. A i))"
+
+definition
+  increasing  where
+  "increasing M f \<longleftrightarrow> (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<subseteq> y \<longrightarrow> f x \<le> f y)"
+
+definition
+  subadditive  where
+  "subadditive M f \<longleftrightarrow> 
+    (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<inter> y = {} 
+    \<longrightarrow> f (x \<union> y) \<le> f x + f y)"
+
+definition
+  countably_subadditive  where
+  "countably_subadditive M f \<longleftrightarrow> 
+    (\<forall>A. range A \<subseteq> sets M \<longrightarrow> 
+         disjoint_family A \<longrightarrow>
+         (\<Union>i. A i) \<in> sets M \<longrightarrow> 
+         summable (f o A) \<longrightarrow>
+         f (\<Union>i. A i) \<le> suminf (\<lambda>n. f (A n)))"
+
+definition
+  lambda_system where
+  "lambda_system M f = 
+    {l. l \<in> sets M & (\<forall>x \<in> sets M. f (l \<inter> x) + f ((space M - l) \<inter> x) = f x)}"
+
+definition
+  outer_measure_space where
+  "outer_measure_space M f  \<longleftrightarrow> 
+     positive M f & increasing M f & countably_subadditive M f"
+
+definition
+  measure_set where
+  "measure_set M f X =
+     {r . \<exists>A. range A \<subseteq> sets M & disjoint_family A & X \<subseteq> (\<Union>i. A i) & (f \<circ> A) sums r}"
+
+
+locale measure_space = sigma_algebra +
+  assumes positive: "!!a. a \<in> sets M \<Longrightarrow> 0 \<le> measure M a"
+      and empty_measure [simp]: "measure M {} = (0::real)"
+      and ca: "countably_additive M (measure M)"
+
+subsection {* Basic Lemmas *}
+
+lemma positive_imp_0: "positive M f \<Longrightarrow> f {} = 0"
+  by (simp add: positive_def) 
+
+lemma positive_imp_pos: "positive M f \<Longrightarrow> x \<in> sets M \<Longrightarrow> 0 \<le> f x"
+  by (simp add: positive_def) 
+
+lemma increasingD:
+     "increasing M f \<Longrightarrow> x \<subseteq> y \<Longrightarrow> x\<in>sets M \<Longrightarrow> y\<in>sets M \<Longrightarrow> f x \<le> f y"
+  by (auto simp add: increasing_def)
+
+lemma subadditiveD:
+     "subadditive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x\<in>sets M \<Longrightarrow> y\<in>sets M 
+      \<Longrightarrow> f (x \<union> y) \<le> f x + f y"
+  by (auto simp add: subadditive_def)
+
+lemma additiveD:
+     "additive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x\<in>sets M \<Longrightarrow> y\<in>sets M 
+      \<Longrightarrow> f (x \<union> y) = f x + f y"
+  by (auto simp add: additive_def)
+
+lemma countably_additiveD:
+  "countably_additive M f \<Longrightarrow> range A \<subseteq> sets M \<Longrightarrow> disjoint_family A 
+   \<Longrightarrow> (\<Union>i. A i) \<in> sets M \<Longrightarrow> (\<lambda>n. f (A n))  sums  f (\<Union>i. A i)"
+  by (simp add: countably_additive_def) 
+
+lemma Int_Diff_disjoint: "A \<inter> B \<inter> (A - B) = {}"
+  by blast
+
+lemma Int_Diff_Un: "A \<inter> B \<union> (A - B) = A"
+  by blast
+
+lemma disjoint_family_subset:
+     "disjoint_family A \<Longrightarrow> (!!x. B x \<subseteq> A x) \<Longrightarrow> disjoint_family B"
+  by (force simp add: disjoint_family_def) 
+
+subsection {* A Two-Element Series *}
+
+definition binaryset :: "'a set \<Rightarrow> 'a set \<Rightarrow> nat \<Rightarrow> 'a set "
+  where "binaryset A B = (\<lambda>\<^isup>x. {})(0 := A, Suc 0 := B)"
+
+lemma range_binaryset_eq: "range(binaryset A B) = {A,B,{}}"
+  apply (simp add: binaryset_def) 
+  apply (rule set_ext) 
+  apply (auto simp add: image_iff) 
+  done
+
+lemma UN_binaryset_eq: "(\<Union>i. binaryset A B i) = A \<union> B"
+  by (simp add: UNION_eq_Union_image range_binaryset_eq) 
+
+lemma LIMSEQ_binaryset: 
+  assumes f: "f {} = 0"
+  shows  "(\<lambda>n. \<Sum>i = 0..<n. f (binaryset A B i)) ----> f A + f B"
+proof -
+  have "(\<lambda>n. \<Sum>i = 0..< Suc (Suc n). f (binaryset A B i)) = (\<lambda>n. f A + f B)"
+    proof 
+      fix n
+      show "(\<Sum>i\<Colon>nat = 0\<Colon>nat..<Suc (Suc n). f (binaryset A B i)) = f A + f B"
+	by (induct n)  (auto simp add: binaryset_def f) 
+    qed
+  moreover
+  have "... ----> f A + f B" by (rule LIMSEQ_const) 
+  ultimately
+  have "(\<lambda>n. \<Sum>i = 0..< Suc (Suc n). f (binaryset A B i)) ----> f A + f B" 
+    by metis
+  hence "(\<lambda>n. \<Sum>i = 0..< n+2. f (binaryset A B i)) ----> f A + f B"
+    by simp
+  thus ?thesis by (rule LIMSEQ_offset [where k=2])
+qed
+
+lemma binaryset_sums:
+  assumes f: "f {} = 0"
+  shows  "(\<lambda>n. f (binaryset A B n)) sums (f A + f B)"
+    by (simp add: sums_def LIMSEQ_binaryset [where f=f, OF f]) 
+
+lemma suminf_binaryset_eq:
+     "f {} = 0 \<Longrightarrow> suminf (\<lambda>n. f (binaryset A B n)) = f A + f B"
+  by (metis binaryset_sums sums_unique)
+
+
+subsection {* Lambda Systems *}
+
+lemma (in algebra) lambda_system_eq:
+    "lambda_system M f = 
+        {l. l \<in> sets M & (\<forall>x \<in> sets M. f (x \<inter> l) + f (x - l) = f x)}"
+proof -
+  have [simp]: "!!l x. l \<in> sets M \<Longrightarrow> x \<in> sets M \<Longrightarrow> (space M - l) \<inter> x = x - l"
+    by (metis Diff_eq Int_Diff Int_absorb1 Int_commute sets_into_space)
+  show ?thesis
+    by (auto simp add: lambda_system_def) (metis Diff_Compl Int_commute)+
+qed
+
+lemma (in algebra) lambda_system_empty:
+    "positive M f \<Longrightarrow> {} \<in> lambda_system M f"
+  by (auto simp add: positive_def lambda_system_eq) 
+
+lemma lambda_system_sets:
+    "x \<in> lambda_system M f \<Longrightarrow> x \<in> sets M"
+  by (simp add:  lambda_system_def)
+
+lemma (in algebra) lambda_system_Compl:
+  fixes f:: "'a set \<Rightarrow> real"
+  assumes x: "x \<in> lambda_system M f"
+  shows "space M - x \<in> lambda_system M f"
+  proof -
+    have "x \<subseteq> space M"
+      by (metis sets_into_space lambda_system_sets x)
+    hence "space M - (space M - x) = x"
+      by (metis double_diff equalityE) 
+    with x show ?thesis
+      by (force simp add: lambda_system_def)
+  qed
+
+lemma (in algebra) lambda_system_Int:
+  fixes f:: "'a set \<Rightarrow> real"
+  assumes xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
+  shows "x \<inter> y \<in> lambda_system M f"
+  proof -
+    from xl yl show ?thesis
+      proof (auto simp add: positive_def lambda_system_eq Int)
+	fix u
+	assume x: "x \<in> sets M" and y: "y \<in> sets M" and u: "u \<in> sets M"
+           and fx: "\<forall>z\<in>sets M. f (z \<inter> x) + f (z - x) = f z"
+           and fy: "\<forall>z\<in>sets M. f (z \<inter> y) + f (z - y) = f z"
+	have "u - x \<inter> y \<in> sets M"
+	  by (metis Diff Diff_Int Un u x y)
+	moreover
+	have "(u - (x \<inter> y)) \<inter> y = u \<inter> y - x" by blast
+	moreover
+	have "u - x \<inter> y - y = u - y" by blast
+	ultimately
+	have ey: "f (u - x \<inter> y) = f (u \<inter> y - x) + f (u - y)" using fy
+	  by force
+	have "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y) 
+              = (f (u \<inter> (x \<inter> y)) + f (u \<inter> y - x)) + f (u - y)"
+	  by (simp add: ey) 
+	also have "... =  (f ((u \<inter> y) \<inter> x) + f (u \<inter> y - x)) + f (u - y)"
+	  by (simp add: Int_ac) 
+	also have "... = f (u \<inter> y) + f (u - y)"
+	  using fx [THEN bspec, of "u \<inter> y"] Int y u
+	  by force
+	also have "... = f u"
+	  by (metis fy u) 
+	finally show "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y) = f u" .
+      qed
+  qed
+
+
+lemma (in algebra) lambda_system_Un:
+  fixes f:: "'a set \<Rightarrow> real"
+  assumes xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
+  shows "x \<union> y \<in> lambda_system M f"
+proof -
+  have "(space M - x) \<inter> (space M - y) \<in> sets M"
+    by (metis Diff_Un Un compl_sets lambda_system_sets xl yl) 
+  moreover
+  have "x \<union> y = space M - ((space M - x) \<inter> (space M - y))"
+    by auto  (metis subsetD lambda_system_sets sets_into_space xl yl)+
+  ultimately show ?thesis
+    by (metis lambda_system_Compl lambda_system_Int xl yl) 
+qed
+
+lemma (in algebra) lambda_system_algebra:
+    "positive M f \<Longrightarrow> algebra (M (|sets := lambda_system M f|))"
+  apply (auto simp add: algebra_def) 
+  apply (metis lambda_system_sets set_mp sets_into_space)
+  apply (metis lambda_system_empty)
+  apply (metis lambda_system_Compl)
+  apply (metis lambda_system_Un) 
+  done
+
+lemma (in algebra) lambda_system_strong_additive:
+  assumes z: "z \<in> sets M" and disj: "x \<inter> y = {}"
+      and xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
+  shows "f (z \<inter> (x \<union> y)) = f (z \<inter> x) + f (z \<inter> y)"
+  proof -
+    have "z \<inter> x = (z \<inter> (x \<union> y)) \<inter> x" using disj by blast
+    moreover
+    have "z \<inter> y = (z \<inter> (x \<union> y)) - x" using disj by blast
+    moreover 
+    have "(z \<inter> (x \<union> y)) \<in> sets M"
+      by (metis Int Un lambda_system_sets xl yl z) 
+    ultimately show ?thesis using xl yl
+      by (simp add: lambda_system_eq)
+  qed
+
+lemma (in algebra) Int_space_eq1 [simp]: "x \<in> sets M \<Longrightarrow> space M \<inter> x = x"
+  by (metis Int_absorb1 sets_into_space)
+
+lemma (in algebra) Int_space_eq2 [simp]: "x \<in> sets M \<Longrightarrow> x \<inter> space M = x"
+  by (metis Int_absorb2 sets_into_space)
+
+lemma (in algebra) lambda_system_additive:
+     "additive (M (|sets := lambda_system M f|)) f"
+  proof (auto simp add: additive_def)
+    fix x and y
+    assume disj: "x \<inter> y = {}"
+       and xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
+    hence  "x \<in> sets M" "y \<in> sets M" by (blast intro: lambda_system_sets)+
+    thus "f (x \<union> y) = f x + f y" 
+      using lambda_system_strong_additive [OF top disj xl yl]
+      by (simp add: Un)
+  qed
+
+
+lemma (in algebra) countably_subadditive_subadditive:
+  assumes f: "positive M f" and cs: "countably_subadditive M f"
+  shows  "subadditive M f"
+proof (auto simp add: subadditive_def) 
+  fix x y
+  assume x: "x \<in> sets M" and y: "y \<in> sets M" and "x \<inter> y = {}"
+  hence "disjoint_family (binaryset x y)"
+    by (auto simp add: disjoint_family_def binaryset_def) 
+  hence "range (binaryset x y) \<subseteq> sets M \<longrightarrow> 
+         (\<Union>i. binaryset x y i) \<in> sets M \<longrightarrow> 
+         summable (f o (binaryset x y)) \<longrightarrow>
+         f (\<Union>i. binaryset x y i) \<le> suminf (\<lambda>n. f (binaryset x y n))"
+    using cs by (simp add: countably_subadditive_def) 
+  hence "{x,y,{}} \<subseteq> sets M \<longrightarrow> x \<union> y \<in> sets M \<longrightarrow> 
+         summable (f o (binaryset x y)) \<longrightarrow>
+         f (x \<union> y) \<le> suminf (\<lambda>n. f (binaryset x y n))"
+    by (simp add: range_binaryset_eq UN_binaryset_eq)
+  thus "f (x \<union> y) \<le>  f x + f y" using f x y binaryset_sums
+    by (auto simp add: Un sums_iff positive_def o_def) 
+qed 
+
+
+definition disjointed :: "(nat \<Rightarrow> 'a set) \<Rightarrow> nat \<Rightarrow> 'a set "
+  where "disjointed A n = A n - (\<Union>i\<in>{0..<n}. A i)"
+
+lemma finite_UN_disjointed_eq: "(\<Union>i\<in>{0..<n}. disjointed A i) = (\<Union>i\<in>{0..<n}. A i)"
+proof (induct n)
+  case 0 show ?case by simp
+next
+  case (Suc n)
+  thus ?case by (simp add: atLeastLessThanSuc disjointed_def) 
+qed
+
+lemma UN_disjointed_eq: "(\<Union>i. disjointed A i) = (\<Union>i. A i)"
+  apply (rule UN_finite2_eq [where k=0]) 
+  apply (simp add: finite_UN_disjointed_eq) 
+  done
+
+lemma less_disjoint_disjointed: "m<n \<Longrightarrow> disjointed A m \<inter> disjointed A n = {}"
+  by (auto simp add: disjointed_def)
+
+lemma disjoint_family_disjointed: "disjoint_family (disjointed A)"
+  by (simp add: disjoint_family_def) 
+     (metis neq_iff Int_commute less_disjoint_disjointed)
+
+lemma disjointed_subset: "disjointed A n \<subseteq> A n"
+  by (auto simp add: disjointed_def)
+
+
+lemma (in algebra) UNION_in_sets:
+  fixes A:: "nat \<Rightarrow> 'a set"
+  assumes A: "range A \<subseteq> sets M "
+  shows  "(\<Union>i\<in>{0..<n}. A i) \<in> sets M"
+proof (induct n)
+  case 0 show ?case by simp
+next
+  case (Suc n) 
+  thus ?case
+    by (simp add: atLeastLessThanSuc) (metis A Un UNIV_I image_subset_iff)
+qed
+
+lemma (in algebra) range_disjointed_sets:
+  assumes A: "range A \<subseteq> sets M "
+  shows  "range (disjointed A) \<subseteq> sets M"
+proof (auto simp add: disjointed_def) 
+  fix n
+  show "A n - (\<Union>i\<in>{0..<n}. A i) \<in> sets M" using UNION_in_sets
+    by (metis A Diff UNIV_I disjointed_def image_subset_iff)
+qed
+
+lemma sigma_algebra_disjoint_iff: 
+     "sigma_algebra M \<longleftrightarrow> 
+      algebra M &
+      (\<forall>A. range A \<subseteq> sets M \<longrightarrow> disjoint_family A \<longrightarrow> 
+           (\<Union>i::nat. A i) \<in> sets M)"
+proof (auto simp add: sigma_algebra_iff)
+  fix A :: "nat \<Rightarrow> 'a set"
+  assume M: "algebra M"
+     and A: "range A \<subseteq> sets M"
+     and UnA: "\<forall>A. range A \<subseteq> sets M \<longrightarrow>
+               disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> sets M"
+  hence "range (disjointed A) \<subseteq> sets M \<longrightarrow>
+         disjoint_family (disjointed A) \<longrightarrow>
+         (\<Union>i. disjointed A i) \<in> sets M" by blast
+  hence "(\<Union>i. disjointed A i) \<in> sets M"
+    by (simp add: algebra.range_disjointed_sets M A disjoint_family_disjointed) 
+  thus "(\<Union>i::nat. A i) \<in> sets M" by (simp add: UN_disjointed_eq)
+qed
+
+
+lemma (in algebra) additive_sum:
+  fixes A:: "nat \<Rightarrow> 'a set"
+  assumes f: "positive M f" and ad: "additive M f"
+      and A: "range A \<subseteq> sets M"
+      and disj: "disjoint_family A"
+  shows  "setsum (f o A) {0..<n} = f (\<Union>i\<in>{0..<n}. A i)"
+proof (induct n)
+  case 0 show ?case using f by (simp add: positive_def) 
+next
+  case (Suc n) 
+  have "A n \<inter> (\<Union>i\<in>{0..<n}. A i) = {}" using disj 
+    by (auto simp add: disjoint_family_def neq_iff) blast
+  moreover 
+  have "A n \<in> sets M" using A by blast 
+  moreover have "(\<Union>i\<in>{0..<n}. A i) \<in> sets M"
+    by (metis A UNION_in_sets atLeast0LessThan)
+  moreover 
+  ultimately have "f (A n \<union> (\<Union>i\<in>{0..<n}. A i)) = f (A n) + f(\<Union>i\<in>{0..<n}. A i)"
+    using ad UNION_in_sets A by (auto simp add: additive_def) 
+  with Suc.hyps show ?case using ad
+    by (auto simp add: atLeastLessThanSuc additive_def) 
+qed
+
+
+lemma countably_subadditiveD:
+  "countably_subadditive M f \<Longrightarrow> range A \<subseteq> sets M \<Longrightarrow> disjoint_family A \<Longrightarrow>
+   (\<Union>i. A i) \<in> sets M \<Longrightarrow> summable (f o A) \<Longrightarrow> f (\<Union>i. A i) \<le> suminf (f o A)" 
+  by (auto simp add: countably_subadditive_def o_def)
+
+lemma (in algebra) increasing_additive_summable:
+  fixes A:: "nat \<Rightarrow> 'a set"
+  assumes f: "positive M f" and ad: "additive M f"
+      and inc: "increasing M f"
+      and A: "range A \<subseteq> sets M"
+      and disj: "disjoint_family A"
+  shows  "summable (f o A)"
+proof (rule pos_summable) 
+  fix n
+  show "0 \<le> (f \<circ> A) n" using f A
+    by (force simp add: positive_def)
+  next
+  fix n
+  have "setsum (f \<circ> A) {0..<n} = f (\<Union>i\<in>{0..<n}. A i)"
+    by (rule additive_sum [OF f ad A disj]) 
+  also have "... \<le> f (space M)" using space_closed A
+    by (blast intro: increasingD [OF inc] UNION_in_sets top) 
+  finally show "setsum (f \<circ> A) {0..<n} \<le> f (space M)" .
+qed
+
+lemma lambda_system_positive:
+     "positive M f \<Longrightarrow> positive (M (|sets := lambda_system M f|)) f"
+  by (simp add: positive_def lambda_system_def) 
+
+lemma lambda_system_increasing:
+   "increasing M f \<Longrightarrow> increasing (M (|sets := lambda_system M f|)) f"
+  by (simp add: increasing_def lambda_system_def) 
+
+lemma (in algebra) lambda_system_strong_sum:
+  fixes A:: "nat \<Rightarrow> 'a set"
+  assumes f: "positive M f" and a: "a \<in> sets M"
+      and A: "range A \<subseteq> lambda_system M f"
+      and disj: "disjoint_family A"
+  shows  "(\<Sum>i = 0..<n. f (a \<inter>A i)) = f (a \<inter> (\<Union>i\<in>{0..<n}. A i))"
+proof (induct n)
+  case 0 show ?case using f by (simp add: positive_def) 
+next
+  case (Suc n) 
+  have 2: "A n \<inter> UNION {0..<n} A = {}" using disj
+    by (force simp add: disjoint_family_def neq_iff) 
+  have 3: "A n \<in> lambda_system M f" using A
+    by blast
+  have 4: "UNION {0..<n} A \<in> lambda_system M f"
+    using A algebra.UNION_in_sets [OF local.lambda_system_algebra [OF f]] 
+    by simp
+  from Suc.hyps show ?case
+    by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4])
+qed
+
+
+lemma (in sigma_algebra) lambda_system_caratheodory:
+  assumes oms: "outer_measure_space M f"
+      and A: "range A \<subseteq> lambda_system M f"
+      and disj: "disjoint_family A"
+  shows  "(\<Union>i. A i) \<in> lambda_system M f & (f \<circ> A)  sums  f (\<Union>i. A i)"
+proof -
+  have pos: "positive M f" and inc: "increasing M f" 
+   and csa: "countably_subadditive M f" 
+    by (metis oms outer_measure_space_def)+
+  have sa: "subadditive M f"
+    by (metis countably_subadditive_subadditive csa pos) 
+  have A': "range A \<subseteq> sets (M(|sets := lambda_system M f|))" using A 
+    by simp
+  have alg_ls: "algebra (M(|sets := lambda_system M f|))"
+    by (rule lambda_system_algebra [OF pos]) 
+  have A'': "range A \<subseteq> sets M"
+     by (metis A image_subset_iff lambda_system_sets)
+  have sumfA: "summable (f \<circ> A)" 
+    by (metis algebra.increasing_additive_summable [OF alg_ls]
+          lambda_system_positive lambda_system_additive lambda_system_increasing
+          A' oms outer_measure_space_def disj)
+  have U_in: "(\<Union>i. A i) \<in> sets M"
+    by (metis A countable_UN image_subset_iff lambda_system_sets)
+  have U_eq: "f (\<Union>i. A i) = suminf (f o A)" 
+    proof (rule antisym)
+      show "f (\<Union>i. A i) \<le> suminf (f \<circ> A)"
+	by (rule countably_subadditiveD [OF csa A'' disj U_in sumfA]) 
+      show "suminf (f \<circ> A) \<le> f (\<Union>i. A i)"
+	by (rule suminf_le [OF sumfA]) 
+           (metis algebra.additive_sum [OF alg_ls] pos disj UN_Un Un_UNIV_right
+	          lambda_system_positive lambda_system_additive 
+                  subset_Un_eq increasingD [OF inc] A' A'' UNION_in_sets U_in) 
+    qed
+  {
+    fix a 
+    assume a [iff]: "a \<in> sets M" 
+    have "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) = f a"
+    proof -
+      have summ: "summable (f \<circ> (\<lambda>i. a \<inter> i) \<circ> A)" using pos A'' 
+	apply -
+	apply (rule summable_comparison_test [OF _ sumfA]) 
+	apply (rule_tac x="0" in exI) 
+	apply (simp add: positive_def) 
+	apply (auto simp add: )
+	apply (subst abs_of_nonneg)
+	apply (metis A'' Int UNIV_I a image_subset_iff)
+	apply (blast intro:  increasingD [OF inc] a)   
+	done
+      show ?thesis
+      proof (rule antisym)
+	have "range (\<lambda>i. a \<inter> A i) \<subseteq> sets M" using A''
+	  by blast
+	moreover 
+	have "disjoint_family (\<lambda>i. a \<inter> A i)" using disj
+	  by (auto simp add: disjoint_family_def) 
+	moreover 
+	have "a \<inter> (\<Union>i. A i) \<in> sets M"
+	  by (metis Int U_in a)
+	ultimately 
+	have "f (a \<inter> (\<Union>i. A i)) \<le> suminf (f \<circ> (\<lambda>i. a \<inter> i) \<circ> A)"
+	  using countably_subadditiveD [OF csa, of "(\<lambda>i. a \<inter> A i)"] summ
+	  by (simp add: o_def) 
+	moreover 
+	have "suminf (f \<circ> (\<lambda>i. a \<inter> i) \<circ> A)  \<le> f a - f (a - (\<Union>i. A i))"
+	  proof (rule suminf_le [OF summ])
+	    fix n
+	    have UNION_in: "(\<Union>i\<in>{0..<n}. A i) \<in> sets M"
+	      by (metis A'' UNION_in_sets) 
+	    have le_fa: "f (UNION {0..<n} A \<inter> a) \<le> f a" using A''
+	      by (blast intro: increasingD [OF inc] A'' Int UNION_in_sets a) 
+	    have ls: "(\<Union>i\<in>{0..<n}. A i) \<in> lambda_system M f"
+	      using algebra.UNION_in_sets [OF lambda_system_algebra [OF pos]]
+	      by (simp add: A) 
+	    hence eq_fa: "f (a \<inter> (\<Union>i\<in>{0..<n}. A i)) + f (a - (\<Union>i\<in>{0..<n}. A i)) = f a"
+	      by (simp add: lambda_system_eq UNION_in Diff_Compl a)
+	    have "f (a - (\<Union>i. A i)) \<le> f (a - (\<Union>i\<in>{0..<n}. A i))"
+	      by (blast intro: increasingD [OF inc] Diff UNION_eq_Union_image 
+                               UNION_in U_in a) 
+	    thus "setsum (f \<circ> (\<lambda>i. a \<inter> i) \<circ> A) {0..<n} \<le> f a - f (a - (\<Union>i. A i))"
+	      using eq_fa
+	      by (simp add: suminf_le [OF summ] lambda_system_strong_sum pos 
+                            a A disj)
+	  qed
+	ultimately show "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> f a" 
+	  by arith
+      next
+	have "f a \<le> f (a \<inter> (\<Union>i. A i) \<union> (a - (\<Union>i. A i)))" 
+	  by (blast intro:  increasingD [OF inc] a U_in)
+	also have "... \<le>  f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))"
+	  by (blast intro: subadditiveD [OF sa] Int Diff U_in) 
+	finally show "f a \<le> f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))" .
+        qed
+     qed
+  }
+  thus  ?thesis
+    by (simp add: lambda_system_eq sums_iff U_eq U_in sumfA)
+qed
+
+lemma (in sigma_algebra) caratheodory_lemma:
+  assumes oms: "outer_measure_space M f"
+  shows "measure_space (|space = space M, sets = lambda_system M f, measure = f|)"
+proof -
+  have pos: "positive M f" 
+    by (metis oms outer_measure_space_def)
+  have alg: "algebra (|space = space M, sets = lambda_system M f, measure = f|)"
+    using lambda_system_algebra [OF pos]
+    by (simp add: algebra_def) 
+  then moreover 
+  have "sigma_algebra (|space = space M, sets = lambda_system M f, measure = f|)"
+    using lambda_system_caratheodory [OF oms]
+    by (simp add: sigma_algebra_disjoint_iff) 
+  moreover 
+  have "measure_space_axioms (|space = space M, sets = lambda_system M f, measure = f|)" 
+    using pos lambda_system_caratheodory [OF oms]
+    by (simp add: measure_space_axioms_def positive_def lambda_system_sets 
+                  countably_additive_def o_def) 
+  ultimately 
+  show ?thesis
+    by intro_locales (auto simp add: sigma_algebra_def) 
+qed
+
+
+lemma (in algebra) inf_measure_nonempty:
+  assumes f: "positive M f" and b: "b \<in> sets M" and a: "a \<subseteq> b"
+  shows "f b \<in> measure_set M f a"
+proof -
+  have "(f \<circ> (\<lambda>i. {})(0 := b)) sums setsum (f \<circ> (\<lambda>i. {})(0 := b)) {0..<1::nat}"
+    by (rule series_zero)  (simp add: positive_imp_0 [OF f]) 
+  also have "... = f b" 
+    by simp
+  finally have "(f \<circ> (\<lambda>i. {})(0 := b)) sums f b" .
+  thus ?thesis using a
+    by (auto intro!: exI [of _ "(\<lambda>i. {})(0 := b)"] 
+             simp add: measure_set_def disjoint_family_def b split_if_mem2) 
+qed  
+
+lemma (in algebra) inf_measure_pos0:
+     "positive M f \<Longrightarrow> x \<in> measure_set M f a \<Longrightarrow> 0 \<le> x"
+apply (auto simp add: positive_def measure_set_def sums_iff intro!: suminf_ge_zero)
+apply blast
+done
+
+lemma (in algebra) inf_measure_pos:
+  shows "positive M f \<Longrightarrow> x \<subseteq> space M \<Longrightarrow> 0 \<le> Inf (measure_set M f x)"
+apply (rule Inf_greatest)
+apply (metis emptyE inf_measure_nonempty top)
+apply (metis inf_measure_pos0) 
+done
+
+lemma (in algebra) additive_increasing:
+  assumes posf: "positive M f" and addf: "additive M f" 
+  shows "increasing M f"
+proof (auto simp add: increasing_def) 
+  fix x y
+  assume xy: "x \<in> sets M" "y \<in> sets M" "x \<subseteq> y"
+  have "f x \<le> f x + f (y-x)" using posf
+    by (simp add: positive_def) (metis Diff xy)
+  also have "... = f (x \<union> (y-x))" using addf
+    by (auto simp add: additive_def) (metis Diff_disjoint Un_Diff_cancel Diff xy) 
+  also have "... = f y"
+    by (metis Un_Diff_cancel Un_absorb1 xy)
+  finally show "f x \<le> f y" .
+qed
+
+lemma (in algebra) countably_additive_additive:
+  assumes posf: "positive M f" and ca: "countably_additive M f" 
+  shows "additive M f"
+proof (auto simp add: additive_def) 
+  fix x y
+  assume x: "x \<in> sets M" and y: "y \<in> sets M" and "x \<inter> y = {}"
+  hence "disjoint_family (binaryset x y)"
+    by (auto simp add: disjoint_family_def binaryset_def) 
+  hence "range (binaryset x y) \<subseteq> sets M \<longrightarrow> 
+         (\<Union>i. binaryset x y i) \<in> sets M \<longrightarrow> 
+         f (\<Union>i. binaryset x y i) = suminf (\<lambda>n. f (binaryset x y n))"
+    using ca
+    by (simp add: countably_additive_def) (metis UN_binaryset_eq sums_unique) 
+  hence "{x,y,{}} \<subseteq> sets M \<longrightarrow> x \<union> y \<in> sets M \<longrightarrow> 
+         f (x \<union> y) = suminf (\<lambda>n. f (binaryset x y n))"
+    by (simp add: range_binaryset_eq UN_binaryset_eq)
+  thus "f (x \<union> y) = f x + f y" using posf x y
+    by (simp add: Un suminf_binaryset_eq positive_def)
+qed 
+ 
+lemma (in algebra) inf_measure_agrees:
+  assumes posf: "positive M f" and ca: "countably_additive M f" 
+      and s: "s \<in> sets M"  
+  shows "Inf (measure_set M f s) = f s"
+proof (rule Inf_eq) 
+  fix z
+  assume z: "z \<in> measure_set M f s"
+  from this obtain A where 
+    A: "range A \<subseteq> sets M" and disj: "disjoint_family A"
+    and "s \<subseteq> (\<Union>x. A x)" and sm: "summable (f \<circ> A)"
+    and si: "suminf (f \<circ> A) = z"
+    by (auto simp add: measure_set_def sums_iff) 
+  hence seq: "s = (\<Union>i. A i \<inter> s)" by blast
+  have inc: "increasing M f"
+    by (metis additive_increasing ca countably_additive_additive posf)
+  have sums: "(\<lambda>i. f (A i \<inter> s)) sums f (\<Union>i. A i \<inter> s)"
+    proof (rule countably_additiveD [OF ca]) 
+      show "range (\<lambda>n. A n \<inter> s) \<subseteq> sets M" using A s
+	by blast
+      show "disjoint_family (\<lambda>n. A n \<inter> s)" using disj
+	by (auto simp add: disjoint_family_def)
+      show "(\<Union>i. A i \<inter> s) \<in> sets M" using A s
+	by (metis UN_extend_simps(4) s seq)
+    qed
+  hence "f s = suminf (\<lambda>i. f (A i \<inter> s))"
+    by (metis Int_commute UN_simps(4) seq sums_iff) 
+  also have "... \<le> suminf (f \<circ> A)" 
+    proof (rule summable_le [OF _ _ sm]) 
+      show "\<forall>n. f (A n \<inter> s) \<le> (f \<circ> A) n" using A s
+	by (force intro: increasingD [OF inc]) 
+      show "summable (\<lambda>i. f (A i \<inter> s))" using sums
+	by (simp add: sums_iff) 
+    qed
+  also have "... = z" by (rule si) 
+  finally show "f s \<le> z" .
+next
+  fix y
+  assume y: "!!u. u \<in> measure_set M f s \<Longrightarrow> y \<le> u"
+  thus "y \<le> f s"
+    by (blast intro: inf_measure_nonempty [OF posf s subset_refl])
+qed
+
+lemma (in algebra) inf_measure_empty:
+  assumes posf: "positive M f"
+  shows "Inf (measure_set M f {}) = 0"
+proof (rule antisym)
+  show "0 \<le> Inf (measure_set M f {})"
+    by (metis empty_subsetI inf_measure_pos posf) 
+  show "Inf (measure_set M f {}) \<le> 0"
+    by (metis Inf_lower empty_sets inf_measure_pos0 inf_measure_nonempty posf
+              positive_imp_0 subset_refl) 
+qed
+
+lemma (in algebra) inf_measure_positive:
+  "positive M f \<Longrightarrow> 
+   positive (| space = space M, sets = Pow (space M) |)
+                  (\<lambda>x. Inf (measure_set M f x))"
+  by (simp add: positive_def inf_measure_empty inf_measure_pos) 
+
+lemma (in algebra) inf_measure_increasing:
+  assumes posf: "positive M f"
+  shows "increasing (| space = space M, sets = Pow (space M) |)
+                    (\<lambda>x. Inf (measure_set M f x))"
+apply (auto simp add: increasing_def) 
+apply (rule Inf_greatest, metis emptyE inf_measure_nonempty top posf)
+apply (rule Inf_lower) 
+apply (clarsimp simp add: measure_set_def, blast) 
+apply (blast intro: inf_measure_pos0 posf)
+done
+
+
+lemma (in algebra) inf_measure_le:
+  assumes posf: "positive M f" and inc: "increasing M f" 
+      and x: "x \<in> {r . \<exists>A. range A \<subseteq> sets M & s \<subseteq> (\<Union>i. A i) & (f \<circ> A) sums r}"
+  shows "Inf (measure_set M f s) \<le> x"
+proof -
+  from x
+  obtain A where A: "range A \<subseteq> sets M" and ss: "s \<subseteq> (\<Union>i. A i)" 
+             and sm: "summable (f \<circ> A)" and xeq: "suminf (f \<circ> A) = x"
+    by (auto simp add: sums_iff)
+  have dA: "range (disjointed A) \<subseteq> sets M"
+    by (metis A range_disjointed_sets)
+  have "\<forall>n. \<bar>(f o disjointed A) n\<bar> \<le> (f \<circ> A) n"
+    proof (auto)
+      fix n
+      have "\<bar>f (disjointed A n)\<bar> = f (disjointed A n)" using posf dA
+	by (auto simp add: positive_def image_subset_iff)
+      also have "... \<le> f (A n)" 
+	by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset A)
+      finally show "\<bar>f (disjointed A n)\<bar> \<le> f (A n)" .
+    qed
+  from Series.summable_le2 [OF this sm]
+  have sda:  "summable (f o disjointed A)"  
+             "suminf (f o disjointed A) \<le> suminf (f \<circ> A)"
+    by blast+
+  hence ley: "suminf (f o disjointed A) \<le> x"
+    by (metis xeq) 
+  from sda have "(f \<circ> disjointed A) sums suminf (f \<circ> disjointed A)"
+    by (simp add: sums_iff) 
+  hence y: "suminf (f o disjointed A) \<in> measure_set M f s"
+    apply (auto simp add: measure_set_def)
+    apply (rule_tac x="disjointed A" in exI) 
+    apply (simp add: disjoint_family_disjointed UN_disjointed_eq ss dA)
+    done
+  show ?thesis
+    by (blast intro: Inf_lower y order_trans [OF _ ley] inf_measure_pos0 posf)
+qed
+
+lemma (in algebra) inf_measure_close:
+  assumes posf: "positive M f" and e: "0 < e" and ss: "s \<subseteq> (space M)"
+  shows "\<exists>A l. range A \<subseteq> sets M & disjoint_family A & s \<subseteq> (\<Union>i. A i) & 
+               (f \<circ> A) sums l & l \<le> Inf (measure_set M f s) + e"
+proof -
+  have " measure_set M f s \<noteq> {}" 
+    by (metis emptyE ss inf_measure_nonempty [OF posf top])
+  hence "\<exists>l \<in> measure_set M f s. l < Inf (measure_set M f s) + e" 
+    by (rule Inf_close [OF _ e])
+  thus ?thesis 
+    by (auto simp add: measure_set_def, rule_tac x=" A" in exI, auto)
+qed
+
+lemma (in algebra) inf_measure_countably_subadditive:
+  assumes posf: "positive M f" and inc: "increasing M f" 
+  shows "countably_subadditive (| space = space M, sets = Pow (space M) |)
+                  (\<lambda>x. Inf (measure_set M f x))"
+proof (auto simp add: countably_subadditive_def o_def, rule field_le_epsilon)
+  fix A :: "nat \<Rightarrow> 'a set" and e :: real
+    assume A: "range A \<subseteq> Pow (space M)"
+       and disj: "disjoint_family A"
+       and sb: "(\<Union>i. A i) \<subseteq> space M"
+       and sum1: "summable (\<lambda>n. Inf (measure_set M f (A n)))"
+       and e: "0 < e"
+    have "!!n. \<exists>B l. range B \<subseteq> sets M \<and> disjoint_family B \<and> A n \<subseteq> (\<Union>i. B i) \<and>
+                    (f o B) sums l \<and>
+                    l \<le> Inf (measure_set M f (A n)) + e * (1/2)^(Suc n)"
+      apply (rule inf_measure_close [OF posf])
+      apply (metis e half mult_pos_pos zero_less_power) 
+      apply (metis UNIV_I UN_subset_iff sb)
+      done
+    hence "\<exists>BB ll. \<forall>n. range (BB n) \<subseteq> sets M \<and> disjoint_family (BB n) \<and>
+                       A n \<subseteq> (\<Union>i. BB n i) \<and> (f o BB n) sums ll n \<and>
+                       ll n \<le> Inf (measure_set M f (A n)) + e * (1/2)^(Suc n)"
+      by (rule choice2)
+    then obtain BB ll
+      where BB: "!!n. (range (BB n) \<subseteq> sets M)"
+        and disjBB: "!!n. disjoint_family (BB n)" 
+        and sbBB: "!!n. A n \<subseteq> (\<Union>i. BB n i)"
+        and BBsums: "!!n. (f o BB n) sums ll n"
+        and ll: "!!n. ll n \<le> Inf (measure_set M f (A n)) + e * (1/2)^(Suc n)"
+      by auto blast
+    have llpos: "!!n. 0 \<le> ll n"
+	by (metis BBsums sums_iff o_apply posf positive_imp_pos suminf_ge_zero 
+              range_subsetD BB) 
+    have sll: "summable ll &
+               suminf ll \<le> suminf (\<lambda>n. Inf (measure_set M f (A n))) + e"
+      proof -
+	have "(\<lambda>n. e * (1/2)^(Suc n)) sums (e*1)"
+	  by (rule sums_mult [OF power_half_series]) 
+	hence sum0: "summable (\<lambda>n. e * (1 / 2) ^ Suc n)"
+	  and eqe:  "(\<Sum>n. e * (1 / 2) ^ n / 2) = e"
+	  by (auto simp add: sums_iff) 
+	have 0: "suminf (\<lambda>n. Inf (measure_set M f (A n))) +
+                 suminf (\<lambda>n. e * (1/2)^(Suc n)) =
+                 suminf (\<lambda>n. Inf (measure_set M f (A n)) + e * (1/2)^(Suc n))"
+	  by (rule suminf_add [OF sum1 sum0]) 
+	have 1: "\<forall>n. \<bar>ll n\<bar> \<le> Inf (measure_set M f (A n)) + e * (1/2) ^ Suc n"
+	  by (metis ll llpos abs_of_nonneg)
+	have 2: "summable (\<lambda>n. Inf (measure_set M f (A n)) + e*(1/2)^(Suc n))"
+	  by (rule summable_add [OF sum1 sum0]) 
+	have "suminf ll \<le> (\<Sum>n. Inf (measure_set M f (A n)) + e*(1/2) ^ Suc n)"
+	  using Series.summable_le2 [OF 1 2] by auto
+	also have "... = (\<Sum>n. Inf (measure_set M f (A n))) + 
+                         (\<Sum>n. e * (1 / 2) ^ Suc n)"
+	  by (metis 0) 
+	also have "... = (\<Sum>n. Inf (measure_set M f (A n))) + e"
+	  by (simp add: eqe) 
+	finally show ?thesis using  Series.summable_le2 [OF 1 2] by auto
+      qed
+    def C \<equiv> "(split BB) o nat_to_nat2"
+    have C: "!!n. C n \<in> sets M"
+      apply (rule_tac p="nat_to_nat2 n" in PairE)
+      apply (simp add: C_def)
+      apply (metis BB subsetD rangeI)  
+      done
+    have sbC: "(\<Union>i. A i) \<subseteq> (\<Union>i. C i)"
+      proof (auto simp add: C_def)
+	fix x i
+	assume x: "x \<in> A i"
+	with sbBB [of i] obtain j where "x \<in> BB i j"
+	  by blast	  
+	thus "\<exists>i. x \<in> split BB (nat_to_nat2 i)"
+	  by (metis nat_to_nat2_surj internal_split_def prod.cases 
+                prod_case_split surj_f_inv_f)
+      qed 
+    have "(f \<circ> C) = (f \<circ> (\<lambda>(x, y). BB x y)) \<circ> nat_to_nat2"
+      by (rule ext)  (auto simp add: C_def) 
+    also have "... sums suminf ll" 
+      proof (rule suminf_2dimen)
+	show "\<And>m n. 0 \<le> (f \<circ> (\<lambda>(x, y). BB x y)) (m, n)" using posf BB 
+	  by (force simp add: positive_def)
+	show "\<And>m. (\<lambda>n. (f \<circ> (\<lambda>(x, y). BB x y)) (m, n)) sums ll m"using BBsums BB
+	  by (force simp add: o_def)
+	show "summable ll" using sll
+	  by auto
+      qed
+    finally have Csums: "(f \<circ> C) sums suminf ll" .
+    have "Inf (measure_set M f (\<Union>i. A i)) \<le> suminf ll"
+      apply (rule inf_measure_le [OF posf inc], auto)
+      apply (rule_tac x="C" in exI)
+      apply (auto simp add: C sbC Csums) 
+      done
+    also have "... \<le> (\<Sum>n. Inf (measure_set M f (A n))) + e" using sll
+      by blast
+    finally show "Inf (measure_set M f (\<Union>i. A i)) \<le> 
+          (\<Sum>n. Inf (measure_set M f (A n))) + e" .
+qed
+
+lemma (in algebra) inf_measure_outer:
+  "positive M f \<Longrightarrow> increasing M f 
+   \<Longrightarrow> outer_measure_space (| space = space M, sets = Pow (space M) |)
+                          (\<lambda>x. Inf (measure_set M f x))"
+  by (simp add: outer_measure_space_def inf_measure_positive
+                inf_measure_increasing inf_measure_countably_subadditive) 
+
+(*MOVE UP*)
+
+lemma (in algebra) algebra_subset_lambda_system:
+  assumes posf: "positive M f" and inc: "increasing M f" 
+      and add: "additive M f"
+  shows "sets M \<subseteq> lambda_system (| space = space M, sets = Pow (space M) |)
+                                (\<lambda>x. Inf (measure_set M f x))"
+proof (auto dest: sets_into_space 
+            simp add: algebra.lambda_system_eq [OF algebra_Pow]) 
+  fix x s
+  assume x: "x \<in> sets M"
+     and s: "s \<subseteq> space M"
+  have [simp]: "!!x. x \<in> sets M \<Longrightarrow> s \<inter> (space M - x) = s-x" using s 
+    by blast
+  have "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
+        \<le> Inf (measure_set M f s)"
+    proof (rule field_le_epsilon) 
+      fix e :: real
+      assume e: "0 < e"
+      from inf_measure_close [OF posf e s]
+      obtain A l where A: "range A \<subseteq> sets M" and disj: "disjoint_family A"
+                   and sUN: "s \<subseteq> (\<Union>i. A i)" and fsums: "(f \<circ> A) sums l"
+	           and l: "l \<le> Inf (measure_set M f s) + e"
+	by auto
+      have [simp]: "!!x. x \<in> sets M \<Longrightarrow>
+                      (f o (\<lambda>z. z \<inter> (space M - x)) o A) = (f o (\<lambda>z. z - x) o A)"
+	by (rule ext, simp, metis A Int_Diff Int_space_eq2 range_subsetD)
+      have  [simp]: "!!n. f (A n \<inter> x) + f (A n - x) = f (A n)"
+	by (subst additiveD [OF add, symmetric])
+ 	   (auto simp add: x range_subsetD [OF A] Int_Diff_Un Int_Diff_disjoint)
+      have fsumb: "summable (f \<circ> A)"
+	by (metis fsums sums_iff) 
+      { fix u
+	assume u: "u \<in> sets M"
+	have [simp]: "\<And>n. \<bar>f (A n \<inter> u)\<bar> \<le> f (A n)"
+	  by (simp add: positive_imp_pos [OF posf]  increasingD [OF inc] 
+                        u Int  range_subsetD [OF A]) 
+	have 1: "summable (f o (\<lambda>z. z\<inter>u) o A)" 
+          by (rule summable_comparison_test [OF _ fsumb]) simp
+	have 2: "Inf (measure_set M f (s\<inter>u)) \<le> suminf (f o (\<lambda>z. z\<inter>u) o A)"
+          proof (rule Inf_lower) 
+            show "suminf (f \<circ> (\<lambda>z. z \<inter> u) \<circ> A) \<in> measure_set M f (s \<inter> u)"
+              apply (simp add: measure_set_def) 
+              apply (rule_tac x="(\<lambda>z. z \<inter> u) o A" in exI) 
+              apply (auto simp add: disjoint_family_subset [OF disj])
+              apply (blast intro: u range_subsetD [OF A]) 
+              apply (blast dest: subsetD [OF sUN])
+              apply (metis 1 o_assoc sums_iff) 
+              done
+          next
+            show "\<And>x. x \<in> measure_set M f (s \<inter> u) \<Longrightarrow> 0 \<le> x"
+              by (blast intro: inf_measure_pos0 [OF posf]) 
+            qed
+          note 1 2
+      } note lesum = this
+      have sum1: "summable (f o (\<lambda>z. z\<inter>x) o A)"
+        and inf1: "Inf (measure_set M f (s\<inter>x)) \<le> suminf (f o (\<lambda>z. z\<inter>x) o A)"
+        and sum2: "summable (f o (\<lambda>z. z \<inter> (space M - x)) o A)"
+        and inf2: "Inf (measure_set M f (s \<inter> (space M - x))) 
+                   \<le> suminf (f o (\<lambda>z. z \<inter> (space M - x)) o A)"
+	by (metis Diff lesum top x)+
+      hence "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
+           \<le> suminf (f o (\<lambda>s. s\<inter>x) o A) + suminf (f o (\<lambda>s. s-x) o A)"
+	by (simp add: x)
+      also have "... \<le> suminf (f o A)" using suminf_add [OF sum1 sum2] 
+	by (simp add: x) (simp add: o_def) 
+      also have "... \<le> Inf (measure_set M f s) + e"
+	by (metis fsums l sums_unique) 
+      finally show "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
+        \<le> Inf (measure_set M f s) + e" .
+    qed
+  moreover 
+  have "Inf (measure_set M f s)
+       \<le> Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))"
+    proof -
+    have "Inf (measure_set M f s) = Inf (measure_set M f ((s\<inter>x) \<union> (s-x)))"
+      by (metis Un_Diff_Int Un_commute)
+    also have "... \<le> Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))" 
+      apply (rule subadditiveD) 
+      apply (iprover intro: algebra.countably_subadditive_subadditive algebra_Pow 
+	       inf_measure_positive inf_measure_countably_subadditive posf inc)
+      apply (auto simp add: subsetD [OF s])  
+      done
+    finally show ?thesis .
+    qed
+  ultimately 
+  show "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
+        = Inf (measure_set M f s)"
+    by (rule order_antisym)
+qed
+
+lemma measure_down:
+     "measure_space N \<Longrightarrow> sigma_algebra M \<Longrightarrow> sets M \<subseteq> sets N \<Longrightarrow>
+      (measure M = measure N) \<Longrightarrow> measure_space M"
+  by (simp add: measure_space_def measure_space_axioms_def positive_def 
+                countably_additive_def) 
+     blast
+
+theorem (in algebra) caratheodory:
+  assumes posf: "positive M f" and ca: "countably_additive M f" 
+  shows "\<exists>MS :: 'a measure_space. 
+             (\<forall>s \<in> sets M. measure MS s = f s) \<and>
+             ((|space = space MS, sets = sets MS|) = sigma (space M) (sets M)) \<and>
+             measure_space MS" 
+  proof -
+    have inc: "increasing M f"
+      by (metis additive_increasing ca countably_additive_additive posf) 
+    let ?infm = "(\<lambda>x. Inf (measure_set M f x))"
+    def ls \<equiv> "lambda_system (|space = space M, sets = Pow (space M)|) ?infm"
+    have mls: "measure_space (|space = space M, sets = ls, measure = ?infm|)"
+      using sigma_algebra.caratheodory_lemma
+              [OF sigma_algebra_Pow  inf_measure_outer [OF posf inc]]
+      by (simp add: ls_def)
+    hence sls: "sigma_algebra (|space = space M, sets = ls, measure = ?infm|)"
+      by (simp add: measure_space_def) 
+    have "sets M \<subseteq> ls" 
+      by (simp add: ls_def)
+         (metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
+    hence sgs_sb: "sigma_sets (space M) (sets M) \<subseteq> ls" 
+      using sigma_algebra.sigma_sets_subset [OF sls, of "sets M"]
+      by simp
+    have "measure_space (|space = space M, 
+                          sets = sigma_sets (space M) (sets M),
+                          measure = ?infm|)"
+      by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets) 
+         (simp_all add: sgs_sb space_closed)
+    thus ?thesis
+      by (force simp add: sigma_def inf_measure_agrees [OF posf ca]) 
+qed
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Measure.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,910 @@
+header {*Measures*}
+
+theory Measure
+  imports Caratheodory FuncSet
+begin
+
+text{*From the Hurd/Coble measure theory development, translated by Lawrence Paulson.*}
+
+definition prod_sets where
+  "prod_sets A B = {z. \<exists>x \<in> A. \<exists>y \<in> B. z = x \<times> y}"
+
+lemma prod_setsI: "x \<in> A \<Longrightarrow> y \<in> B \<Longrightarrow> (x \<times> y) \<in> prod_sets A B"
+  by (auto simp add: prod_sets_def) 
+
+definition
+  closed_cdi  where
+  "closed_cdi M \<longleftrightarrow>
+   sets M \<subseteq> Pow (space M) &
+   (\<forall>s \<in> sets M. space M - s \<in> sets M) &
+   (\<forall>A. (range A \<subseteq> sets M) & (A 0 = {}) & (\<forall>n. A n \<subseteq> A (Suc n)) \<longrightarrow>
+        (\<Union>i. A i) \<in> sets M) &
+   (\<forall>A. (range A \<subseteq> sets M) & disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> sets M)"
+
+
+inductive_set
+  smallest_ccdi_sets :: "('a, 'b) algebra_scheme \<Rightarrow> 'a set set"
+  for M
+  where
+    Basic [intro]: 
+      "a \<in> sets M \<Longrightarrow> a \<in> smallest_ccdi_sets M"
+  | Compl [intro]:
+      "a \<in> smallest_ccdi_sets M \<Longrightarrow> space M - a \<in> smallest_ccdi_sets M"
+  | Inc:
+      "range A \<in> Pow(smallest_ccdi_sets M) \<Longrightarrow> A 0 = {} \<Longrightarrow> (\<And>n. A n \<subseteq> A (Suc n))
+       \<Longrightarrow> (\<Union>i. A i) \<in> smallest_ccdi_sets M"
+  | Disj:
+      "range A \<in> Pow(smallest_ccdi_sets M) \<Longrightarrow> disjoint_family A
+       \<Longrightarrow> (\<Union>i::nat. A i) \<in> smallest_ccdi_sets M"
+  monos Pow_mono
+
+
+definition
+  smallest_closed_cdi  where
+  "smallest_closed_cdi M = (|space = space M, sets = smallest_ccdi_sets M|)"
+
+definition
+  measurable  where
+  "measurable a b = {f . sigma_algebra a & sigma_algebra b &
+			 f \<in> (space a -> space b) &
+			 (\<forall>y \<in> sets b. (f -` y) \<inter> (space a) \<in> sets a)}"
+
+definition
+  measure_preserving  where
+  "measure_preserving m1 m2 =
+     measurable m1 m2 \<inter> 
+     {f . measure_space m1 & measure_space m2 &
+          (\<forall>y \<in> sets m2. measure m1 ((f -` y) \<inter> (space m1)) = measure m2 y)}"
+
+lemma space_smallest_closed_cdi [simp]:
+     "space (smallest_closed_cdi M) = space M"
+  by (simp add: smallest_closed_cdi_def)
+
+
+lemma (in algebra) smallest_closed_cdi1: "sets M \<subseteq> sets (smallest_closed_cdi M)"
+  by (auto simp add: smallest_closed_cdi_def) 
+
+lemma (in algebra) smallest_ccdi_sets:
+     "smallest_ccdi_sets M \<subseteq> Pow (space M)"
+  apply (rule subsetI) 
+  apply (erule smallest_ccdi_sets.induct) 
+  apply (auto intro: range_subsetD dest: sets_into_space)
+  done
+
+lemma (in algebra) smallest_closed_cdi2: "closed_cdi (smallest_closed_cdi M)"
+  apply (auto simp add: closed_cdi_def smallest_closed_cdi_def smallest_ccdi_sets)
+  apply (blast intro: smallest_ccdi_sets.Inc smallest_ccdi_sets.Disj) +
+  done
+
+lemma (in algebra) smallest_closed_cdi3:
+     "sets (smallest_closed_cdi M) \<subseteq> Pow (space M)"
+  by (simp add: smallest_closed_cdi_def smallest_ccdi_sets) 
+
+lemma closed_cdi_subset: "closed_cdi M \<Longrightarrow> sets M \<subseteq> Pow (space M)"
+  by (simp add: closed_cdi_def) 
+
+lemma closed_cdi_Compl: "closed_cdi M \<Longrightarrow> s \<in> sets M \<Longrightarrow> space M - s \<in> sets M"
+  by (simp add: closed_cdi_def) 
+
+lemma closed_cdi_Inc:
+     "closed_cdi M \<Longrightarrow> range A \<subseteq> sets M \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n)) \<Longrightarrow>
+        (\<Union>i. A i) \<in> sets M"
+  by (simp add: closed_cdi_def) 
+
+lemma closed_cdi_Disj:
+     "closed_cdi M \<Longrightarrow> range A \<subseteq> sets M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> sets M"
+  by (simp add: closed_cdi_def) 
+
+lemma closed_cdi_Un:
+  assumes cdi: "closed_cdi M" and empty: "{} \<in> sets M"
+      and A: "A \<in> sets M" and B: "B \<in> sets M"
+      and disj: "A \<inter> B = {}"
+    shows "A \<union> B \<in> sets M"
+proof -
+  have ra: "range (binaryset A B) \<subseteq> sets M"
+   by (simp add: range_binaryset_eq empty A B) 
+ have di:  "disjoint_family (binaryset A B)" using disj
+   by (simp add: disjoint_family_def binaryset_def Int_commute) 
+ from closed_cdi_Disj [OF cdi ra di]
+ show ?thesis
+   by (simp add: UN_binaryset_eq) 
+qed
+
+lemma (in algebra) smallest_ccdi_sets_Un:
+  assumes A: "A \<in> smallest_ccdi_sets M" and B: "B \<in> smallest_ccdi_sets M"
+      and disj: "A \<inter> B = {}"
+    shows "A \<union> B \<in> smallest_ccdi_sets M"
+proof -
+  have ra: "range (binaryset A B) \<in> Pow (smallest_ccdi_sets M)"
+    by (simp add: range_binaryset_eq  A B empty_sets smallest_ccdi_sets.Basic)
+  have di:  "disjoint_family (binaryset A B)" using disj
+    by (simp add: disjoint_family_def binaryset_def Int_commute) 
+  from Disj [OF ra di]
+  show ?thesis
+    by (simp add: UN_binaryset_eq) 
+qed
+
+
+
+lemma (in algebra) smallest_ccdi_sets_Int1:
+  assumes a: "a \<in> sets M"
+  shows "b \<in> smallest_ccdi_sets M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets M"
+proof (induct rule: smallest_ccdi_sets.induct)
+  case (Basic x)
+  thus ?case
+    by (metis a Int smallest_ccdi_sets.Basic)
+next
+  case (Compl x)
+  have "a \<inter> (space M - x) = space M - ((space M - a) \<union> (a \<inter> x))"
+    by blast
+  also have "... \<in> smallest_ccdi_sets M" 
+    by (metis smallest_ccdi_sets.Compl a Compl(2) Diff_Int2 Diff_Int_distrib2
+           Diff_disjoint Int_Diff Int_empty_right Un_commute
+           smallest_ccdi_sets.Basic smallest_ccdi_sets.Compl
+           smallest_ccdi_sets_Un) 
+  finally show ?case .
+next
+  case (Inc A)
+  have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)"
+    by blast
+  have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets M)" using Inc
+    by blast
+  moreover have "(\<lambda>i. a \<inter> A i) 0 = {}"
+    by (simp add: Inc) 
+  moreover have "!!n. (\<lambda>i. a \<inter> A i) n \<subseteq> (\<lambda>i. a \<inter> A i) (Suc n)" using Inc
+    by blast
+  ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets M"
+    by (rule smallest_ccdi_sets.Inc) 
+  show ?case
+    by (metis 1 2)
+next
+  case (Disj A)
+  have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)"
+    by blast
+  have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets M)" using Disj
+    by blast
+  moreover have "disjoint_family (\<lambda>i. a \<inter> A i)" using Disj
+    by (auto simp add: disjoint_family_def) 
+  ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets M"
+    by (rule smallest_ccdi_sets.Disj) 
+  show ?case
+    by (metis 1 2)
+qed
+
+
+lemma (in algebra) smallest_ccdi_sets_Int:
+  assumes b: "b \<in> smallest_ccdi_sets M"
+  shows "a \<in> smallest_ccdi_sets M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets M"
+proof (induct rule: smallest_ccdi_sets.induct)
+  case (Basic x)
+  thus ?case
+    by (metis b smallest_ccdi_sets_Int1)
+next
+  case (Compl x)
+  have "(space M - x) \<inter> b = space M - (x \<inter> b \<union> (space M - b))"
+    by blast
+  also have "... \<in> smallest_ccdi_sets M"
+    by (metis Compl(2) Diff_disjoint Int_Diff Int_commute Int_empty_right b 
+           smallest_ccdi_sets.Compl smallest_ccdi_sets_Un) 
+  finally show ?case .
+next
+  case (Inc A)
+  have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b"
+    by blast
+  have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets M)" using Inc
+    by blast
+  moreover have "(\<lambda>i. A i \<inter> b) 0 = {}"
+    by (simp add: Inc) 
+  moreover have "!!n. (\<lambda>i. A i \<inter> b) n \<subseteq> (\<lambda>i. A i \<inter> b) (Suc n)" using Inc
+    by blast
+  ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets M"
+    by (rule smallest_ccdi_sets.Inc) 
+  show ?case
+    by (metis 1 2)
+next
+  case (Disj A)
+  have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b"
+    by blast
+  have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets M)" using Disj
+    by blast
+  moreover have "disjoint_family (\<lambda>i. A i \<inter> b)" using Disj
+    by (auto simp add: disjoint_family_def) 
+  ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets M"
+    by (rule smallest_ccdi_sets.Disj) 
+  show ?case
+    by (metis 1 2)
+qed
+
+lemma (in algebra) sets_smallest_closed_cdi_Int:
+   "a \<in> sets (smallest_closed_cdi M) \<Longrightarrow> b \<in> sets (smallest_closed_cdi M)
+    \<Longrightarrow> a \<inter> b \<in> sets (smallest_closed_cdi M)"
+  by (simp add: smallest_ccdi_sets_Int smallest_closed_cdi_def) 
+
+lemma algebra_iff_Int:
+     "algebra M \<longleftrightarrow> 
+       sets M \<subseteq> Pow (space M) & {} \<in> sets M & 
+       (\<forall>a \<in> sets M. space M - a \<in> sets M) &
+       (\<forall>a \<in> sets M. \<forall> b \<in> sets M. a \<inter> b \<in> sets M)"
+proof (auto simp add: algebra.Int, auto simp add: algebra_def)
+  fix a b
+  assume ab: "sets M \<subseteq> Pow (space M)"
+             "\<forall>a\<in>sets M. space M - a \<in> sets M" 
+             "\<forall>a\<in>sets M. \<forall>b\<in>sets M. a \<inter> b \<in> sets M"
+             "a \<in> sets M" "b \<in> sets M"
+  hence "a \<union> b = space M - ((space M - a) \<inter> (space M - b))"
+    by blast
+  also have "... \<in> sets M"
+    by (metis ab)
+  finally show "a \<union> b \<in> sets M" .
+qed
+
+lemma (in algebra) sigma_property_disjoint_lemma:
+  assumes sbC: "sets M \<subseteq> C"
+      and ccdi: "closed_cdi (|space = space M, sets = C|)"
+  shows "sigma_sets (space M) (sets M) \<subseteq> C"
+proof -
+  have "smallest_ccdi_sets M \<in> {B . sets M \<subseteq> B \<and> sigma_algebra (|space = space M, sets = B|)}"
+    apply (auto simp add: sigma_algebra_disjoint_iff algebra_iff_Int 
+            smallest_ccdi_sets_Int)
+    apply (metis Union_Pow_eq Union_upper subsetD smallest_ccdi_sets) 
+    apply (blast intro: smallest_ccdi_sets.Disj) 
+    done
+  hence "sigma_sets (space M) (sets M) \<subseteq> smallest_ccdi_sets M"
+    by auto 
+       (metis sigma_algebra.sigma_sets_subset algebra.simps(1) 
+          algebra.simps(2) subsetD) 
+  also have "...  \<subseteq> C"
+    proof
+      fix x
+      assume x: "x \<in> smallest_ccdi_sets M"
+      thus "x \<in> C"
+	proof (induct rule: smallest_ccdi_sets.induct)
+	  case (Basic x)
+	  thus ?case
+	    by (metis Basic subsetD sbC)
+	next
+	  case (Compl x)
+	  thus ?case
+	    by (blast intro: closed_cdi_Compl [OF ccdi, simplified])
+ 	next
+	  case (Inc A)
+	  thus ?case
+	       by (auto intro: closed_cdi_Inc [OF ccdi, simplified]) 
+	next
+	  case (Disj A)
+	  thus ?case
+	       by (auto intro: closed_cdi_Disj [OF ccdi, simplified]) 
+	qed
+    qed
+  finally show ?thesis .
+qed
+
+lemma (in algebra) sigma_property_disjoint:
+  assumes sbC: "sets M \<subseteq> C"
+      and compl: "!!s. s \<in> C \<inter> sigma_sets (space M) (sets M) \<Longrightarrow> space M - s \<in> C"
+      and inc: "!!A. range A \<subseteq> C \<inter> sigma_sets (space M) (sets M) 
+                     \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n)) 
+                     \<Longrightarrow> (\<Union>i. A i) \<in> C"
+      and disj: "!!A. range A \<subseteq> C \<inter> sigma_sets (space M) (sets M) 
+                      \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> C"
+  shows "sigma_sets (space M) (sets M) \<subseteq> C"
+proof -
+  have "sigma_sets (space M) (sets M) \<subseteq> C \<inter> sigma_sets (space M) (sets M)" 
+    proof (rule sigma_property_disjoint_lemma) 
+      show "sets M \<subseteq> C \<inter> sigma_sets (space M) (sets M)"
+	by (metis Int_greatest Set.subsetI sbC sigma_sets.Basic)
+    next
+      show "closed_cdi \<lparr>space = space M, sets = C \<inter> sigma_sets (space M) (sets M)\<rparr>"
+	by (simp add: closed_cdi_def compl inc disj)
+           (metis PowI Set.subsetI le_infI2 sigma_sets_into_sp space_closed
+	     IntE sigma_sets.Compl range_subsetD sigma_sets.Union)
+    qed
+  thus ?thesis
+    by blast
+qed
+
+
+(* or just countably_additiveD [OF measure_space.ca] *)
+lemma (in measure_space) measure_countably_additive:
+    "range A \<subseteq> sets M
+     \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i. A i) \<in> sets M
+     \<Longrightarrow> (measure M o A)  sums  measure M (\<Union>i. A i)"
+  by (insert ca) (simp add: countably_additive_def o_def) 
+
+lemma (in measure_space) additive:
+     "additive M (measure M)"
+proof (rule algebra.countably_additive_additive [OF _ _ ca]) 
+  show "algebra M"
+    by (blast intro: sigma_algebra.axioms local.sigma_algebra_axioms)
+  show "positive M (measure M)"
+    by (simp add: positive_def empty_measure positive) 
+qed
+ 
+lemma (in measure_space) measure_additive:
+     "a \<in> sets M \<Longrightarrow> b \<in> sets M \<Longrightarrow> a \<inter> b = {} 
+      \<Longrightarrow> measure M a + measure M b = measure M (a \<union> b)"
+  by (metis additiveD additive)
+
+lemma (in measure_space) measure_compl:
+  assumes s: "s \<in> sets M"
+  shows "measure M (space M - s) = measure M (space M) - measure M s"
+proof -
+  have "measure M (space M) = measure M (s \<union> (space M - s))" using s
+    by (metis Un_Diff_cancel Un_absorb1 s sets_into_space)
+  also have "... = measure M s + measure M (space M - s)"
+    by (rule additiveD [OF additive]) (auto simp add: s) 
+  finally have "measure M (space M) = measure M s + measure M (space M - s)" .
+  thus ?thesis
+    by arith
+qed
+
+lemma disjoint_family_Suc:
+  assumes Suc: "!!n. A n \<subseteq> A (Suc n)"
+  shows "disjoint_family (\<lambda>i. A (Suc i) - A i)"
+proof -
+  {
+    fix m
+    have "!!n. A n \<subseteq> A (m+n)" 
+    proof (induct m)
+      case 0 show ?case by simp
+    next
+      case (Suc m) thus ?case
+	by (metis Suc_eq_plus1 assms nat_add_commute nat_add_left_commute subset_trans)
+    qed
+  }
+  hence "!!m n. m < n \<Longrightarrow> A m \<subseteq> A n"
+    by (metis add_commute le_add_diff_inverse nat_less_le)
+  thus ?thesis
+    by (auto simp add: disjoint_family_def)
+      (metis insert_absorb insert_subset le_SucE le_anti_sym not_leE) 
+qed
+
+
+lemma (in measure_space) measure_countable_increasing:
+  assumes A: "range A \<subseteq> sets M"
+      and A0: "A 0 = {}"
+      and ASuc: "!!n.  A n \<subseteq> A (Suc n)"
+  shows "(measure M o A) ----> measure M (\<Union>i. A i)"
+proof -
+  {
+    fix n
+    have "(measure M \<circ> A) n =
+          setsum (measure M \<circ> (\<lambda>i. A (Suc i) - A i)) {0..<n}"
+      proof (induct n)
+	case 0 thus ?case by (auto simp add: A0 empty_measure)
+      next
+	case (Suc m) 
+	have "A (Suc m) = A m \<union> (A (Suc m) - A m)"
+	  by (metis ASuc Un_Diff_cancel Un_absorb1)
+	hence "measure M (A (Suc m)) =
+               measure M (A m) + measure M (A (Suc m) - A m)" 
+	  by (subst measure_additive) 
+             (auto simp add: measure_additive range_subsetD [OF A]) 
+	with Suc show ?case
+	  by simp
+      qed
+  }
+  hence Meq: "measure M o A = (\<lambda>n. setsum (measure M o (\<lambda>i. A(Suc i) - A i)) {0..<n})"
+    by (blast intro: ext) 
+  have Aeq: "(\<Union>i. A (Suc i) - A i) = (\<Union>i. A i)"
+    proof (rule UN_finite2_eq [where k=1], simp) 
+      fix i
+      show "(\<Union>i\<in>{0..<i}. A (Suc i) - A i) = (\<Union>i\<in>{0..<Suc i}. A i)"
+	proof (induct i)
+	  case 0 thus ?case by (simp add: A0)
+	next
+	  case (Suc i) 
+	  thus ?case
+	    by (auto simp add: atLeastLessThanSuc intro: subsetD [OF ASuc])
+	qed
+    qed
+  have A1: "\<And>i. A (Suc i) - A i \<in> sets M"
+    by (metis A Diff range_subsetD)
+  have A2: "(\<Union>i. A (Suc i) - A i) \<in> sets M"
+    by (blast intro: countable_UN range_subsetD [OF A])  
+  have "(measure M o (\<lambda>i. A (Suc i) - A i)) sums measure M (\<Union>i. A (Suc i) - A i)"
+    by (rule measure_countably_additive) 
+       (auto simp add: disjoint_family_Suc ASuc A1 A2)
+  also have "... =  measure M (\<Union>i. A i)"
+    by (simp add: Aeq) 
+  finally have "(measure M o (\<lambda>i. A (Suc i) - A i)) sums measure M (\<Union>i. A i)" .
+  thus ?thesis
+    by (auto simp add: sums_iff Meq dest: summable_sumr_LIMSEQ_suminf) 
+qed
+
+lemma (in measure_space) monotone_convergence:
+  assumes A: "range A \<subseteq> sets M"
+      and ASuc: "!!n.  A n \<subseteq> A (Suc n)"
+  shows "(measure M \<circ> A) ----> measure M (\<Union>i. A i)"
+proof -
+  have ueq: "(\<Union>i. nat_case {} A i) = (\<Union>i. A i)" 
+    by (auto simp add: split: nat.splits) 
+  have meq: "measure M \<circ> A = (\<lambda>n. (measure M \<circ> nat_case {} A) (Suc n))"
+    by (rule ext) simp
+  have "(measure M \<circ> nat_case {} A) ----> measure M (\<Union>i. nat_case {} A i)" 
+    by (rule measure_countable_increasing) 
+       (auto simp add: range_subsetD [OF A] subsetD [OF ASuc] split: nat.splits) 
+  also have "... = measure M (\<Union>i. A i)" 
+    by (simp add: ueq) 
+  finally have "(measure M \<circ> nat_case {} A) ---->  measure M (\<Union>i. A i)" .
+  thus ?thesis using meq
+    by (metis LIMSEQ_Suc)
+qed
+
+lemma measurable_sigma_preimages:
+  assumes a: "sigma_algebra a" and b: "sigma_algebra b"
+      and f: "f \<in> space a -> space b"
+      and ba: "!!y. y \<in> sets b ==> f -` y \<in> sets a"
+  shows "sigma_algebra (|space = space a, sets = (vimage f) ` (sets b) |)"
+proof (simp add: sigma_algebra_iff2, intro conjI) 
+  show "op -` f ` sets b \<subseteq> Pow (space a)"
+    by auto (metis IntE a algebra.Int_space_eq1 ba sigma_algebra_iff vimageI) 
+next
+  show "{} \<in> op -` f ` sets b"
+    by (metis algebra.empty_sets b image_iff sigma_algebra_iff vimage_empty)
+next
+  { fix y
+    assume y: "y \<in> sets b"
+    with a b f
+    have "space a - f -` y = f -` (space b - y)"
+      by (auto simp add: sigma_algebra_iff2) (blast intro: ba) 
+    hence "space a - (f -` y) \<in> (vimage f) ` sets b"
+      by auto
+         (metis b y subsetD equalityE imageI sigma_algebra.sigma_sets_eq
+                sigma_sets.Compl) 
+  } 
+  thus "\<forall>s\<in>sets b. space a - f -` s \<in> (vimage f) ` sets b"
+    by blast
+next
+  {
+    fix A:: "nat \<Rightarrow> 'a set"
+    assume A: "range A \<subseteq> (vimage f) ` (sets b)"
+    have  "(\<Union>i. A i) \<in> (vimage f) ` (sets b)"
+      proof -
+	def B \<equiv> "\<lambda>i. @v. v \<in> sets b \<and> f -` v = A i"
+	{ 
+	  fix i
+	  have "A i \<in> (vimage f) ` (sets b)" using A
+	    by blast
+	  hence "\<exists>v. v \<in> sets b \<and> f -` v = A i"
+	    by blast
+	  hence "B i \<in> sets b \<and> f -` B i = A i" 
+	    by (simp add: B_def) (erule someI_ex)
+	} note B = this
+	show ?thesis
+	  proof
+	    show "(\<Union>i. A i) = f -` (\<Union>i. B i)"
+	      by (simp add: vimage_UN B) 
+	   show "(\<Union>i. B i) \<in> sets b" using B
+	     by (auto intro: sigma_algebra.countable_UN [OF b]) 
+	  qed
+      qed
+  }
+  thus "\<forall>A::nat \<Rightarrow> 'a set.
+           range A \<subseteq> (vimage f) ` sets b \<longrightarrow> (\<Union>i. A i) \<in> (vimage f) ` sets b"
+    by blast
+qed
+
+lemma (in sigma_algebra) measurable_sigma:
+  assumes B: "B \<subseteq> Pow X" 
+      and f: "f \<in> space M -> X"
+      and ba: "!!y. y \<in> B ==> (f -` y) \<inter> space M \<in> sets M"
+  shows "f \<in> measurable M (sigma X B)"
+proof -
+  have "sigma_sets X B \<subseteq> {y . (f -` y) \<inter> space M \<in> sets M & y \<subseteq> X}"
+    proof clarify
+      fix x
+      assume "x \<in> sigma_sets X B"
+      thus "f -` x \<inter> space M \<in> sets M \<and> x \<subseteq> X"
+	proof induct
+	  case (Basic a)
+	  thus ?case
+	    by (auto simp add: ba) (metis B subsetD PowD) 
+        next
+	  case Empty
+	  thus ?case
+	    by auto
+        next
+	  case (Compl a)
+	  have [simp]: "f -` X \<inter> space M = space M"
+	    by (auto simp add: funcset_mem [OF f]) 
+	  thus ?case
+	    by (auto simp add: vimage_Diff Diff_Int_distrib2 compl_sets Compl)
+	next
+	  case (Union a)
+	  thus ?case
+	    by (simp add: vimage_UN, simp only: UN_extend_simps(4))
+	       (blast intro: countable_UN)
+	qed
+    qed
+  thus ?thesis
+    by (simp add: measurable_def sigma_algebra_axioms sigma_algebra_sigma B f) 
+       (auto simp add: sigma_def) 
+qed
+
+lemma measurable_subset:
+     "measurable a b \<subseteq> measurable a (sigma (space b) (sets b))"
+  apply clarify
+  apply (rule sigma_algebra.measurable_sigma) 
+  apply (auto simp add: measurable_def)
+  apply (metis algebra.sets_into_space subsetD sigma_algebra_iff) 
+  done
+
+lemma measurable_eqI: 
+     "space m1 = space m1' \<Longrightarrow> space m2 = space m2'
+      \<Longrightarrow> sets m1 = sets m1' \<Longrightarrow> sets m2 = sets m2'
+      \<Longrightarrow> measurable m1 m2 = measurable m1' m2'"
+  by (simp add: measurable_def sigma_algebra_iff2) 
+
+lemma measure_preserving_lift:
+  fixes f :: "'a1 \<Rightarrow> 'a2" 
+    and m1 :: "('a1, 'b1) measure_space_scheme"
+    and m2 :: "('a2, 'b2) measure_space_scheme"
+  assumes m1: "measure_space m1" and m2: "measure_space m2" 
+  defines "m x \<equiv> (|space = space m2, sets = x, measure = measure m2, ... = more m2|)"
+  assumes setsm2: "sets m2 = sigma_sets (space m2) a"
+      and fmp: "f \<in> measure_preserving m1 (m a)"
+  shows "f \<in> measure_preserving m1 m2"
+proof -
+  have [simp]: "!!x. space (m x) = space m2 & sets (m x) = x & measure (m x) = measure m2"
+    by (simp add: m_def) 
+  have sa1: "sigma_algebra m1" using m1 
+    by (simp add: measure_space_def) 
+  show ?thesis using fmp
+    proof (clarsimp simp add: measure_preserving_def m1 m2) 
+      assume fm: "f \<in> measurable m1 (m a)" 
+	 and mam: "measure_space (m a)"
+	 and meq: "\<forall>y\<in>a. measure m1 (f -` y \<inter> space m1) = measure m2 y"
+      have "f \<in> measurable m1 (sigma (space (m a)) (sets (m a)))"
+	by (rule subsetD [OF measurable_subset fm]) 
+      also have "... = measurable m1 m2"
+	by (rule measurable_eqI) (simp_all add: m_def setsm2 sigma_def) 
+      finally have f12: "f \<in> measurable m1 m2" .
+      hence ffn: "f \<in> space m1 \<rightarrow> space m2"
+	by (simp add: measurable_def) 
+      have "space m1 \<subseteq> f -` (space m2)"
+	by auto (metis PiE ffn)
+      hence fveq [simp]: "(f -` (space m2)) \<inter> space m1 = space m1"
+	by blast
+      {
+	fix y
+	assume y: "y \<in> sets m2" 
+	have ama: "algebra (m a)"  using mam
+	  by (simp add: measure_space_def sigma_algebra_iff) 
+	have spa: "space m2 \<in> a" using algebra.top [OF ama]
+	  by (simp add: m_def) 
+	have "sigma_sets (space m2) a = sigma_sets (space (m a)) (sets (m a))"
+	  by (simp add: m_def) 
+	also have "... \<subseteq> {s . measure m1 ((f -` s) \<inter> space m1) = measure m2 s}"
+	  proof (rule algebra.sigma_property_disjoint, auto simp add: ama) 
+	    fix x
+	    assume x: "x \<in> a"
+	    thus "measure m1 (f -` x \<inter> space m1) = measure m2 x"
+	      by (simp add: meq)
+	  next
+	    fix s
+	    assume eq: "measure m1 (f -` s \<inter> space m1) = measure m2 s"
+	       and s: "s \<in> sigma_sets (space m2) a"
+	    hence s2: "s \<in> sets m2"
+	      by (simp add: setsm2) 
+	    thus "measure m1 (f -` (space m2 - s) \<inter> space m1) =
+                  measure m2 (space m2 - s)" using f12
+	      by (simp add: vimage_Diff Diff_Int_distrib2 eq m1 m2
+		    measure_space.measure_compl measurable_def)  
+	         (metis fveq meq spa) 
+	  next
+	    fix A
+	      assume A0: "A 0 = {}"
+	 	 and ASuc: "!!n.  A n \<subseteq> A (Suc n)"
+		 and rA1: "range A \<subseteq> 
+		           {s. measure m1 (f -` s \<inter> space m1) = measure m2 s}"
+		 and "range A \<subseteq> sigma_sets (space m2) a"
+	      hence rA2: "range A \<subseteq> sets m2" by (metis setsm2)
+	      have eq1: "!!i. measure m1 (f -` A i \<inter> space m1) = measure m2 (A i)"
+		using rA1 by blast
+	      have "(measure m2 \<circ> A) = measure m1 o (\<lambda>i. (f -` A i \<inter> space m1))" 
+		by (simp add: o_def eq1) 
+	      also have "... ----> measure m1 (\<Union>i. f -` A i \<inter> space m1)"
+		proof (rule measure_space.measure_countable_increasing [OF m1])
+		  show "range (\<lambda>i. f -` A i \<inter> space m1) \<subseteq> sets m1"
+		    using f12 rA2 by (auto simp add: measurable_def)
+		  show "f -` A 0 \<inter> space m1 = {}" using A0
+		    by blast
+		  show "\<And>n. f -` A n \<inter> space m1 \<subseteq> f -` A (Suc n) \<inter> space m1"
+		    using ASuc by auto
+		qed
+	      also have "... = measure m1 (f -` (\<Union>i. A i) \<inter> space m1)"
+		by (simp add: vimage_UN)
+	      finally have "(measure m2 \<circ> A) ----> measure m1 (f -` (\<Union>i. A i) \<inter> space m1)" .
+	      moreover
+	      have "(measure m2 \<circ> A) ----> measure m2 (\<Union>i. A i)"
+		by (rule measure_space.measure_countable_increasing 
+		          [OF m2 rA2, OF A0 ASuc])
+	      ultimately 
+	      show "measure m1 (f -` (\<Union>i. A i) \<inter> space m1) =
+                    measure m2 (\<Union>i. A i)"
+		by (rule LIMSEQ_unique) 
+	  next
+	    fix A :: "nat => 'a2 set"
+	      assume dA: "disjoint_family A"
+		 and rA1: "range A \<subseteq> 
+		           {s. measure m1 (f -` s \<inter> space m1) = measure m2 s}"
+		 and "range A \<subseteq> sigma_sets (space m2) a"
+	      hence rA2: "range A \<subseteq> sets m2" by (metis setsm2)
+	      hence Um2: "(\<Union>i. A i) \<in> sets m2"
+		by (metis range_subsetD setsm2 sigma_sets.Union)
+	      have "!!i. measure m1 (f -` A i \<inter> space m1) = measure m2 (A i)"
+		using rA1 by blast
+	      hence "measure m2 o A = measure m1 o (\<lambda>i. f -` A i \<inter> space m1)"
+		by (simp add: o_def) 
+	      also have "... sums measure m1 (\<Union>i. f -` A i \<inter> space m1)" 
+		proof (rule measure_space.measure_countably_additive [OF m1] )
+		  show "range (\<lambda>i. f -` A i \<inter> space m1) \<subseteq> sets m1"
+		    using f12 rA2 by (auto simp add: measurable_def)
+		  show "disjoint_family (\<lambda>i. f -` A i \<inter> space m1)" using dA
+		    by (auto simp add: disjoint_family_def) 
+		  show "(\<Union>i. f -` A i \<inter> space m1) \<in> sets m1"
+		    proof (rule sigma_algebra.countable_UN [OF sa1])
+		      show "range (\<lambda>i. f -` A i \<inter> space m1) \<subseteq> sets m1" using f12 rA2
+			by (auto simp add: measurable_def) 
+		    qed
+ 		qed
+	      finally have "(measure m2 o A) sums measure m1 (\<Union>i. f -` A i \<inter> space m1)" .
+	      with measure_space.measure_countably_additive [OF m2 rA2 dA Um2] 
+	      have "measure m1 (\<Union>i. f -` A i \<inter> space m1) = measure m2 (\<Union>i. A i)"
+		by (metis sums_unique) 
+
+	      moreover have "measure m1 (f -` (\<Union>i. A i) \<inter> space m1) = measure m1 (\<Union>i. f -` A i \<inter> space m1)"
+		by (simp add: vimage_UN)
+	      ultimately show "measure m1 (f -` (\<Union>i. A i) \<inter> space m1) =
+                    measure m2 (\<Union>i. A i)" 
+		by metis
+	  qed
+	finally have "sigma_sets (space m2) a 
+              \<subseteq> {s . measure m1 ((f -` s) \<inter> space m1) = measure m2 s}" .
+	hence "measure m1 (f -` y \<inter> space m1) = measure m2 y" using y
+	  by (force simp add: setsm2) 
+      }
+      thus "f \<in> measurable m1 m2 \<and>
+       (\<forall>y\<in>sets m2.
+           measure m1 (f -` y \<inter> space m1) = measure m2 y)"
+	by (blast intro: f12) 
+    qed
+qed
+
+lemma measurable_ident:
+     "sigma_algebra M ==> id \<in> measurable M M"
+  apply (simp add: measurable_def)
+  apply (auto simp add: sigma_algebra_def algebra.Int algebra.top)
+  done
+
+lemma measurable_comp:
+  fixes f :: "'a \<Rightarrow> 'b" and g :: "'b \<Rightarrow> 'c" 
+  shows "f \<in> measurable a b \<Longrightarrow> g \<in> measurable b c \<Longrightarrow> (g o f) \<in> measurable a c"
+  apply (auto simp add: measurable_def vimage_compose) 
+  apply (subgoal_tac "f -` g -` y \<inter> space a = f -` (g -` y \<inter> space b) \<inter> space a")
+  apply force+
+  done
+
+ lemma measurable_strong:
+  fixes f :: "'a \<Rightarrow> 'b" and g :: "'b \<Rightarrow> 'c" 
+  assumes f: "f \<in> measurable a b" and g: "g \<in> (space b -> space c)"
+      and c: "sigma_algebra c"
+      and t: "f ` (space a) \<subseteq> t"
+      and cb: "\<And>s. s \<in> sets c \<Longrightarrow> (g -` s) \<inter> t \<in> sets b"
+  shows "(g o f) \<in> measurable a c"
+proof -
+  have a: "sigma_algebra a" and b: "sigma_algebra b"
+   and fab: "f \<in> (space a -> space b)"
+   and ba: "\<And>y. y \<in> sets b \<Longrightarrow> (f -` y) \<inter> (space a) \<in> sets a" using f
+     by (auto simp add: measurable_def)
+  have eq: "f -` g -` y \<inter> space a = f -` (g -` y \<inter> t) \<inter> space a" using t
+    by force
+  show ?thesis
+    apply (auto simp add: measurable_def vimage_compose a c) 
+    apply (metis funcset_mem fab g) 
+    apply (subst eq, metis ba cb) 
+    done
+qed
+ 
+lemma measurable_mono1:
+     "a \<subseteq> b \<Longrightarrow> sigma_algebra \<lparr>space = X, sets = b\<rparr>
+      \<Longrightarrow> measurable \<lparr>space = X, sets = a\<rparr> c \<subseteq> measurable \<lparr>space = X, sets = b\<rparr> c"
+  by (auto simp add: measurable_def) 
+
+lemma measurable_up_sigma:
+   "measurable a b \<subseteq> measurable (sigma (space a) (sets a)) b"
+  apply (auto simp add: measurable_def) 
+  apply (metis sigma_algebra_iff2 sigma_algebra_sigma)
+  apply (metis algebra.simps(2) sigma_algebra.sigma_sets_eq sigma_def) 
+  done
+
+lemma measure_preserving_up:
+   "f \<in> measure_preserving \<lparr>space = space m1, sets = a, measure = measure m1\<rparr> m2 \<Longrightarrow>
+    measure_space m1 \<Longrightarrow> sigma_algebra m1 \<Longrightarrow> a \<subseteq> sets m1 
+    \<Longrightarrow> f \<in> measure_preserving m1 m2"
+  by (auto simp add: measure_preserving_def measurable_def) 
+
+lemma measure_preserving_up_sigma:
+   "measure_space m1 \<Longrightarrow> (sets m1 = sets (sigma (space m1) a))
+    \<Longrightarrow> measure_preserving \<lparr>space = space m1, sets = a, measure = measure m1\<rparr> m2 
+        \<subseteq> measure_preserving m1 m2"
+  apply (rule subsetI) 
+  apply (rule measure_preserving_up) 
+  apply (simp_all add: measure_space_def sigma_def) 
+  apply (metis sigma_algebra.sigma_sets_eq subsetI sigma_sets.Basic) 
+  done
+
+lemma (in sigma_algebra) measurable_prod_sigma:
+  assumes 1: "(fst o f) \<in> measurable M a1" and 2: "(snd o f) \<in> measurable M a2"
+  shows "f \<in> measurable M (sigma ((space a1) \<times> (space a2)) 
+                          (prod_sets (sets a1) (sets a2)))"
+proof -
+  from 1 have sa1: "sigma_algebra a1" and fn1: "fst \<circ> f \<in> space M \<rightarrow> space a1"
+     and q1: "\<forall>y\<in>sets a1. (fst \<circ> f) -` y \<inter> space M \<in> sets M"
+    by (auto simp add: measurable_def) 
+  from 2 have sa2: "sigma_algebra a2" and fn2: "snd \<circ> f \<in> space M \<rightarrow> space a2"
+     and q2: "\<forall>y\<in>sets a2. (snd \<circ> f) -` y \<inter> space M \<in> sets M"
+    by (auto simp add: measurable_def) 
+  show ?thesis
+    proof (rule measurable_sigma) 
+      show "prod_sets (sets a1) (sets a2) \<subseteq> Pow (space a1 \<times> space a2)" using sa1 sa2
+        by (force simp add: prod_sets_def sigma_algebra_iff algebra_def) 
+    next
+      show "f \<in> space M \<rightarrow> space a1 \<times> space a2" 
+        by (rule prod_final [OF fn1 fn2])
+    next
+      fix z
+      assume z: "z \<in> prod_sets (sets a1) (sets a2)" 
+      thus "f -` z \<inter> space M \<in> sets M"
+        proof (auto simp add: prod_sets_def vimage_Times) 
+          fix x y
+          assume x: "x \<in> sets a1" and y: "y \<in> sets a2"
+          have "(fst \<circ> f) -` x \<inter> (snd \<circ> f) -` y \<inter> space M = 
+                ((fst \<circ> f) -` x \<inter> space M) \<inter> ((snd \<circ> f) -` y \<inter> space M)"
+            by blast
+          also have "...  \<in> sets M" using x y q1 q2
+            by blast
+          finally show "(fst \<circ> f) -` x \<inter> (snd \<circ> f) -` y \<inter> space M \<in> sets M" .
+        qed
+    qed
+qed
+
+
+lemma (in measure_space) measurable_range_reduce:
+   "f \<in> measurable M \<lparr>space = s, sets = Pow s\<rparr> \<Longrightarrow>
+    s \<noteq> {} 
+    \<Longrightarrow> f \<in> measurable M \<lparr>space = s \<inter> (f ` space M), sets = Pow (s \<inter> (f ` space M))\<rparr>"
+  by (simp add: measurable_def sigma_algebra_Pow del: Pow_Int_eq) blast
+
+lemma (in measure_space) measurable_Pow_to_Pow:
+   "(sets M = Pow (space M)) \<Longrightarrow> f \<in> measurable M \<lparr>space = UNIV, sets = Pow UNIV\<rparr>"
+  by (auto simp add: measurable_def sigma_algebra_def sigma_algebra_axioms_def algebra_def)
+
+lemma (in measure_space) measurable_Pow_to_Pow_image:
+   "sets M = Pow (space M)
+    \<Longrightarrow> f \<in> measurable M \<lparr>space = f ` space M, sets = Pow (f ` space M)\<rparr>"
+  by (simp add: measurable_def sigma_algebra_Pow) intro_locales
+
+lemma (in measure_space) measure_real_sum_image:
+  assumes s: "s \<in> sets M"
+      and ssets: "\<And>x. x \<in> s ==> {x} \<in> sets M"
+      and fin: "finite s"
+  shows "measure M s = (\<Sum>x\<in>s. measure M {x})"
+proof -
+  {
+    fix u
+    assume u: "u \<subseteq> s & u \<in> sets M"
+    hence "finite u"
+      by (metis fin finite_subset) 
+    hence "measure M u = (\<Sum>x\<in>u. measure M {x})" using u
+      proof (induct u)
+        case empty
+        thus ?case by simp
+      next
+        case (insert x t)
+        hence x: "x \<in> s" and t: "t \<subseteq> s" 
+          by (simp_all add: insert_subset) 
+        hence ts: "t \<in> sets M"  using insert
+          by (metis Diff_insert_absorb Diff ssets)
+        have "measure M (insert x t) = measure M ({x} \<union> t)"
+          by simp
+        also have "... = measure M {x} + measure M t" 
+          by (simp add: measure_additive insert insert_disjoint ssets x ts 
+                  del: Un_insert_left)
+        also have "... = (\<Sum>x\<in>insert x t. measure M {x})" 
+          by (simp add: x t ts insert) 
+        finally show ?case .
+      qed
+    }
+  thus ?thesis
+    by (metis subset_refl s)
+qed
+  
+lemma (in sigma_algebra) sigma_algebra_extend:
+     "sigma_algebra \<lparr>space = space M, sets = sets M, measure_space.measure = f\<rparr>"
+   by unfold_locales (auto intro!: space_closed)
+
+lemma (in sigma_algebra) finite_additivity_sufficient:
+  assumes fin: "finite (space M)"
+      and posf: "positive M f" and addf: "additive M f" 
+  defines "Mf \<equiv> \<lparr>space = space M, sets = sets M, measure = f\<rparr>"
+  shows "measure_space Mf" 
+proof -
+  have [simp]: "f {} = 0" using posf
+    by (simp add: positive_def) 
+  have "countably_additive Mf f"
+    proof (auto simp add: countably_additive_def positive_def) 
+      fix A :: "nat \<Rightarrow> 'a set"
+      assume A: "range A \<subseteq> sets Mf"
+         and disj: "disjoint_family A"
+         and UnA: "(\<Union>i. A i) \<in> sets Mf"
+      def I \<equiv> "{i. A i \<noteq> {}}"
+      have "Union (A ` I) \<subseteq> space M" using A
+        by (auto simp add: Mf_def) (metis range_subsetD subsetD sets_into_space) 
+      hence "finite (A ` I)"
+        by (metis finite_UnionD finite_subset fin) 
+      moreover have "inj_on A I" using disj
+        by (auto simp add: I_def disjoint_family_def inj_on_def) 
+      ultimately have finI: "finite I"
+        by (metis finite_imageD)
+      hence "\<exists>N. \<forall>m\<ge>N. A m = {}"
+        proof (cases "I = {}")
+          case True thus ?thesis by (simp add: I_def) 
+        next
+          case False
+          hence "\<forall>i\<in>I. i < Suc(Max I)"
+            by (simp add: Max_less_iff [symmetric] finI) 
+          hence "\<forall>m \<ge> Suc(Max I). A m = {}"
+            by (simp add: I_def) (metis less_le_not_le) 
+          thus ?thesis
+            by blast
+        qed
+      then obtain N where N: "\<forall>m\<ge>N. A m = {}" by blast
+      hence "\<forall>m\<ge>N. (f o A) m = 0"
+        by simp 
+      hence "(\<lambda>n. f (A n)) sums setsum (f o A) {0..<N}" 
+        by (simp add: series_zero o_def) 
+      also have "... = f (\<Union>i<N. A i)"
+        proof (induct N)
+          case 0 thus ?case by simp
+        next
+          case (Suc n) 
+          have "f (A n \<union> (\<Union> x<n. A x)) = f (A n) + f (\<Union> i<n. A i)"
+            proof (rule Caratheodory.additiveD [OF addf])
+              show "A n \<inter> (\<Union> x<n. A x) = {}" using disj
+                by (auto simp add: disjoint_family_def nat_less_le) blast
+              show "A n \<in> sets M" using A 
+                by (force simp add: Mf_def) 
+              show "(\<Union>i<n. A i) \<in> sets M"
+                proof (induct n)
+                  case 0 thus ?case by simp
+                next
+                  case (Suc n) thus ?case using A
+                    by (simp add: lessThan_Suc Mf_def Un range_subsetD) 
+                qed
+            qed
+          thus ?case using Suc
+            by (simp add: lessThan_Suc) 
+        qed
+      also have "... = f (\<Union>i. A i)" 
+        proof -
+          have "(\<Union> i<N. A i) = (\<Union>i. A i)" using N
+            by auto (metis Int_absorb N disjoint_iff_not_equal lessThan_iff not_leE)
+          thus ?thesis by simp
+        qed
+      finally show "(\<lambda>n. f (A n)) sums f (\<Union>i. A i)" .
+    qed
+  thus ?thesis using posf 
+    by (simp add: Mf_def measure_space_def measure_space_axioms_def sigma_algebra_extend positive_def) 
+qed
+
+lemma finite_additivity_sufficient:
+     "sigma_algebra M 
+      \<Longrightarrow> finite (space M) 
+      \<Longrightarrow> positive M (measure M) \<Longrightarrow> additive M (measure M) 
+      \<Longrightarrow> measure_space M"
+  by (rule measure_down [OF sigma_algebra.finite_additivity_sufficient], auto) 
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Probability.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,5 @@
+theory Probability imports
+	Measure
+begin
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/ROOT.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,6 @@
+(*
+  no_document use_thy "ThisTheory";
+  use_thy "ThatTheory";
+*)
+
+use_thy "Probability";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/SeriesPlus.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,127 @@
+theory SeriesPlus
+  imports Complex_Main Nat_Int_Bij 
+
+begin
+
+text{*From the Hurd/Coble measure theory development, translated by Lawrence Paulson.*}
+
+lemma choice2: "(!!x. \<exists>y z. Q x y z) ==> \<exists>f g. \<forall>x. Q x (f x) (g x)"
+  by metis
+
+lemma range_subsetD: "range f \<subseteq> B \<Longrightarrow> f i \<in> B"
+  by blast
+
+
+lemma suminf_2dimen:
+  fixes f:: "nat * nat \<Rightarrow> real"
+  assumes f_nneg: "!!m n. 0 \<le> f(m,n)"
+      and fsums: "!!m. (\<lambda>n. f (m,n)) sums (g m)"
+      and sumg: "summable g"
+  shows "(f o nat_to_nat2) sums suminf g"
+proof (simp add: sums_def)
+  {
+    fix x
+    have "0 \<le> f x"
+      by (cases x) (simp add: f_nneg) 
+  } note [iff]  = this
+  have g_nneg: "!!m. 0 \<le> g m"
+    proof -
+      fix m
+      have "0 \<le> suminf (\<lambda>n. f (m,n))"
+	by (rule suminf_0_le, simp add: f_nneg, metis fsums sums_iff)
+      thus "0 \<le> g m" using fsums [of m] 
+	by (auto simp add: sums_iff) 
+    qed
+  show "(\<lambda>n. \<Sum>x = 0..<n. f (nat_to_nat2 x)) ----> suminf g"
+  proof (rule increasing_LIMSEQ, simp add: f_nneg)
+    fix n
+    def i \<equiv> "Max (Domain (nat_to_nat2 ` {0..<n}))"
+    def j \<equiv> "Max (Range (nat_to_nat2 ` {0..<n}))"
+    have ij: "nat_to_nat2 ` {0..<n} \<subseteq> ({0..i} \<times> {0..j})" 
+      by (force simp add: i_def j_def 
+                intro: finite_imageI Max_ge finite_Domain finite_Range)  
+    have "(\<Sum>x = 0..<n. f (nat_to_nat2 x)) = setsum f (nat_to_nat2 ` {0..<n})" 
+      using setsum_reindex [of nat_to_nat2 "{0..<n}" f] 
+      by (simp add: o_def)
+         (metis nat_to_nat2_inj subset_inj_on subset_UNIV nat_to_nat2_inj) 
+    also have "... \<le> setsum f ({0..i} \<times> {0..j})"
+      by (rule setsum_mono2) (auto simp add: ij) 
+    also have "... = setsum (\<lambda>m. setsum (\<lambda>n. f (m,n)) {0..j}) {0..<Suc i}"
+      by (metis atLeast0AtMost atLeast0LessThan lessThan_Suc_atMost
+	        setsum_cartesian_product split_eta) 
+    also have "... \<le> setsum g {0..<Suc i}" 
+      proof (rule setsum_mono, simp add: less_Suc_eq_le) 
+	fix m
+	assume m: "m \<le> i"
+	thus " (\<Sum>n = 0..j. f (m, n)) \<le> g m" using fsums [of m]
+	  by (auto simp add: sums_iff) 
+	   (metis atLeastLessThanSuc_atLeastAtMost f_nneg series_pos_le f_nneg) 
+      qed
+    finally have  "(\<Sum>x = 0..<n. f (nat_to_nat2 x)) \<le> setsum g {0..<Suc i}" .
+    also have "... \<le> suminf g" 
+      by (rule series_pos_le [OF sumg]) (simp add: g_nneg) 
+    finally show "(\<Sum>x = 0..<n. f (nat_to_nat2 x)) \<le> suminf g" .
+  next
+    fix e :: real
+    assume e: "0 < e"
+    with summable_sums [OF sumg]
+    obtain N where "\<bar>setsum g {0..<N} - suminf g\<bar> < e/2" and nz: "N>0"
+      by (simp add: sums_def LIMSEQ_iff_nz dist_real_def)
+         (metis e half_gt_zero le_refl that)
+    hence gless: "suminf g < setsum g {0..<N} + e/2" using series_pos_le [OF sumg]
+      by (simp add: g_nneg)
+    { fix m
+      assume m: "m<N"
+      hence enneg: "0 < e / (2 * real N)" using e
+	by (simp add: zero_less_divide_iff) 
+      hence  "\<exists>j. \<bar>(\<Sum>n = 0..<j. f (m, n)) - g m\<bar> < e/(2 * real N)"
+	using fsums [of m] m
+        by (force simp add: sums_def LIMSEQ_def dist_real_def)
+      hence "\<exists>j. g m < setsum (\<lambda>n. f (m,n)) {0..<j} + e/(2 * real N)" 
+	using fsums [of m]
+	by (auto simp add: sums_iff) 
+           (metis abs_diff_less_iff add_less_cancel_right eq_diff_eq') 
+    }
+    hence "\<exists>jj. \<forall>m. m<N \<longrightarrow> g m < (\<Sum>n = 0..<jj m. f (m, n)) + e/(2 * real N)"
+      by (force intro: choice) 
+    then obtain jj where jj:
+          "!!m. m<N \<Longrightarrow> g m < (\<Sum>n = 0..<jj m. f (m, n)) + e/(2 * real N)"
+      by auto
+    def IJ \<equiv> "SIGMA i : {0..<N}. {0..<jj i}"
+    have "setsum g {0..<N} <
+             (\<Sum>m = 0..<N. (\<Sum>n = 0..<jj m. f (m, n)) + e/(2 * real N))"
+      by (auto simp add: nz jj intro: setsum_strict_mono) 
+    also have "... = (\<Sum>m = 0..<N. \<Sum>n = 0..<jj m. f (m, n)) + e/2" using nz
+      by (auto simp add: setsum_addf real_of_nat_def) 
+    also have "... = setsum f IJ + e/2" 
+      by (simp add: IJ_def setsum_Sigma) 
+    finally have "setsum g {0..<N} < setsum f IJ + e/2" .
+    hence glessf: "suminf g < setsum f IJ + e" using gless 
+      by auto
+    have finite_IJ: "finite IJ"
+      by (simp add: IJ_def) 
+    def NIJ \<equiv> "Max (nat_to_nat2 -` IJ)"
+    have IJsb: "IJ \<subseteq> nat_to_nat2 ` {0..NIJ}"
+      proof (auto simp add: NIJ_def)
+	fix i j
+	assume ij:"(i,j) \<in> IJ"
+	hence "(i,j) = nat_to_nat2 (inv nat_to_nat2 (i,j))"
+	  by (metis nat_to_nat2_surj surj_f_inv_f) 
+	thus "(i,j) \<in> nat_to_nat2 ` {0..Max (nat_to_nat2 -` IJ)}"
+	  by (rule image_eqI) 
+	     (simp add: ij finite_vimageI [OF finite_IJ nat_to_nat2_inj]
+                    nat_to_nat2_surj surj_f_inv_f) 
+      qed
+    have "setsum f IJ \<le> setsum f (nat_to_nat2 `{0..NIJ})"
+      by (rule setsum_mono2) (auto simp add: IJsb) 
+    also have "... = (\<Sum>k = 0..NIJ. f (nat_to_nat2 k))"
+      by (simp add: setsum_reindex subset_inj_on [OF nat_to_nat2_inj subset_UNIV]) 
+    also have "... = (\<Sum>k = 0..<Suc NIJ. f (nat_to_nat2 k))"
+      by (metis atLeast0AtMost atLeast0LessThan lessThan_Suc_atMost)
+    finally have "setsum f IJ \<le> (\<Sum>k = 0..<Suc NIJ. f (nat_to_nat2 k))" .
+    thus "\<exists>n. suminf g \<le> (\<Sum>x = 0..<n. f (nat_to_nat2 x)) + e" using glessf
+      by (metis add_right_mono local.glessf not_leE order_le_less_trans less_asym)
+  qed
+qed
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Sigma_Algebra.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,229 @@
+(*  Title:      Sigma_Algebra.thy
+    Author:     Stefan Richter, Markus Wenzel, TU Muenchen
+    Plus material from the Hurd/Coble measure theory development, 
+    translated by Lawrence Paulson.
+*)
+
+header {* Sigma Algebras *}
+
+theory Sigma_Algebra imports Complex_Main begin
+
+text {* Sigma algebras are an elementary concept in measure
+  theory. To measure --- that is to integrate --- functions, we first have
+  to measure sets. Unfortunately, when dealing with a large universe,
+  it is often not possible to consistently assign a measure to every
+  subset. Therefore it is necessary to define the set of measurable
+  subsets of the universe. A sigma algebra is such a set that has
+  three very natural and desirable properties. *}
+
+subsection {* Algebras *}
+
+record 'a algebra = 
+  space :: "'a set" 
+  sets :: "'a set set"
+
+locale algebra =
+  fixes M
+  assumes space_closed: "sets M \<subseteq> Pow (space M)"
+     and  empty_sets [iff]: "{} \<in> sets M"
+     and  compl_sets [intro]: "!!a. a \<in> sets M \<Longrightarrow> space M - a \<in> sets M"
+     and  Un [intro]: "!!a b. a \<in> sets M \<Longrightarrow> b \<in> sets M \<Longrightarrow> a \<union> b \<in> sets M"
+
+lemma (in algebra) top [iff]: "space M \<in> sets M"
+  by (metis Diff_empty compl_sets empty_sets)
+
+lemma (in algebra) sets_into_space: "x \<in> sets M \<Longrightarrow> x \<subseteq> space M"
+  by (metis PowD contra_subsetD space_closed)
+
+lemma (in algebra) Int [intro]: 
+  assumes a: "a \<in> sets M" and b: "b \<in> sets M" shows "a \<inter> b \<in> sets M"
+proof -
+  have "((space M - a) \<union> (space M - b)) \<in> sets M" 
+    by (metis a b compl_sets Un)
+  moreover
+  have "a \<inter> b = space M - ((space M - a) \<union> (space M - b))" 
+    using space_closed a b
+    by blast
+  ultimately show ?thesis
+    by (metis compl_sets)
+qed
+
+lemma (in algebra) Diff [intro]: 
+  assumes a: "a \<in> sets M" and b: "b \<in> sets M" shows "a - b \<in> sets M"
+proof -
+  have "(a \<inter> (space M - b)) \<in> sets M"
+    by (metis a b compl_sets Int)
+  moreover
+  have "a - b = (a \<inter> (space M - b))"
+    by (metis Int_Diff Int_absorb1 Int_commute a sets_into_space)
+  ultimately show ?thesis
+    by metis
+qed
+
+lemma (in algebra) finite_union [intro]: 
+  "finite X \<Longrightarrow> X \<subseteq> sets M \<Longrightarrow> Union X \<in> sets M"
+  by (induct set: finite) (auto simp add: Un) 
+
+
+subsection {* Sigma Algebras *}
+
+locale sigma_algebra = algebra +
+  assumes countable_UN [intro]:
+         "!!A. range A \<subseteq> sets M \<Longrightarrow> (\<Union>i::nat. A i) \<in> sets M"
+
+lemma (in sigma_algebra) countable_INT:
+  assumes a: "range a \<subseteq> sets M"
+  shows "(\<Inter>i::nat. a i) \<in> sets M"
+proof -
+  have "space M - (\<Union>i. space M - a i) \<in> sets M" using a
+    by (blast intro: countable_UN compl_sets a) 
+  moreover
+  have "(\<Inter>i. a i) = space M - (\<Union>i. space M - a i)" using space_closed a 
+    by blast
+  ultimately show ?thesis by metis
+qed
+
+
+lemma algebra_Pow:
+     "algebra (| space = sp, sets = Pow sp |)"
+  by (auto simp add: algebra_def) 
+
+lemma sigma_algebra_Pow:
+     "sigma_algebra (| space = sp, sets = Pow sp |)"
+  by (auto simp add: sigma_algebra_def sigma_algebra_axioms_def algebra_Pow) 
+
+subsection {* Binary Unions *}
+
+definition binary :: "'a \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"
+  where "binary a b =  (\<lambda>\<^isup>x. b)(0 := a)"
+
+lemma range_binary_eq: "range(binary a b) = {a,b}" 
+  by (auto simp add: binary_def)  
+
+lemma Un_range_binary: "a \<union> b = (\<Union>i::nat. binary a b i)" 
+  by (simp add: UNION_eq_Union_image range_binary_eq) 
+
+lemma Int_range_binary: "a \<inter> b = (\<Inter>i::nat. binary a b i)" 
+  by (simp add: INTER_eq_Inter_image range_binary_eq) 
+
+lemma sigma_algebra_iff: 
+     "sigma_algebra M \<longleftrightarrow> 
+      algebra M & (\<forall>A. range A \<subseteq> sets M \<longrightarrow> (\<Union>i::nat. A i) \<in> sets M)"
+  by (simp add: sigma_algebra_def sigma_algebra_axioms_def) 
+
+lemma sigma_algebra_iff2:
+     "sigma_algebra M \<longleftrightarrow>
+       sets M \<subseteq> Pow (space M) &
+       {} \<in> sets M & (\<forall>s \<in> sets M. space M - s \<in> sets M) &
+       (\<forall>A. range A \<subseteq> sets M \<longrightarrow> (\<Union>i::nat. A i) \<in> sets M)"
+  by (force simp add: range_binary_eq sigma_algebra_def sigma_algebra_axioms_def
+         algebra_def Un_range_binary) 
+
+
+subsection {* Initial Sigma Algebra *}
+
+text {*Sigma algebras can naturally be created as the closure of any set of
+  sets with regard to the properties just postulated.  *}
+
+inductive_set
+  sigma_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set"
+  for sp :: "'a set" and A :: "'a set set"
+  where
+    Basic: "a \<in> A \<Longrightarrow> a \<in> sigma_sets sp A"
+  | Empty: "{} \<in> sigma_sets sp A"
+  | Compl: "a \<in> sigma_sets sp A \<Longrightarrow> sp - a \<in> sigma_sets sp A"
+  | Union: "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Union>i. a i) \<in> sigma_sets sp A"
+
+
+definition
+  sigma  where
+  "sigma sp A = (| space = sp, sets = sigma_sets sp A |)"
+
+
+lemma space_sigma [simp]: "space (sigma X B) = X"
+  by (simp add: sigma_def) 
+
+lemma sigma_sets_top: "sp \<in> sigma_sets sp A"
+  by (metis Diff_empty sigma_sets.Compl sigma_sets.Empty)
+
+lemma sigma_sets_into_sp: "A \<subseteq> Pow sp \<Longrightarrow> x \<in> sigma_sets sp A \<Longrightarrow> x \<subseteq> sp"
+  by (erule sigma_sets.induct, auto) 
+
+lemma sigma_sets_Un: 
+  "a \<in> sigma_sets sp A \<Longrightarrow> b \<in> sigma_sets sp A \<Longrightarrow> a \<union> b \<in> sigma_sets sp A"
+apply (simp add: Un_range_binary range_binary_eq) 
+apply (metis Union COMBK_def binary_def fun_upd_apply) 
+done
+
+lemma sigma_sets_Inter:
+  assumes Asb: "A \<subseteq> Pow sp"
+  shows "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Inter>i. a i) \<in> sigma_sets sp A"
+proof -
+  assume ai: "\<And>i::nat. a i \<in> sigma_sets sp A"
+  hence "\<And>i::nat. sp-(a i) \<in> sigma_sets sp A" 
+    by (rule sigma_sets.Compl)
+  hence "(\<Union>i. sp-(a i)) \<in> sigma_sets sp A" 
+    by (rule sigma_sets.Union)
+  hence "sp-(\<Union>i. sp-(a i)) \<in> sigma_sets sp A" 
+    by (rule sigma_sets.Compl)
+  also have "sp-(\<Union>i. sp-(a i)) = sp Int (\<Inter>i. a i)" 
+    by auto
+  also have "... = (\<Inter>i. a i)" using ai
+    by (blast dest: sigma_sets_into_sp [OF Asb]) 
+  finally show ?thesis . 
+qed
+
+lemma sigma_sets_INTER:
+  assumes Asb: "A \<subseteq> Pow sp" 
+      and ai: "\<And>i::nat. i \<in> S \<Longrightarrow> a i \<in> sigma_sets sp A" and non: "S \<noteq> {}"
+  shows "(\<Inter>i\<in>S. a i) \<in> sigma_sets sp A"
+proof -
+  from ai have "\<And>i. (if i\<in>S then a i else sp) \<in> sigma_sets sp A"
+    by (simp add: sigma_sets.intros sigma_sets_top)
+  hence "(\<Inter>i. (if i\<in>S then a i else sp)) \<in> sigma_sets sp A"
+    by (rule sigma_sets_Inter [OF Asb])
+  also have "(\<Inter>i. (if i\<in>S then a i else sp)) = (\<Inter>i\<in>S. a i)"
+    by auto (metis ai non sigma_sets_into_sp subset_empty subset_iff Asb)+
+  finally show ?thesis .
+qed
+
+lemma (in sigma_algebra) sigma_sets_subset:
+  assumes a: "a \<subseteq> sets M" 
+  shows "sigma_sets (space M) a \<subseteq> sets M"
+proof
+  fix x
+  assume "x \<in> sigma_sets (space M) a"
+  from this show "x \<in> sets M"
+    by (induct rule: sigma_sets.induct, auto) (metis a subsetD) 
+qed
+
+lemma (in sigma_algebra) sigma_sets_eq:
+     "sigma_sets (space M) (sets M) = sets M"
+proof
+  show "sets M \<subseteq> sigma_sets (space M) (sets M)"
+    by (metis Set.subsetI sigma_sets.Basic space_closed)
+  next
+  show "sigma_sets (space M) (sets M) \<subseteq> sets M"
+    by (metis sigma_sets_subset subset_refl)
+qed
+
+lemma sigma_algebra_sigma_sets:
+     "a \<subseteq> Pow (space M) \<Longrightarrow> sets M = sigma_sets (space M) a \<Longrightarrow> sigma_algebra M"
+  apply (auto simp add: sigma_algebra_def sigma_algebra_axioms_def
+      algebra_def sigma_sets.Empty sigma_sets.Compl sigma_sets_Un) 
+  apply (blast dest: sigma_sets_into_sp)
+  apply (blast intro: sigma_sets.intros) 
+  done
+
+lemma sigma_algebra_sigma:
+     "a \<subseteq> Pow X \<Longrightarrow> sigma_algebra (sigma X a)"
+  apply (rule sigma_algebra_sigma_sets) 
+  apply (auto simp add: sigma_def) 
+  done
+
+lemma (in sigma_algebra) sigma_subset:
+     "a \<subseteq> sets M ==> sets (sigma (space M) a) \<subseteq> (sets M)"
+  by (simp add: sigma_def sigma_sets_subset)
+
+end
+
--- a/src/HOL/Product_Type.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Product_Type.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -6,7 +6,7 @@
 header {* Cartesian products *}
 
 theory Product_Type
-imports Inductive Nat
+imports Inductive
 uses
   ("Tools/split_rule.ML")
   ("Tools/inductive_set.ML")
@@ -94,8 +94,6 @@
 
 text {* code generator setup *}
 
-instance unit :: eq ..
-
 lemma [code]:
   "eq_class.eq (u\<Colon>unit) v \<longleftrightarrow> True" unfolding eq unit_eq [of u] unit_eq [of v] by rule+
 
@@ -927,9 +925,10 @@
    insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
 by blast
 
-subsubsection {* Code generator setup *}
+lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
+  by (auto, rule_tac p = "f x" in PairE, auto)
 
-instance * :: (eq, eq) eq ..
+subsubsection {* Code generator setup *}
 
 lemma [code]:
   "eq_class.eq (x1\<Colon>'a\<Colon>eq, y1\<Colon>'b\<Colon>eq) (x2, y2) \<longleftrightarrow> x1 = x2 \<and> y1 = y2" by (simp add: eq)
--- a/src/HOL/Ring_and_Field.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Ring_and_Field.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -767,6 +767,8 @@
 
 end
 
+class ordered_semiring_1 = ordered_semiring + semiring_1
+
 class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
   assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
   assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
@@ -884,6 +886,8 @@
 
 end
 
+class ordered_semiring_1_strict = ordered_semiring_strict + semiring_1
+
 class mult_mono1 = times + zero + ord +
   assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
 
@@ -2025,15 +2029,15 @@
 
 lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
     ==> x * y <= x"
-by (auto simp add: mult_compare_simps);
+by (auto simp add: mult_compare_simps)
 
 lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
     ==> y * x <= x"
-by (auto simp add: mult_compare_simps);
+by (auto simp add: mult_compare_simps)
 
 lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
-    x / y <= z";
-by (subst pos_divide_le_eq, assumption+);
+    x / y <= z"
+by (subst pos_divide_le_eq, assumption+)
 
 lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
     z <= x / y"
@@ -2060,8 +2064,8 @@
 lemma frac_less: "(0::'a::ordered_field) <= x ==> 
     x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
   apply (rule mult_imp_div_pos_less)
-  apply simp;
-  apply (subst times_divide_eq_left);
+  apply simp
+  apply (subst times_divide_eq_left)
   apply (rule mult_imp_less_div_pos, assumption)
   apply (erule mult_less_le_imp_less)
   apply simp_all
@@ -2071,7 +2075,7 @@
     x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
   apply (rule mult_imp_div_pos_less)
   apply simp_all
-  apply (subst times_divide_eq_left);
+  apply (subst times_divide_eq_left)
   apply (rule mult_imp_less_div_pos, assumption)
   apply (erule mult_le_less_imp_less)
   apply simp_all
--- a/src/HOL/SEQ.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SEQ.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -205,6 +205,9 @@
   shows "(X ----> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
 unfolding LIMSEQ_def dist_norm ..
 
+lemma LIMSEQ_iff_nz: "X ----> L = (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)"
+  by (auto simp add: LIMSEQ_def) (metis Suc_leD zero_less_Suc)  
+
 lemma LIMSEQ_Zseq_iff: "((\<lambda>n. X n) ----> L) = Zseq (\<lambda>n. X n - L)"
 by (simp only: LIMSEQ_iff Zseq_def)
 
--- a/src/HOL/SMT/Examples/SMT_Examples.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SMT/Examples/SMT_Examples.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -62,7 +62,7 @@
   symm_f: "symm_f x y = symm_f y x"
 lemma "a = a \<and> symm_f a b = symm_f b a"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_prop_09"]]
-  by (smt add: symm_f)
+  by (smt symm_f)
 
 (* 
 Taken from ~~/src/HOL/ex/SAT_Examples.thy.
@@ -524,7 +524,7 @@
   "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
 lemma "prime_nat (4*m + 1) \<Longrightarrow> m \<ge> (1::nat)"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_nat_arith_07"]]
-  by (smt add: prime_nat_def)
+  by (smt prime_nat_def)
 
 
 section {* Bitvectors *}
@@ -686,7 +686,7 @@
 
 lemma "id 3 = 3 \<and> id True = True"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_hol_03"]]
-  by (smt add: id_def)
+  by (smt id_def)
 
 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> ((f (i1 := v1)) (i2 := v2)) i = f i"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_hol_04"]]
@@ -694,7 +694,7 @@
 
 lemma "map (\<lambda>i::nat. i + 1) [0, 1] = [1, 2]"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_hol_05"]]
-  by (smt add: map.simps)
+  by (smt map.simps)
 
 lemma "(ALL x. P x) | ~ All P"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_hol_06"]]
@@ -704,7 +704,7 @@
   "dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
 lemma "dec_10 (4 * dec_10 4) = 6"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_hol_07"]]
-  by (smt add: dec_10.simps)
+  by (smt dec_10.simps)
 
 axiomatization
   eval_dioph :: "int list \<Rightarrow> nat list \<Rightarrow> int"
@@ -721,7 +721,7 @@
     eval_dioph ks (map (\<lambda>x. x div 2) xs) =
       (l - eval_dioph ks (map (\<lambda>x. x mod 2) xs)) div 2)"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_hol_08"]]
-  by (smt add: eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
+  by (smt eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
 
 
 section {* Monomorphization examples *}
@@ -730,7 +730,7 @@
 lemma poly_P: "P x \<and> (P [x] \<or> \<not>P[x])" by (simp add: P_def)
 lemma "P (1::int)"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_mono_01"]]
-  by (smt add: poly_P)
+  by (smt poly_P)
 
 consts g :: "'a \<Rightarrow> nat"
 axioms
@@ -739,6 +739,6 @@
   g3: "g xs = length xs"
 lemma "g (Some (3::int)) = g (Some True)"
   using [[smt_cert="$ISABELLE_SMT/Examples/cert/z3_mono_02"]]
-  by (smt add: g1 g2 g3 list.size)
+  by (smt g1 g2 g3 list.size)
 
 end
--- a/src/HOL/SMT/Tools/smt_normalize.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SMT/Tools/smt_normalize.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -33,7 +33,8 @@
     AddFunUpdRules |
     AddAbsMinMaxRules
 
-  val normalize: config list -> Proof.context -> thm list -> cterm list * thm list
+  val normalize: config list -> Proof.context -> thm list ->
+    cterm list * thm list
 
   val setup: theory -> theory
 end
@@ -41,10 +42,42 @@
 structure SMT_Normalize: SMT_NORMALIZE =
 struct
 
-val norm_binder_conv = Conv.try_conv (More_Conv.rewrs_conv [
-  @{lemma "All P == ALL x. P x" by (rule reflexive)},
-  @{lemma "Ex P == EX x. P x" by (rule reflexive)},
-  @{lemma "Let c P == let x = c in P x" by (rule reflexive)}])
+local
+  val all1 = @{lemma "All P == ALL x. P x" by (rule reflexive)}
+  val all2 = @{lemma "All == (%P. ALL x. P x)" by (rule reflexive)}
+  val ex1 = @{lemma "Ex P == EX x. P x" by (rule reflexive)}
+  val ex2 = @{lemma "Ex == (%P. EX x. P x)" by (rule reflexive)}
+  val let1 = @{lemma "Let c P == let x = c in P x" by (rule reflexive)}
+  val let2 = @{lemma "Let c == (%P. let x = c in P x)" by (rule reflexive)}
+  val let3 = @{lemma "Let == (%c P. let x = c in P x)" by (rule reflexive)}
+
+  fun all_abs_conv cv ctxt =
+    Conv.abs_conv (all_abs_conv cv o snd) ctxt else_conv cv ctxt
+  fun keep_conv ctxt = More_Conv.binder_conv norm_conv ctxt
+  and unfold_conv rule ctxt =
+    Conv.rewr_conv rule then_conv all_abs_conv keep_conv ctxt
+  and unfold_let_conv rule ctxt =
+    Conv.rewr_conv rule then_conv
+    all_abs_conv (fn cx => Conv.combination_conv
+      (Conv.arg_conv (norm_conv cx)) (Conv.abs_conv (norm_conv o snd) cx)) ctxt
+  and norm_conv ctxt ct =
+    (case Thm.term_of ct of
+      Const (@{const_name All}, _) $ Abs _ => keep_conv
+    | Const (@{const_name All}, _) $ _ => unfold_conv all1
+    | Const (@{const_name All}, _) => unfold_conv all2
+    | Const (@{const_name Ex}, _) $ Abs _ => keep_conv
+    | Const (@{const_name Ex}, _) $ _ => unfold_conv ex1
+    | Const (@{const_name Ex}, _) => unfold_conv ex2
+    | Const (@{const_name Let}, _) $ _ $ Abs _ => keep_conv
+    | Const (@{const_name Let}, _) $ _ $ _ => unfold_let_conv let1
+    | Const (@{const_name Let}, _) $ _ => unfold_let_conv let2
+    | Const (@{const_name Let}, _) => unfold_let_conv let3
+    | Abs _ => Conv.abs_conv (norm_conv o snd)
+    | _ $ _ => Conv.comb_conv o norm_conv
+    | _ => K Conv.all_conv) ctxt ct
+in
+val norm_binder_conv = norm_conv
+end
 
 fun cert ctxt = Thm.cterm_of (ProofContext.theory_of ctxt)
 
@@ -65,10 +98,10 @@
   Conv.fconv_rule (
     Thm.beta_conversion true then_conv
     Thm.eta_conversion then_conv
-    More_Conv.bottom_conv (K norm_binder_conv) ctxt) #>
+    norm_binder_conv ctxt) #>
   norm_def ctxt #>
   Drule.forall_intr_vars #>
-  Conv.fconv_rule ObjectLogic.atomize
+  Conv.fconv_rule (ObjectLogic.atomize then_conv norm_binder_conv ctxt)
 
 fun instantiate_free (cv, ct) thm =
   if Term.exists_subterm (equal (Thm.term_of cv)) (Thm.prop_of thm)
@@ -321,11 +354,9 @@
         | Abs _ => at_lambda cvs
         | _ $ _ => in_comb (repl cvs) (repl cvs)
         | _ => none) ct
-      and at_lambda cvs ct cx =
-        let
-          val (thm1, cx') = in_abs repl cvs ct cx
-          val (thm2, cx'') = replace ctxt cvs (Thm.rhs_of thm1) cx'
-        in (Thm.transitive thm1 thm2, cx'') end
+      and at_lambda cvs ct =
+        in_abs repl cvs ct #-> (fn thm =>
+        replace ctxt cvs (Thm.rhs_of thm) #>> Thm.transitive thm)
     in repl [] end
 in
 fun lift_lambdas ctxt thms =
--- a/src/HOL/SMT/Tools/smt_solver.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SMT/Tools/smt_solver.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -230,7 +230,7 @@
 val smt_tac = smt_tac' false
 
 val smt_method =
-  Scan.optional (Scan.lift (Args.add -- Args.colon) |-- Attrib.thms) [] >>
+  Scan.optional Attrib.thms [] >>
   (fn thms => fn ctxt => METHOD (fn facts =>
     HEADGOAL (smt_tac ctxt (thms @ facts))))
 
--- a/src/HOL/SMT/Tools/smt_translate.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SMT/Tools/smt_translate.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -201,9 +201,9 @@
   fun dest_trigger (@{term trigger} $ tl $ t) = (HOLogic.dest_list tl, t)
     | dest_trigger t = ([], t)
 
-  fun pat f ps (Const (@{const_name pat}, _) $ p) = SPat (rev (f p :: ps))
-    | pat f ps (Const (@{const_name nopat}, _) $ p) = SNoPat (rev (f p :: ps))
-    | pat f ps (Const (@{const_name andpat}, _) $ p $ t) = pat f (f p :: ps) t
+  fun pat f ts (Const (@{const_name pat}, _) $ t) = SPat (rev (f t :: ts))
+    | pat f ts (Const (@{const_name nopat}, _) $ t) = SNoPat (rev (f t :: ts))
+    | pat f ts (Const (@{const_name andpat}, _) $ p $ t) = pat f (f t :: ts) p
     | pat _ _ t = raise TERM ("pat", [t])
 
   fun trans Ts t =
--- a/src/HOL/SMT/Tools/z3_solver.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SMT/Tools/z3_solver.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -43,8 +43,11 @@
 
 fun check_unsat recon output =
   let
-    val raw = not o String.isPrefix "WARNING" orf String.isPrefix "ERROR"
-    val (ls, l) = the_default ([], "") (try split_last (filter raw output))
+    fun jnk l =
+      String.isPrefix "WARNING" l orelse
+      String.isPrefix "ERROR" l orelse
+      forall Symbol.is_ascii_blank (Symbol.explode l)
+    val (ls, l) = the_default ([], "") (try split_last (filter_out jnk output))
   in
     if String.isPrefix "unsat" l then ls
     else if String.isPrefix "sat" l then raise_cex true recon ls
--- a/src/HOL/Series.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Series.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -10,7 +10,7 @@
 header{*Finite Summation and Infinite Series*}
 
 theory Series
-imports SEQ
+imports SEQ Deriv
 begin
 
 definition
@@ -285,6 +285,26 @@
 text{*A summable series of positive terms has limit that is at least as
 great as any partial sum.*}
 
+lemma pos_summable:
+  fixes f:: "nat \<Rightarrow> real"
+  assumes pos: "!!n. 0 \<le> f n" and le: "!!n. setsum f {0..<n} \<le> x"
+  shows "summable f"
+proof -
+  have "convergent (\<lambda>n. setsum f {0..<n})" 
+    proof (rule Bseq_mono_convergent)
+      show "Bseq (\<lambda>n. setsum f {0..<n})"
+	by (rule f_inc_g_dec_Beq_f [of "(\<lambda>n. setsum f {0..<n})" "\<lambda>n. x"])
+           (auto simp add: le pos)  
+    next 
+      show "\<forall>m n. m \<le> n \<longrightarrow> setsum f {0..<m} \<le> setsum f {0..<n}"
+	by (auto intro: setsum_mono2 pos) 
+    qed
+  then obtain L where "(%n. setsum f {0..<n}) ----> L"
+    by (blast dest: convergentD)
+  thus ?thesis
+    by (force simp add: summable_def sums_def) 
+qed
+
 lemma series_pos_le:
   fixes f :: "nat \<Rightarrow> real"
   shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 \<le> f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} \<le> suminf f"
@@ -361,6 +381,19 @@
   shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)"
 by (rule geometric_sums [THEN sums_summable])
 
+lemma half: "0 < 1 / (2::'a::{number_ring,division_by_zero,ordered_field})"
+  by arith 
+
+lemma power_half_series: "(\<lambda>n. (1/2::real)^Suc n) sums 1"
+proof -
+  have 2: "(\<lambda>n. (1/2::real)^n) sums 2" using geometric_sums [of "1/2::real"]
+    by auto
+  have "(\<lambda>n. (1/2::real)^Suc n) = (\<lambda>n. (1 / 2) ^ n / 2)"
+    by simp
+  thus ?thesis using divide.sums [OF 2, of 2]
+    by simp
+qed
+
 text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*}
 
 lemma summable_convergent_sumr_iff:
--- a/src/HOL/SetInterval.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/SetInterval.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -9,7 +9,7 @@
 header {* Set intervals *}
 
 theory SetInterval
-imports Int
+imports Int Nat_Transfer
 begin
 
 context ord
@@ -1150,4 +1150,41 @@
   "\<Prod>i\<le>n. t" == "CONST setprod (\<lambda>i. t) {..n}"
   "\<Prod>i<n. t" == "CONST setprod (\<lambda>i. t) {..<n}"
 
+subsection {* Transfer setup *}
+
+lemma transfer_nat_int_set_functions:
+    "{..n} = nat ` {0..int n}"
+    "{m..n} = nat ` {int m..int n}"  (* need all variants of these! *)
+  apply (auto simp add: image_def)
+  apply (rule_tac x = "int x" in bexI)
+  apply auto
+  apply (rule_tac x = "int x" in bexI)
+  apply auto
+  done
+
+lemma transfer_nat_int_set_function_closures:
+    "x >= 0 \<Longrightarrow> nat_set {x..y}"
+  by (simp add: nat_set_def)
+
+declare TransferMorphism_nat_int[transfer add
+  return: transfer_nat_int_set_functions
+    transfer_nat_int_set_function_closures
+]
+
+lemma transfer_int_nat_set_functions:
+    "is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}"
+  by (simp only: is_nat_def transfer_nat_int_set_functions
+    transfer_nat_int_set_function_closures
+    transfer_nat_int_set_return_embed nat_0_le
+    cong: transfer_nat_int_set_cong)
+
+lemma transfer_int_nat_set_function_closures:
+    "is_nat x \<Longrightarrow> nat_set {x..y}"
+  by (simp only: transfer_nat_int_set_function_closures is_nat_def)
+
+declare TransferMorphism_int_nat[transfer add
+  return: transfer_int_nat_set_functions
+    transfer_int_nat_set_function_closures
+]
+
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SupInf.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -0,0 +1,462 @@
+(*  Author: Amine Chaieb and L C Paulson, University of Cambridge *)
+
+header {*Sup and Inf Operators on Sets of Reals.*}
+
+theory SupInf
+imports RComplete
+begin
+
+lemma minus_max_eq_min:
+  fixes x :: "'a::{lordered_ab_group_add, linorder}"
+  shows "- (max x y) = min (-x) (-y)"
+by (metis le_imp_neg_le linorder_linear min_max.inf_absorb2 min_max.le_iff_inf min_max.le_iff_sup min_max.sup_absorb1)
+
+lemma minus_min_eq_max:
+  fixes x :: "'a::{lordered_ab_group_add, linorder}"
+  shows "- (min x y) = max (-x) (-y)"
+by (metis minus_max_eq_min minus_minus)
+
+lemma minus_Max_eq_Min [simp]:
+  fixes S :: "'a::{lordered_ab_group_add, linorder} set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Max S) = Min (uminus ` S)"
+proof (induct S rule: finite_ne_induct)
+  case (singleton x)
+  thus ?case by simp
+next
+  case (insert x S)
+  thus ?case by (simp add: minus_max_eq_min) 
+qed
+
+lemma minus_Min_eq_Max [simp]:
+  fixes S :: "'a::{lordered_ab_group_add, linorder} set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Min S) = Max (uminus ` S)"
+proof (induct S rule: finite_ne_induct)
+  case (singleton x)
+  thus ?case by simp
+next
+  case (insert x S)
+  thus ?case by (simp add: minus_min_eq_max) 
+qed
+
+instantiation real :: Sup 
+begin
+definition
+  Sup_real_def [code del]: "Sup X == (LEAST z::real. \<forall>x\<in>X. x\<le>z)"
+
+instance ..
+end
+
+instantiation real :: Inf 
+begin
+definition
+  Inf_real_def [code del]: "Inf (X::real set) == - (Sup (uminus ` X))"
+
+instance ..
+end
+
+subsection{*Supremum of a set of reals*}
+
+lemma Sup_upper [intro]: (*REAL_SUP_UBOUND in HOL4*)
+  fixes x :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "x \<le> Sup X"
+proof (auto simp add: Sup_real_def) 
+  from reals_complete2
+  obtain s where s: "(\<forall>y\<in>X. y \<le> s) & (\<forall>z. ((\<forall>y\<in>X. y \<le> z) --> s \<le> z))"
+    by (blast intro: x z)
+  hence "x \<le> s"
+    by (blast intro: x z)
+  also with s have "... = (LEAST z. \<forall>x\<in>X. x \<le> z)"
+    by (fast intro: Least_equality [symmetric])  
+  finally show "x \<le> (LEAST z. \<forall>x\<in>X. x \<le> z)" .
+qed
+
+lemma Sup_least [intro]: (*REAL_IMP_SUP_LE in HOL4*)
+  fixes z :: real
+  assumes x: "X \<noteq> {}"
+      and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "Sup X \<le> z"
+proof (auto simp add: Sup_real_def) 
+  from reals_complete2 x
+  obtain s where s: "(\<forall>y\<in>X. y \<le> s) & (\<forall>z. ((\<forall>y\<in>X. y \<le> z) --> s \<le> z))"
+    by (blast intro: z)
+  hence "(LEAST z. \<forall>x\<in>X. x \<le> z) = s"
+    by (best intro: Least_equality)  
+  also with s z have "... \<le> z"
+    by blast
+  finally show "(LEAST z. \<forall>x\<in>X. x \<le> z) \<le> z" .
+qed
+
+lemma Sup_singleton [simp]: "Sup {x::real} = x"
+  by (force intro: Least_equality simp add: Sup_real_def)
+ 
+lemma Sup_eq_maximum: (*REAL_SUP_MAX in HOL4*)
+  fixes z :: real
+  assumes X: "z \<in> X" and z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows  "Sup X = z"
+  by (force intro: Least_equality X z simp add: Sup_real_def)
+ 
+lemma Sup_upper2: (*REAL_IMP_LE_SUP in HOL4*)
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> (!!x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> y \<le> Sup X"
+  by (metis Sup_upper real_le_trans)
+
+lemma Sup_real_iff : (*REAL_SUP_LE in HOL4*)
+  fixes z :: real
+  shows "X ~= {} ==> (!!x. x \<in> X ==> x \<le> z) ==> (\<exists>x\<in>X. y<x) <-> y < Sup X"
+  by (metis Sup_least Sup_upper linorder_not_le le_less_trans)
+
+lemma Sup_eq:
+  fixes a :: real
+  shows "(!!x. x \<in> X \<Longrightarrow> x \<le> a) 
+        \<Longrightarrow> (!!y. (!!x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y) \<Longrightarrow> Sup X = a"
+  by (metis Sup_least Sup_upper add_le_cancel_left diff_add_cancel insert_absorb
+        insert_not_empty real_le_anti_sym)
+
+lemma Sup_le:
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> S *<= b \<Longrightarrow> Sup S \<le> b"
+by (metis SupInf.Sup_least setle_def)
+
+lemma Sup_upper_EX: 
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> \<exists>z. \<forall>x. x \<in> X \<longrightarrow> x \<le> z \<Longrightarrow>  x \<le> Sup X"
+  by blast
+
+lemma Sup_insert_nonempty: 
+  fixes x :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "Sup (insert a X) = max a (Sup X)"
+proof (cases "Sup X \<le> a")
+  case True
+  thus ?thesis
+    apply (simp add: max_def) 
+    apply (rule Sup_eq_maximum)
+    apply (metis insertCI)
+    apply (metis Sup_upper insertE le_iff_sup real_le_linear real_le_trans sup_absorb1 z)     
+    done
+next
+  case False
+  hence 1:"a < Sup X" by simp
+  have "Sup X \<le> Sup (insert a X)"
+    apply (rule Sup_least)
+    apply (metis empty_psubset_nonempty psubset_eq x)
+    apply (rule Sup_upper_EX) 
+    apply blast
+    apply (metis insert_iff real_le_linear real_le_refl real_le_trans z)
+    done
+  moreover 
+  have "Sup (insert a X) \<le> Sup X"
+    apply (rule Sup_least)
+    apply blast
+    apply (metis False Sup_upper insertE real_le_linear z) 
+    done
+  ultimately have "Sup (insert a X) = Sup X"
+    by (blast intro:  antisym )
+  thus ?thesis
+    by (metis 1 min_max.le_iff_sup real_less_def)
+qed
+
+lemma Sup_insert_if: 
+  fixes X :: "real set"
+  assumes z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "Sup (insert a X) = (if X={} then a else max a (Sup X))"
+by auto (metis Sup_insert_nonempty z) 
+
+lemma Sup: 
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> (\<exists>b. S *<= b) \<Longrightarrow> isLub UNIV S (Sup S)"
+by  (auto simp add: isLub_def setle_def leastP_def isUb_def intro!: setgeI) 
+
+lemma Sup_finite_Max: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "Sup S = Max S"
+using fS Se
+proof-
+  let ?m = "Max S"
+  from Max_ge[OF fS] have Sm: "\<forall> x\<in> S. x \<le> ?m" by metis
+  with Sup[OF Se] have lub: "isLub UNIV S (Sup S)" by (metis setle_def)
+  from Max_in[OF fS Se] lub have mrS: "?m \<le> Sup S"
+    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def)
+  moreover
+  have "Sup S \<le> ?m" using Sm lub
+    by (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def)
+  ultimately  show ?thesis by arith
+qed
+
+lemma Sup_finite_in:
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "Sup S \<in> S"
+  using Sup_finite_Max[OF fS Se] Max_in[OF fS Se] by metis
+
+lemma Sup_finite_ge_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a \<le> Sup S \<longleftrightarrow> (\<exists> x \<in> S. a \<le> x)"
+by (metis Max_ge Se Sup_finite_Max Sup_finite_in fS linorder_not_le less_le_trans)
+
+lemma Sup_finite_le_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a \<ge> Sup S \<longleftrightarrow> (\<forall> x \<in> S. a \<ge> x)"
+by (metis Max_ge Se Sup_finite_Max Sup_finite_in fS le_iff_sup real_le_trans) 
+
+lemma Sup_finite_gt_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a < Sup S \<longleftrightarrow> (\<exists> x \<in> S. a < x)"
+by (metis Se Sup_finite_le_iff fS linorder_not_less)
+
+lemma Sup_finite_lt_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a > Sup S \<longleftrightarrow> (\<forall> x \<in> S. a > x)"
+by (metis Se Sup_finite_ge_iff fS linorder_not_less)
+
+lemma Sup_unique:
+  fixes S :: "real set"
+  shows "S *<= b \<Longrightarrow> (\<forall>b' < b. \<exists>x \<in> S. b' < x) \<Longrightarrow> Sup S = b"
+unfolding setle_def
+apply (rule Sup_eq, auto) 
+apply (metis linorder_not_less) 
+done
+
+lemma Sup_abs_le:
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> (\<forall>x\<in>S. \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>Sup S\<bar> \<le> a"
+by (auto simp add: abs_le_interval_iff) (metis Sup_upper2) 
+
+lemma Sup_bounds:
+  fixes S :: "real set"
+  assumes Se: "S \<noteq> {}" and l: "a <=* S" and u: "S *<= b"
+  shows "a \<le> Sup S \<and> Sup S \<le> b"
+proof-
+  from Sup[OF Se] u have lub: "isLub UNIV S (Sup S)" by blast
+  hence b: "Sup S \<le> b" using u 
+    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def) 
+  from Se obtain y where y: "y \<in> S" by blast
+  from lub l have "a \<le> Sup S"
+    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def)
+       (metis le_iff_sup le_sup_iff y)
+  with b show ?thesis by blast
+qed
+
+lemma Sup_asclose: 
+  fixes S :: "real set"
+  assumes S:"S \<noteq> {}" and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" shows "\<bar>Sup S - l\<bar> \<le> e"
+proof-
+  have th: "\<And>(x::real) l e. \<bar>x - l\<bar> \<le> e \<longleftrightarrow> l - e \<le> x \<and> x \<le> l + e" by arith
+  thus ?thesis using S b Sup_bounds[of S "l - e" "l+e"] unfolding th
+    by  (auto simp add: setge_def setle_def)
+qed
+
+
+subsection{*Infimum of a set of reals*}
+
+lemma Inf_lower [intro]: 
+  fixes z :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "Inf X \<le> x"
+proof -
+  have "-x \<le> Sup (uminus ` X)"
+    by (rule Sup_upper [where z = "-z"]) (auto simp add: image_iff x z)
+  thus ?thesis 
+    by (auto simp add: Inf_real_def)
+qed
+
+lemma Inf_greatest [intro]: 
+  fixes z :: real
+  assumes x: "X \<noteq> {}"
+      and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "z \<le> Inf X"
+proof -
+  have "Sup (uminus ` X) \<le> -z" using x z by (force intro: Sup_least)
+  hence "z \<le> - Sup (uminus ` X)"
+    by simp
+  thus ?thesis 
+    by (auto simp add: Inf_real_def)
+qed
+
+lemma Inf_singleton [simp]: "Inf {x::real} = x"
+  by (simp add: Inf_real_def) 
+ 
+lemma Inf_eq_minimum: (*REAL_INF_MIN in HOL4*)
+  fixes z :: real
+  assumes x: "z \<in> X" and z: "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows  "Inf X = z"
+proof -
+  have "Sup (uminus ` X) = -z" using x z
+    by (force intro: Sup_eq_maximum x z)
+  thus ?thesis
+    by (simp add: Inf_real_def) 
+qed
+ 
+lemma Inf_lower2:
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> (!!x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X \<le> y"
+  by (metis Inf_lower real_le_trans)
+
+lemma Inf_real_iff:
+  fixes z :: real
+  shows "X \<noteq> {} \<Longrightarrow> (!!x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> (\<exists>x\<in>X. x<y) \<longleftrightarrow> Inf X < y"
+  by (metis Inf_greatest Inf_lower less_le_not_le real_le_linear 
+            order_less_le_trans)
+
+lemma Inf_eq:
+  fixes a :: real
+  shows "(!!x. x \<in> X \<Longrightarrow> a \<le> x) \<Longrightarrow> (!!y. (!!x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a) \<Longrightarrow> Inf X = a"
+  by (metis Inf_greatest Inf_lower add_le_cancel_left diff_add_cancel
+        insert_absorb insert_not_empty real_le_anti_sym)
+
+lemma Inf_ge: 
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> b <=* S \<Longrightarrow> Inf S \<ge> b"
+by (metis SupInf.Inf_greatest setge_def)
+
+lemma Inf_lower_EX: 
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> \<exists>z. \<forall>x. x \<in> X \<longrightarrow> z \<le> x \<Longrightarrow> Inf X \<le> x"
+  by blast
+
+lemma Inf_insert_nonempty: 
+  fixes x :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "Inf (insert a X) = min a (Inf X)"
+proof (cases "a \<le> Inf X")
+  case True
+  thus ?thesis
+    by (simp add: min_def)
+       (blast intro: Inf_eq_minimum Inf_lower real_le_refl real_le_trans z) 
+next
+  case False
+  hence 1:"Inf X < a" by simp
+  have "Inf (insert a X) \<le> Inf X"
+    apply (rule Inf_greatest)
+    apply (metis empty_psubset_nonempty psubset_eq x)
+    apply (rule Inf_lower_EX) 
+    apply (blast intro: elim:) 
+    apply (metis insert_iff real_le_linear real_le_refl real_le_trans z)
+    done
+  moreover 
+  have "Inf X \<le> Inf (insert a X)"
+    apply (rule Inf_greatest)
+    apply blast
+    apply (metis False Inf_lower insertE real_le_linear z) 
+    done
+  ultimately have "Inf (insert a X) = Inf X"
+    by (blast intro:  antisym )
+  thus ?thesis
+    by (metis False min_max.inf_absorb2 real_le_linear)
+qed
+
+lemma Inf_insert_if: 
+  fixes X :: "real set"
+  assumes z:  "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "Inf (insert a X) = (if X={} then a else min a (Inf X))"
+by auto (metis Inf_insert_nonempty z) 
+
+lemma Inf_greater:
+  fixes z :: real
+  shows "X \<noteq> {} \<Longrightarrow>  Inf X < z \<Longrightarrow> \<exists>x \<in> X. x < z"
+  by (metis Inf_real_iff mem_def not_leE)
+
+lemma Inf_close:
+  fixes e :: real
+  shows "X \<noteq> {} \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>x \<in> X. x < Inf X + e"
+  by (metis add_strict_increasing comm_monoid_add.mult_commute Inf_greater linorder_not_le pos_add_strict)
+
+lemma Inf_finite_Min:
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> Inf S = Min S"
+by (simp add: Inf_real_def Sup_finite_Max image_image) 
+
+lemma Inf_finite_in: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "Inf S \<in> S"
+  using Inf_finite_Min[OF fS Se] Min_in[OF fS Se] by metis
+
+lemma Inf_finite_ge_iff: 
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall> x \<in> S. a \<le> x)"
+by (metis Inf_finite_Min Inf_finite_in Min_le real_le_trans)
+
+lemma Inf_finite_le_iff:
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a \<ge> Inf S \<longleftrightarrow> (\<exists> x \<in> S. a \<ge> x)"
+by (metis Inf_finite_Min Inf_finite_ge_iff Inf_finite_in Min_le
+          real_le_anti_sym real_le_linear)
+
+lemma Inf_finite_gt_iff: 
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a < Inf S \<longleftrightarrow> (\<forall> x \<in> S. a < x)"
+by (metis Inf_finite_le_iff linorder_not_less)
+
+lemma Inf_finite_lt_iff: 
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a > Inf S \<longleftrightarrow> (\<exists> x \<in> S. a > x)"
+by (metis Inf_finite_ge_iff linorder_not_less)
+
+lemma Inf_unique:
+  fixes S :: "real set"
+  shows "b <=* S \<Longrightarrow> (\<forall>b' > b. \<exists>x \<in> S. b' > x) \<Longrightarrow> Inf S = b"
+unfolding setge_def
+apply (rule Inf_eq, auto) 
+apply (metis less_le_not_le linorder_not_less) 
+done
+
+lemma Inf_abs_ge:
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> (\<forall>x\<in>S. \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>Inf S\<bar> \<le> a"
+by (simp add: Inf_real_def) (rule Sup_abs_le, auto) 
+
+lemma Inf_asclose:
+  fixes S :: "real set"
+  assumes S:"S \<noteq> {}" and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" shows "\<bar>Inf S - l\<bar> \<le> e"
+proof -
+  have "\<bar>- Sup (uminus ` S) - l\<bar> =  \<bar>Sup (uminus ` S) - (-l)\<bar>"
+    by auto
+  also have "... \<le> e" 
+    apply (rule Sup_asclose) 
+    apply (auto simp add: S)
+    apply (metis abs_minus_add_cancel b comm_monoid_add.mult_commute real_diff_def) 
+    done
+  finally have "\<bar>- Sup (uminus ` S) - l\<bar> \<le> e" .
+  thus ?thesis
+    by (simp add: Inf_real_def)
+qed
+
+subsection{*Relate max and min to Sup and Inf.*}
+
+lemma real_max_Sup:
+  fixes x :: real
+  shows "max x y = Sup {x,y}"
+proof-
+  have f: "finite {x, y}" "{x,y} \<noteq> {}"  by simp_all
+  from Sup_finite_le_iff[OF f, of "max x y"] have "Sup {x,y} \<le> max x y" by simp
+  moreover
+  have "max x y \<le> Sup {x,y}" using Sup_finite_ge_iff[OF f, of "max x y"]
+    by (simp add: linorder_linear)
+  ultimately show ?thesis by arith
+qed
+
+lemma real_min_Inf: 
+  fixes x :: real
+  shows "min x y = Inf {x,y}"
+proof-
+  have f: "finite {x, y}" "{x,y} \<noteq> {}"  by simp_all
+  from Inf_finite_le_iff[OF f, of "min x y"] have "Inf {x,y} \<le> min x y"
+    by (simp add: linorder_linear)
+  moreover
+  have "min x y \<le> Inf {x,y}" using Inf_finite_ge_iff[OF f, of "min x y"]
+    by simp
+  ultimately show ?thesis by arith
+qed
+
+end
--- a/src/HOL/Tools/ATP_Manager/atp_manager.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/ATP_Manager/atp_manager.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -254,7 +254,7 @@
     NONE => warning ("Unknown external prover: " ^ quote name)
   | SOME prover =>
       let
-        val full_goal as (ctxt, (_, goal)) = Proof.get_goal proof_state;
+        val {context = ctxt, facts, goal} = Proof.raw_goal proof_state; (* FIXME Proof.goal *)
         val desc =
           "external prover " ^ quote name ^ " for subgoal " ^ string_of_int i ^ ":\n" ^
             Syntax.string_of_term ctxt (Thm.term_of (Thm.cprem_of goal i));
@@ -262,7 +262,7 @@
         val _ = SimpleThread.fork true (fn () =>
           let
             val _ = register birth_time death_time (Thread.self (), desc);
-            val problem = ATP_Wrapper.problem_of_goal (! full_types) i full_goal;
+            val problem = ATP_Wrapper.problem_of_goal (! full_types) i (ctxt, (facts, goal));
             val result =
               let val {success, message, ...} = prover (! timeout) problem;
               in (success, message) end
--- a/src/HOL/Tools/ATP_Manager/atp_minimal.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/ATP_Manager/atp_minimal.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -104,10 +104,11 @@
     val _ = priority ("Testing " ^ string_of_int (length name_thms_pairs) ^ " theorems... ")
     val name_thm_pairs = maps (fn (n, ths) => map (pair n) ths) name_thms_pairs
     val axclauses = ResAxioms.cnf_rules_pairs (Proof.theory_of state) name_thm_pairs
+    val {context = ctxt, facts, goal} = Proof.raw_goal state   (* FIXME ?? *)
     val problem =
      {with_full_types = ! ATP_Manager.full_types,
       subgoal = subgoalno,
-      goal = Proof.get_goal state,
+      goal = (ctxt, (facts, goal)),
       axiom_clauses = SOME axclauses,
       filtered_clauses = filtered}
     val (result, proof) = produce_answer (prover time_limit problem)
--- a/src/HOL/Tools/Datatype/datatype_abs_proofs.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Datatype/datatype_abs_proofs.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -153,13 +153,17 @@
         (descr' ~~ recTs ~~ rec_sets') ([], 0);
 
     val ({intrs = rec_intrs, elims = rec_elims, ...}, thy1) =
-        Inductive.add_inductive_global (serial ())
+      thy0
+      |> Sign.map_naming Name_Space.conceal
+      |> Inductive.add_inductive_global (serial ())
           {quiet_mode = #quiet config, verbose = false, kind = Thm.internalK,
             alt_name = Binding.name big_rec_name', coind = false, no_elim = false, no_ind = true,
             skip_mono = true, fork_mono = false}
           (map (fn (s, T) => ((Binding.name s, T), NoSyn)) (rec_set_names' ~~ rec_set_Ts))
           (map dest_Free rec_fns)
-          (map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) [] thy0;
+          (map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) []
+      ||> Sign.restore_naming thy0
+      ||> Theory.checkpoint;
 
     (* prove uniqueness and termination of primrec combinators *)
 
--- a/src/HOL/Tools/Datatype/datatype_rep_proofs.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Datatype/datatype_rep_proofs.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -170,12 +170,16 @@
         ((1 upto (length constrs)) ~~ constrs)) (descr' ~~ rep_set_names');
 
     val ({raw_induct = rep_induct, intrs = rep_intrs, ...}, thy2) =
-        Inductive.add_inductive_global (serial ())
+      thy1
+      |> Sign.map_naming Name_Space.conceal
+      |> Inductive.add_inductive_global (serial ())
           {quiet_mode = #quiet config, verbose = false, kind = Thm.internalK,
            alt_name = Binding.name big_rec_name, coind = false, no_elim = true, no_ind = false,
            skip_mono = true, fork_mono = false}
           (map (fn s => ((Binding.name s, UnivT'), NoSyn)) rep_set_names') []
-          (map (fn x => (Attrib.empty_binding, x)) intr_ts) [] thy1;
+          (map (fn x => (Attrib.empty_binding, x)) intr_ts) []
+      ||> Sign.restore_naming thy1
+      ||> Theory.checkpoint;
 
     (********************************* typedef ********************************)
 
--- a/src/HOL/Tools/Function/function_core.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Function/function_core.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -488,7 +488,9 @@
               |> Syntax.check_term lthy
 
       val ((f, (_, f_defthm)), lthy) =
-        LocalTheory.define Thm.internalK ((Binding.name (function_name fname), mixfix), ((Binding.name fdefname, []), f_def)) lthy
+        LocalTheory.define Thm.internalK
+          ((Binding.name (function_name fname), mixfix),
+            ((Binding.conceal (Binding.name fdefname), []), f_def)) lthy
     in
       ((f, f_defthm), lthy)
     end
--- a/src/HOL/Tools/Function/inductive_wrap.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Function/inductive_wrap.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -39,7 +39,9 @@
 fun inductive_def defs (((R, T), mixfix), lthy) =
     let
       val ({intrs = intrs_gen, elims = [elim_gen], preds = [ Rdef ], induct, ...}, lthy) =
-          Inductive.add_inductive_i
+        lthy
+        |> LocalTheory.conceal
+        |> Inductive.add_inductive_i
             {quiet_mode = false,
               verbose = ! Toplevel.debug,
               kind = Thm.internalK,
@@ -53,7 +55,7 @@
             [] (* no parameters *)
             (map (fn t => (Attrib.empty_binding, t)) defs) (* the intros *)
             [] (* no special monos *)
-            lthy
+        ||> LocalTheory.restore_naming lthy
 
       val intrs = map2 (requantify lthy (R, T)) defs intrs_gen
                   
--- a/src/HOL/Tools/Function/mutual.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Function/mutual.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -146,9 +146,9 @@
       fun def ((MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs, f_def, ...}), (_, mixfix)) lthy =
           let
             val ((f, (_, f_defthm)), lthy') =
-              LocalTheory.define Thm.internalK ((Binding.name fname, mixfix),
-                                            ((Binding.name (fname ^ "_def"), []), Term.subst_bound (fsum, f_def)))
-                              lthy
+              LocalTheory.define Thm.internalK
+                ((Binding.name fname, mixfix),
+                  (apfst Binding.conceal Attrib.empty_binding, Term.subst_bound (fsum, f_def))) lthy
           in
             (MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs=cargTs, f_def=f_def,
                          f=SOME f, f_defthm=SOME f_defthm },
--- a/src/HOL/Tools/Nitpick/nitpick.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -854,7 +854,7 @@
 fun pick_nits_in_subgoal state params auto subgoal =
   let
     val ctxt = Proof.context_of state
-    val t = state |> Proof.get_goal |> snd |> snd |> prop_of
+    val t = state |> Proof.raw_goal |> #goal |> prop_of
   in
     if Logic.count_prems t = 0 then
       (priority "No subgoal!"; ("none", state))
--- a/src/HOL/Tools/Nitpick/nitpick_isar.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_isar.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -417,7 +417,7 @@
   let
     val thy = Proof.theory_of state
     val ctxt = Proof.context_of state
-    val thm = snd (snd (Proof.get_goal state))
+    val thm = #goal (Proof.raw_goal state)
     val _ = List.app check_raw_param override_params
     val params as {blocking, debug, ...} =
       extract_params ctxt auto (default_raw_params thy) override_params
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_fun.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_fun.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -368,14 +368,18 @@
         if is_some (try (map (cterm_of thy)) intr_ts) then
           let
             val (ind_result, thy') =
-              Inductive.add_inductive_global (serial ())
+              thy
+              |> Sign.map_naming Name_Space.conceal
+              |> Inductive.add_inductive_global (serial ())
                 {quiet_mode = false, verbose = false, kind = Thm.internalK,
                   alt_name = Binding.empty, coind = false, no_elim = false,
                   no_ind = false, skip_mono = false, fork_mono = false}
-                (map (fn (s, T) => ((Binding.name s, T), NoSyn)) (distinct (op =) (map dest_Free preds)))
+                (map (fn (s, T) =>
+                  ((Binding.name s, T), NoSyn)) (distinct (op =) (map dest_Free preds)))
                 pnames
                 (map (fn x => (Attrib.empty_binding, x)) intr_ts)
-                [] thy
+                []
+              ||> Sign.restore_naming thy
             val prednames = map (fst o dest_Const) (#preds ind_result)
             (* val rewr_thms = map mk_rewr_eq ((distinct (op =) funs) ~~ (#preds ind_result)) *)
             (* add constants to my table *)
--- a/src/HOL/Tools/inductive.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/inductive.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -592,7 +592,7 @@
 (** specification of (co)inductive predicates **)
 
 fun mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts monos params cnames_syn ctxt =
-  let
+  let  (* FIXME proper naming convention: lthy *)
     val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
 
     val argTs = fold (combine (op =) o arg_types_of (length params)) cs [];
@@ -649,30 +649,37 @@
         Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
       else alt_name;
 
-    val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
-      LocalTheory.define Thm.internalK
+    val ((rec_const, (_, fp_def)), ctxt') = ctxt
+      |> LocalTheory.conceal
+      |> LocalTheory.define Thm.internalK
         ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
          (Attrib.empty_binding, fold_rev lambda params
-           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
+           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)))
+      ||> LocalTheory.restore_naming ctxt;
     val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
       (cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
-    val specs = if length cs < 2 then [] else
-      map_index (fn (i, (name_mx, c)) =>
-        let
-          val Ts = arg_types_of (length params) c;
-          val xs = map Free (Variable.variant_frees ctxt intr_ts
-            (mk_names "x" (length Ts) ~~ Ts))
-        in
-          (name_mx, (Attrib.empty_binding, fold_rev lambda (params @ xs)
-            (list_comb (rec_const, params @ make_bool_args' bs i @
-              make_args argTs (xs ~~ Ts)))))
-        end) (cnames_syn ~~ cs);
-    val (consts_defs, ctxt'') = fold_map (LocalTheory.define Thm.internalK) specs ctxt';
+    val specs =
+      if length cs < 2 then []
+      else
+        map_index (fn (i, (name_mx, c)) =>
+          let
+            val Ts = arg_types_of (length params) c;
+            val xs = map Free (Variable.variant_frees ctxt intr_ts
+              (mk_names "x" (length Ts) ~~ Ts))
+          in
+            (name_mx, (Attrib.empty_binding, fold_rev lambda (params @ xs)
+              (list_comb (rec_const, params @ make_bool_args' bs i @
+                make_args argTs (xs ~~ Ts)))))
+          end) (cnames_syn ~~ cs);
+    val (consts_defs, ctxt'') = ctxt'
+      |> LocalTheory.conceal
+      |> fold_map (LocalTheory.define Thm.internalK) specs
+      ||> LocalTheory.restore_naming ctxt';
     val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
 
     val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt'';
     val ((_, [mono']), ctxt''') =
-      LocalTheory.note Thm.internalK (Attrib.empty_binding, [mono]) ctxt'';
+      LocalTheory.note Thm.internalK (apfst Binding.conceal Attrib.empty_binding, [mono]) ctxt'';
 
   in (ctxt''', rec_name, mono', fp_def', map (#2 o #2) consts_defs,
     list_comb (rec_const, params), preds, argTs, bs, xs)
@@ -697,7 +704,8 @@
     val (intrs', ctxt1) =
       ctxt |>
       LocalTheory.notes kind
-        (map (rec_qualified false) intr_bindings ~~ intr_atts ~~ map (fn th => [([th],
+        (map (rec_qualified false) intr_bindings ~~ intr_atts ~~
+          map (fn th => [([th],
            [Attrib.internal (K (ContextRules.intro_query NONE)),
             Attrib.internal (K Nitpick_Intros.add)])]) intrs) |>>
       map (hd o snd);
--- a/src/HOL/Tools/inductive_set.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/inductive_set.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -407,7 +407,7 @@
 fun add_ind_set_def
     {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
     cs intros monos params cnames_syn ctxt =
-  let
+  let (* FIXME proper naming convention: lthy *)
     val thy = ProofContext.theory_of ctxt;
     val {set_arities, pred_arities, to_pred_simps, ...} =
       PredSetConvData.get (Context.Proof ctxt);
@@ -419,7 +419,8 @@
     val new_arities = filter_out
       (fn (x as Free (_, T), _) => x mem params andalso length (binder_types T) > 1
         | _ => false) (fold (snd #> infer) intros []);
-    val params' = map (fn x => (case AList.lookup op = new_arities x of
+    val params' = map (fn x =>
+      (case AList.lookup op = new_arities x of
         SOME fs =>
           let
             val T = HOLogic.dest_setT (fastype_of x);
@@ -482,11 +483,14 @@
         cs' intros' monos' params1 cnames_syn' ctxt;
 
     (* define inductive sets using previously defined predicates *)
-    val (defs, ctxt2) = fold_map (LocalTheory.define Thm.internalK)
-      (map (fn ((c_syn, (fs, U, _)), p) => (c_syn, (Attrib.empty_binding,
-         fold_rev lambda params (HOLogic.Collect_const U $
-           HOLogic.mk_psplits fs U HOLogic.boolT (list_comb (p, params3))))))
-         (cnames_syn ~~ cs_info ~~ preds)) ctxt1;
+    val (defs, ctxt2) = ctxt1
+      |> LocalTheory.conceal  (* FIXME ?? *)
+      |> fold_map (LocalTheory.define Thm.internalK)
+        (map (fn ((c_syn, (fs, U, _)), p) => (c_syn, (Attrib.empty_binding,
+           fold_rev lambda params (HOLogic.Collect_const U $
+             HOLogic.mk_psplits fs U HOLogic.boolT (list_comb (p, params3))))))
+           (cnames_syn ~~ cs_info ~~ preds))
+      ||> LocalTheory.restore_naming ctxt1;
 
     (* prove theorems for converting predicate to set notation *)
     val ctxt3 = fold
--- a/src/HOL/Tools/int_arith.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/int_arith.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -98,9 +98,7 @@
   #> Lin_Arith.add_lessD @{thm zless_imp_add1_zle}
   #> Lin_Arith.add_simps (@{thms simp_thms} @ @{thms arith_simps} @ @{thms rel_simps}
       @ @{thms arith_special} @ @{thms int_arith_rules})
-  #> Lin_Arith.add_simprocs (Numeral_Simprocs.assoc_fold_simproc :: zero_one_idom_simproc
-      :: Numeral_Simprocs.combine_numerals
-      :: Numeral_Simprocs.cancel_numerals)
+  #> Lin_Arith.add_simprocs [zero_one_idom_simproc]
   #> Lin_Arith.set_number_of number_of
   #> Lin_Arith.add_inj_const (@{const_name of_nat}, HOLogic.natT --> HOLogic.intT)
   #> Lin_Arith.add_discrete_type @{type_name Int.int}
--- a/src/HOL/Tools/quickcheck_generators.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/quickcheck_generators.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -84,7 +84,7 @@
     thy
     |> TheoryTarget.instantiation ([tyco], vs, @{sort random})
     |> `(fn lthy => Syntax.check_term lthy eq)
-    |-> (fn eq => Specification.definition (NONE, (apfst (Binding.conceal) Attrib.empty_binding, eq)))
+    |-> (fn eq => Specification.definition (NONE, (apfst Binding.conceal Attrib.empty_binding, eq)))
     |> snd
     |> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
   end;
@@ -177,7 +177,7 @@
         val proj_eqs = map2 (fn v => fn proj => (v, lambda arg proj)) vs projs;
         val proj_defs = map2 (fn Free (name, _) => fn (_, rhs) =>
           ((Binding.conceal (Binding.name name), NoSyn),
-            (apfst (Binding.conceal) Attrib.empty_binding, rhs))) vs proj_eqs;
+            (apfst Binding.conceal Attrib.empty_binding, rhs))) vs proj_eqs;
         val aux_eq' = Pattern.rewrite_term thy proj_eqs [] aux_eq;
         fun prove_eqs aux_simp proj_defs lthy = 
           let
@@ -305,7 +305,7 @@
     |> random_aux_specification prfx random_auxN auxs_eqs
     |> `(fn lthy => map (Syntax.check_term lthy) random_defs)
     |-> (fn random_defs' => fold_map (fn random_def =>
-          Specification.definition (NONE, (apfst (Binding.conceal)
+          Specification.definition (NONE, (apfst Binding.conceal
             Attrib.empty_binding, random_def))) random_defs')
     |> snd
     |> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
--- a/src/HOL/Tools/recdef.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/recdef.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -263,8 +263,9 @@
       error ("No termination condition #" ^ string_of_int i ^
         " in recdef definition of " ^ quote name);
   in
-    Specification.theorem Thm.internalK NONE (K I) (Binding.name bname, atts)
-      [] (Element.Shows [(Attrib.empty_binding, [(HOLogic.mk_Trueprop tc, [])])]) int lthy
+    Specification.theorem Thm.internalK NONE (K I)
+      (Binding.conceal (Binding.name bname), atts) []
+      (Element.Shows [(Attrib.empty_binding, [(HOLogic.mk_Trueprop tc, [])])]) int lthy
   end;
 
 val recdef_tc = gen_recdef_tc Attrib.intern_src Sign.intern_const;
--- a/src/HOL/Tools/refute_isar.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/refute_isar.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -28,7 +28,7 @@
         Toplevel.keep (fn state =>
           let
             val thy = Toplevel.theory_of state;
-            val (_, st) = Proof.flat_goal (Toplevel.proof_of state);
+            val {goal = st, ...} = Proof.raw_goal (Toplevel.proof_of state);
           in Refute.refute_goal thy parms st i end)));
 
 
--- a/src/HOL/Tools/transfer.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/Tools/transfer.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -14,8 +14,15 @@
 structure Transfer : TRANSFER =
 struct
 
-type entry = {inj : thm list, emb : thm list, ret : thm list, cong : thm list,
-  guess : bool, hints : string list};
+type entry = { inj : thm list, emb : thm list, ret : thm list, cong : thm list,
+  guess : bool, hints : string list };
+
+fun merge_entry ({ inj = inj1, emb = emb1, ret = ret1, cong = cong1, guess = guess1, hints = hints1 } : entry,
+  { inj = inj2, emb = emb2, ret = ret2, cong = cong2, guess = guess2, hints = hints2 } : entry) =
+    { inj = merge Thm.eq_thm (inj1, inj2), emb = merge Thm.eq_thm (emb1, emb2),
+      ret = merge Thm.eq_thm (ret1, ret2), cong = merge Thm.eq_thm (cong1, cong2),
+      guess = guess1 andalso guess2, hints = merge (op =) (hints1, hints2) };
+
 type data = simpset * (thm * entry) list;
 
 structure Data = GenericDataFun
@@ -24,7 +31,7 @@
   val empty = (HOL_ss, []);
   val extend  = I;
   fun merge _ ((ss1, e1), (ss2, e2)) =
-    (merge_ss (ss1, ss2), AList.merge Thm.eq_thm (K true) (e1, e2));
+    (merge_ss (ss1, ss2), AList.join Thm.eq_thm (K merge_entry) (e1, e2));
 );
 
 val get = Data.get o Context.Proof;
--- a/src/HOL/ex/Numeral.thy	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/HOL/ex/Numeral.thy	Thu Oct 29 14:03:55 2009 +0100
@@ -5,7 +5,7 @@
 header {* An experimental alternative numeral representation. *}
 
 theory Numeral
-imports Int Inductive
+imports Plain Divides
 begin
 
 subsection {* The @{text num} type *}
--- a/src/Pure/General/name_space.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/General/name_space.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -40,6 +40,7 @@
   val root_path: naming -> naming
   val parent_path: naming -> naming
   val mandatory_path: string -> naming -> naming
+  val transform_binding: naming -> binding -> binding
   val full_name: naming -> binding -> string
   val external_names: naming -> string -> string list
   val declare: bool -> naming -> binding -> T -> string * T
@@ -254,14 +255,17 @@
 
 (* full name *)
 
+fun transform_binding (Naming {conceal = true, ...}) = Binding.conceal
+  | transform_binding _ = I;
+
 fun err_bad binding = error ("Bad name binding " ^ quote (Binding.str_of binding));
 
-fun name_spec (Naming {conceal = conceal1, path, ...}) binding =
+fun name_spec (naming as Naming {path, ...}) raw_binding =
   let
-    val (conceal2, prefix, name) = Binding.dest binding;
+    val binding = transform_binding naming raw_binding;
+    val (concealed, prefix, name) = Binding.dest binding;
     val _ = Long_Name.is_qualified name andalso err_bad binding;
 
-    val concealed = conceal1 orelse conceal2;
     val spec1 = maps (fn (a, b) => map (rpair b) (Long_Name.explode a)) (path @ prefix);
     val spec2 = if name = "" then [] else [(name, true)];
     val spec = spec1 @ spec2;
--- a/src/Pure/Isar/expression.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/expression.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -641,7 +641,8 @@
       |> bodyT = propT ? Sign.add_advanced_trfuns ([], [], [aprop_tr' (length args) name], [])
       |> Sign.declare_const ((bname, predT), NoSyn) |> snd
       |> PureThy.add_defs false
-        [((Binding.map_name Thm.def_name bname, Logic.mk_equals (head, body)), [Thm.kind_internal])];
+        [((Binding.conceal (Binding.map_name Thm.def_name bname), Logic.mk_equals (head, body)),
+          [Thm.kind_internal])];
     val defs_ctxt = ProofContext.init defs_thy |> Variable.declare_term head;
 
     val cert = Thm.cterm_of defs_thy;
@@ -682,7 +683,7 @@
             thy'
             |> Sign.mandatory_path (Binding.name_of aname)
             |> PureThy.note_thmss Thm.internalK
-              [((Binding.name introN, []), [([intro], [Locale.unfold_add])])]
+              [((Binding.conceal (Binding.name introN), []), [([intro], [Locale.unfold_add])])]
             ||> Sign.restore_naming thy';
           in (SOME statement, SOME intro, axioms, thy'') end;
     val (b_pred, b_intro, b_axioms, thy'''') =
@@ -696,8 +697,8 @@
             thy'''
             |> Sign.mandatory_path (Binding.name_of pname)
             |> PureThy.note_thmss Thm.internalK
-                 [((Binding.name introN, []), [([intro], [Locale.intro_add])]),
-                  ((Binding.name axiomsN, []),
+                 [((Binding.conceal (Binding.name introN), []), [([intro], [Locale.intro_add])]),
+                  ((Binding.conceal (Binding.name axiomsN), []),
                     [(map (Drule.standard o Element.conclude_witness) axioms, [])])]
             ||> Sign.restore_naming thy''';
         in (SOME statement, SOME intro, axioms, thy'''') end;
@@ -753,10 +754,10 @@
     val asm = if is_some b_statement then b_statement else a_statement;
 
     val notes =
-      if is_some asm
-      then [(Thm.internalK, [((Binding.suffix_name ("_" ^ axiomsN) bname, []),
-        [([Assumption.assume (cterm_of thy' (the asm))],
-          [(Attrib.internal o K) Locale.witness_add])])])]
+      if is_some asm then
+        [(Thm.internalK, [((Binding.conceal (Binding.suffix_name ("_" ^ axiomsN) bname), []),
+          [([Assumption.assume (cterm_of thy' (the asm))],
+            [(Attrib.internal o K) Locale.witness_add])])])]
       else [];
 
     val notes' = body_elems |>
--- a/src/Pure/Isar/isar_cmd.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/isar_cmd.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -454,7 +454,7 @@
     (case arg of
       NONE =>
         let
-          val (ctxt, thm) = Proof.flat_goal state;
+          val {context = ctxt, goal = thm} = Proof.simple_goal state;
           val thy = ProofContext.theory_of ctxt;
           val prf = Thm.proof_of thm;
           val prop = Thm.full_prop_of thm;
--- a/src/Pure/Isar/isar_syn.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/isar_syn.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -222,22 +222,13 @@
 
 (* constant definitions and abbreviations *)
 
-val constdecl =
-  P.binding --
-    (P.where_ >> K (NONE, NoSyn) ||
-      P.$$$ "::" |-- P.!!! ((P.typ >> SOME) -- P.opt_mixfix' --| P.where_) ||
-      Scan.ahead (P.$$$ "(") |-- P.!!! (P.mixfix' --| P.where_ >> pair NONE))
-  >> P.triple2;
-
-val constdef = Scan.option constdecl -- (SpecParse.opt_thm_name ":" -- P.prop);
-
 val _ =
   OuterSyntax.local_theory "definition" "constant definition" K.thy_decl
-    (constdef >> (fn args => #2 o Specification.definition_cmd args));
+    (SpecParse.constdef >> (fn args => #2 o Specification.definition_cmd args));
 
 val _ =
   OuterSyntax.local_theory "abbreviation" "constant abbreviation" K.thy_decl
-    (opt_mode -- (Scan.option constdecl -- P.prop)
+    (opt_mode -- (Scan.option SpecParse.constdecl -- P.prop)
     >> (fn (mode, args) => Specification.abbreviation_cmd mode args));
 
 val _ =
--- a/src/Pure/Isar/local_theory.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/local_theory.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -15,6 +15,7 @@
   val map_naming: (Name_Space.naming -> Name_Space.naming) -> local_theory -> local_theory
   val conceal: local_theory -> local_theory
   val set_group: serial -> local_theory -> local_theory
+  val restore_naming: local_theory -> local_theory -> local_theory
   val target_of: local_theory -> Proof.context
   val raw_theory_result: (theory -> 'a * theory) -> local_theory -> 'a * local_theory
   val raw_theory: (theory -> theory) -> local_theory -> local_theory
@@ -24,6 +25,8 @@
   val target_result: (Proof.context -> 'a * Proof.context) -> local_theory -> 'a * local_theory
   val target: (Proof.context -> Proof.context) -> local_theory -> local_theory
   val map_contexts: (Context.generic -> Context.generic) -> local_theory -> local_theory
+  val standard_morphism: local_theory -> Proof.context -> morphism
+  val target_morphism: local_theory -> morphism
   val pretty: local_theory -> Pretty.T list
   val abbrev: Syntax.mode -> (binding * mixfix) * term -> local_theory ->
     (term * term) * local_theory
@@ -36,7 +39,6 @@
   val term_syntax: declaration -> local_theory -> local_theory
   val declaration: declaration -> local_theory -> local_theory
   val notation: bool -> Syntax.mode -> (term * mixfix) list -> local_theory -> local_theory
-  val target_morphism: local_theory -> morphism
   val init: string -> operations -> Proof.context -> local_theory
   val restore: local_theory -> local_theory
   val reinit: local_theory -> local_theory
@@ -111,6 +113,8 @@
 val conceal = map_naming Name_Space.conceal;
 val set_group = map_naming o Name_Space.set_group;
 
+val restore_naming = map_naming o K o naming_of;
+
 
 (* target *)
 
@@ -163,6 +167,15 @@
   Context.proof_map f;
 
 
+(* morphisms *)
+
+fun standard_morphism lthy ctxt =
+  ProofContext.norm_export_morphism lthy ctxt $>
+  Morphism.binding_morphism (Name_Space.transform_binding (naming_of lthy));
+
+fun target_morphism lthy = standard_morphism lthy (target_of lthy);
+
+
 (* basic operations *)
 
 fun operation f lthy = f (#operations (get_lthy lthy)) lthy;
@@ -179,9 +192,6 @@
 
 fun note kind (a, ths) = notes kind [(a, [(ths, [])])] #>> the_single;
 
-fun target_morphism lthy =
-  ProofContext.norm_export_morphism lthy (target_of lthy);
-
 fun notation add mode raw_args lthy =
   let val args = map (apfst (Morphism.term (target_morphism lthy))) raw_args
   in term_syntax (ProofContext.target_notation add mode args) lthy end;
@@ -215,14 +225,14 @@
 fun exit_result f (x, lthy) =
   let
     val ctxt = exit lthy;
-    val phi = ProofContext.norm_export_morphism lthy ctxt;
+    val phi = standard_morphism lthy ctxt;
   in (f phi x, ctxt) end;
 
 fun exit_result_global f (x, lthy) =
   let
     val thy = exit_global lthy;
     val thy_ctxt = ProofContext.init thy;
-    val phi = ProofContext.norm_export_morphism lthy thy_ctxt;
+    val phi = standard_morphism lthy thy_ctxt;
   in (f phi x, thy) end;
 
 end;
--- a/src/Pure/Isar/locale.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/locale.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -553,7 +553,8 @@
 fun add_decls add loc decl =
   ProofContext.theory ((change_locale loc o apfst o apfst) (add (decl, stamp ()))) #>
   add_thmss loc Thm.internalK
-    [((Binding.empty, [Attrib.internal (decl_attrib decl)]), [([Drule.dummy_thm], [])])];
+    [((Binding.conceal Binding.empty, [Attrib.internal (decl_attrib decl)]),
+      [([Drule.dummy_thm], [])])];
 
 in
 
--- a/src/Pure/Isar/proof.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/proof.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -29,7 +29,6 @@
   val assert_no_chain: state -> state
   val enter_forward: state -> state
   val goal_message: (unit -> Pretty.T) -> state -> state
-  val get_goal: state -> context * (thm list * thm)
   val show_main_goal: bool Unsynchronized.ref
   val verbose: bool Unsynchronized.ref
   val pretty_state: int -> state -> Pretty.T list
@@ -37,9 +36,11 @@
   val refine: Method.text -> state -> state Seq.seq
   val refine_end: Method.text -> state -> state Seq.seq
   val refine_insert: thm list -> state -> state
-  val flat_goal: state -> Proof.context * thm
   val goal_tac: thm -> int -> tactic
   val refine_goals: (context -> thm -> unit) -> context -> thm list -> state -> state Seq.seq
+  val raw_goal: state -> {context: context, facts: thm list, goal: thm}
+  val goal: state -> {context: context, facts: thm list, goal: thm}
+  val simple_goal: state -> {context: context, goal: thm}
   val match_bind: (string list * string) list -> state -> state
   val match_bind_i: (term list * term) list -> state -> state
   val let_bind: (string list * string) list -> state -> state
@@ -436,12 +437,6 @@
 
 end;
 
-fun flat_goal state =
-  let
-    val (_, (using, _)) = get_goal state;
-    val (ctxt, (_, goal)) = get_goal (refine_insert using state);
-  in (ctxt, goal) end;
-
 
 (* refine via sub-proof *)
 
@@ -508,6 +503,21 @@
   in recover_result propss results end;
 
 
+(* goal views -- corresponding to methods *)
+
+fun raw_goal state =
+  let val (ctxt, (facts, goal)) = get_goal state
+  in {context = ctxt, facts = facts, goal = goal} end;
+
+val goal = raw_goal o refine_insert [];
+
+fun simple_goal state =
+  let
+    val (_, (facts, _)) = get_goal state;
+    val (ctxt, (_, goal)) = get_goal (refine_insert facts state);
+  in {context = ctxt, goal = goal} end;
+
+
 
 (*** structured proof commands ***)
 
--- a/src/Pure/Isar/spec_parse.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/spec_parse.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -18,6 +18,8 @@
   val xthm: (Facts.ref * Attrib.src list) parser
   val xthms1: (Facts.ref * Attrib.src list) list parser
   val name_facts: (Attrib.binding * (Facts.ref * Attrib.src list) list) list parser
+  val constdecl: (binding * string option * mixfix) parser
+  val constdef: ((binding * string option * mixfix) option * (Attrib.binding * string)) parser
   val locale_mixfix: mixfix parser
   val locale_fixes: (binding * string option * mixfix) list parser
   val locale_insts: (string option list * (Attrib.binding * string) list) parser
@@ -66,6 +68,18 @@
 val name_facts = P.and_list1 (opt_thm_name "=" -- xthms1);
 
 
+(* basic constant specifications *)
+
+val constdecl =
+  P.binding --
+    (P.where_ >> K (NONE, NoSyn) ||
+      P.$$$ "::" |-- P.!!! ((P.typ >> SOME) -- P.opt_mixfix' --| P.where_) ||
+      Scan.ahead (P.$$$ "(") |-- P.!!! (P.mixfix' --| P.where_ >> pair NONE))
+  >> P.triple2;
+
+val constdef = Scan.option constdecl -- (opt_thm_name ":" -- P.prop);
+
+
 (* locale and context elements *)
 
 val locale_mixfix = P.$$$ "(" -- P.$$$ "structure" -- P.!!! (P.$$$ ")") >> K Structure || P.mixfix;
--- a/src/Pure/Isar/theory_target.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Isar/theory_target.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -181,9 +181,10 @@
     val similar_body = Type.similar_types (rhs, rhs');
     (* FIXME workaround based on educated guess *)
     val prefix' = Binding.prefix_of b';
-    val class_global = Binding.eq_name (b, b')
-      andalso not (null prefix')
-      andalso (fst o snd o split_last) prefix' = Class_Target.class_prefix target;
+    val class_global =
+      Binding.eq_name (b, b') andalso
+      not (null prefix') andalso
+      fst (snd (split_last prefix')) = Class_Target.class_prefix target;
   in
     not (is_class andalso (similar_body orelse class_global)) ?
       (Context.mapping_result
@@ -202,7 +203,7 @@
     val xs = filter depends (#1 (ProofContext.inferred_fixes (LocalTheory.target_of lthy)));
     val U = map #2 xs ---> T;
     val (mx1, mx2, mx3) = fork_mixfix ta mx;
-    val declare_const =
+    val (const, lthy') = lthy |>
       (case Class_Target.instantiation_param lthy b of
         SOME c' =>
           if mx3 <> NoSyn then syntax_error c'
@@ -215,7 +216,6 @@
                 else LocalTheory.theory_result (Overloading.declare (c', U))
                   ##> Overloading.confirm b
             | NONE => LocalTheory.theory_result (Sign.declare_const ((b, U), mx3))));
-    val (const, lthy') = lthy |> declare_const;
     val t = Term.list_comb (const, map Free xs);
   in
     lthy'
@@ -275,13 +275,13 @@
 
     (*def*)
     val (global_def, lthy3) = lthy2
-      |> LocalTheory.theory_result (case Overloading.operation lthy b of
-          SOME (_, checked) =>
-            Overloading.define checked name' ((fst o dest_Const) lhs', rhs')
+      |> LocalTheory.theory_result
+        (case Overloading.operation lthy b of
+          SOME (_, checked) => Overloading.define checked name' (fst (dest_Const lhs'), rhs')
         | NONE =>
             if is_none (Class_Target.instantiation_param lthy b)
             then Thm.add_def false false (name', Logic.mk_equals (lhs', rhs'))
-            else AxClass.define_overloaded name' ((fst o dest_Const) lhs', rhs'));
+            else AxClass.define_overloaded name' (fst (dest_Const lhs'), rhs'));
     val def = LocalDefs.trans_terms lthy3
       [(*c == global.c xs*)     local_def,
        (*global.c xs == rhs'*)  global_def,
@@ -341,6 +341,9 @@
 fun context "-" thy = init NONE thy
   | context target thy = init (SOME (Locale.intern thy target)) thy;
 
+
+(* other targets *)
+
 fun instantiation arities = init_lthy_ctxt (make_target "" false false arities []);
 fun instantiation_cmd raw_arities thy =
   instantiation (Class_Target.read_multi_arity thy raw_arities) thy;
--- a/src/Pure/System/isar.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/System/isar.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -10,7 +10,7 @@
   val exn: unit -> (exn * string) option
   val state: unit -> Toplevel.state
   val context: unit -> Proof.context
-  val goal: unit -> thm
+  val goal: unit -> {context: Proof.context, facts: thm list, goal: thm}
   val print: unit -> unit
   val >> : Toplevel.transition -> bool
   val >>> : Toplevel.transition list -> unit
@@ -60,7 +60,7 @@
 fun context () = Toplevel.context_of (state ())
   handle Toplevel.UNDEF => error "Unknown context";
 
-fun goal () = #2 (#2 (Proof.get_goal (Toplevel.proof_of (state ()))))
+fun goal () = Proof.goal (Toplevel.proof_of (state ()))
   handle Toplevel.UNDEF => error "No goal present";
 
 fun print () = Toplevel.print_state false (state ());
--- a/src/Pure/Tools/find_theorems.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/Tools/find_theorems.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -456,7 +456,7 @@
     let
       val proof_state = Toplevel.enter_proof_body state;
       val ctxt = Proof.context_of proof_state;
-      val opt_goal = try Proof.flat_goal proof_state |> Option.map #2;
+      val opt_goal = try Proof.simple_goal proof_state |> Option.map #goal;
     in print_theorems ctxt opt_goal opt_lim rem_dups spec end);
 
 local
--- a/src/Pure/axclass.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/axclass.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -311,7 +311,7 @@
         (Binding.name (Thm.def_name c'), Logic.mk_equals (Const (c, T'), const'))
       #>> Thm.varifyT
       #-> (fn thm => add_inst_param (c, tyco) (c'', thm)
-      #> PureThy.add_thm ((Binding.name c', thm), [Thm.kind_internal])
+      #> PureThy.add_thm ((Binding.conceal (Binding.name c'), thm), [Thm.kind_internal])
       #> snd
       #> Sign.restore_naming thy
       #> pair (Const (c, T))))
--- a/src/Pure/conjunction.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/conjunction.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -83,15 +83,16 @@
 
 in
 
-val conjunctionD1 = Drule.store_standard_thm "conjunctionD1" (conjunctionD #1);
-val conjunctionD2 = Drule.store_standard_thm "conjunctionD2" (conjunctionD #2);
+val conjunctionD1 = Drule.store_standard_thm (Binding.name "conjunctionD1") (conjunctionD #1);
+val conjunctionD2 = Drule.store_standard_thm (Binding.name "conjunctionD2") (conjunctionD #2);
 
-val conjunctionI = Drule.store_standard_thm "conjunctionI"
-  (Drule.implies_intr_list [A, B]
-    (Thm.equal_elim
-      (Thm.symmetric conjunction_def)
-      (Thm.forall_intr C (Thm.implies_intr ABC
-        (Drule.implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B])))));
+val conjunctionI =
+  Drule.store_standard_thm (Binding.name "conjunctionI")
+    (Drule.implies_intr_list [A, B]
+      (Thm.equal_elim
+        (Thm.symmetric conjunction_def)
+        (Thm.forall_intr C (Thm.implies_intr ABC
+          (Drule.implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B])))));
 
 
 fun intr tha thb =
--- a/src/Pure/drule.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Pure/drule.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -78,10 +78,10 @@
   val standard: thm -> thm
   val standard': thm -> thm
   val get_def: theory -> xstring -> thm
-  val store_thm: bstring -> thm -> thm
-  val store_standard_thm: bstring -> thm -> thm
-  val store_thm_open: bstring -> thm -> thm
-  val store_standard_thm_open: bstring -> thm -> thm
+  val store_thm: binding -> thm -> thm
+  val store_standard_thm: binding -> thm -> thm
+  val store_thm_open: binding -> thm -> thm
+  val store_standard_thm_open: binding -> thm -> thm
   val compose_single: thm * int * thm -> thm
   val imp_cong_rule: thm -> thm -> thm
   val arg_cong_rule: cterm -> thm -> thm
@@ -455,27 +455,32 @@
 fun get_def thy = Thm.axiom thy o Name_Space.intern (Theory.axiom_space thy) o Thm.def_name;
 
 fun store_thm name th =
-  Context.>>> (Context.map_theory_result (PureThy.store_thm (Binding.name name, th)));
+  Context.>>> (Context.map_theory_result (PureThy.store_thm (name, th)));
 
 fun store_thm_open name th =
-  Context.>>> (Context.map_theory_result (PureThy.store_thm_open (Binding.name name, th)));
+  Context.>>> (Context.map_theory_result (PureThy.store_thm_open (name, th)));
 
 fun store_standard_thm name th = store_thm name (standard th);
 fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
 
 val reflexive_thm =
   let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
-  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
+  in store_standard_thm_open (Binding.name "reflexive") (Thm.reflexive cx) end;
 
 val symmetric_thm =
-  let val xy = read_prop "x::'a == y::'a"
-  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
+  let
+    val xy = read_prop "x::'a == y::'a";
+    val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
+  in store_standard_thm_open (Binding.name "symmetric") thm end;
 
 val transitive_thm =
-  let val xy = read_prop "x::'a == y::'a"
-      val yz = read_prop "y::'a == z::'a"
-      val xythm = Thm.assume xy and yzthm = Thm.assume yz
-  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
+  let
+    val xy = read_prop "x::'a == y::'a";
+    val yz = read_prop "y::'a == z::'a";
+    val xythm = Thm.assume xy;
+    val yzthm = Thm.assume yz;
+    val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
+  in store_standard_thm_open (Binding.name "transitive") thm end;
 
 fun symmetric_fun thm = thm RS symmetric_thm;
 
@@ -485,7 +490,8 @@
   in equal_elim (eta_conversion (cprop_of eq')) eq' end;
 
 val equals_cong =
-  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x::'a == y::'a"));
+  store_standard_thm_open (Binding.name "equals_cong")
+    (Thm.reflexive (read_prop "x::'a == y::'a"));
 
 val imp_cong =
   let
@@ -494,7 +500,7 @@
     val AC = read_prop "A ==> C"
     val A = read_prop "A"
   in
-    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
+    store_standard_thm_open (Binding.name "imp_cong") (implies_intr ABC (equal_intr
       (implies_intr AB (implies_intr A
         (equal_elim (implies_elim (assume ABC) (assume A))
           (implies_elim (assume AB) (assume A)))))
@@ -510,11 +516,12 @@
     val A = read_prop "A"
     val B = read_prop "B"
   in
-    store_standard_thm_open "swap_prems_eq" (equal_intr
-      (implies_intr ABC (implies_intr B (implies_intr A
-        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
-      (implies_intr BAC (implies_intr A (implies_intr B
-        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
+    store_standard_thm_open (Binding.name "swap_prems_eq")
+      (equal_intr
+        (implies_intr ABC (implies_intr B (implies_intr A
+          (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
+        (implies_intr BAC (implies_intr A (implies_intr B
+          (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
   end;
 
 val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
@@ -577,37 +584,41 @@
 (*** Some useful meta-theorems ***)
 
 (*The rule V/V, obtains assumption solving for eresolve_tac*)
-val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "?psi"));
-val _ = store_thm_open "_" asm_rl;
+val asm_rl = store_standard_thm_open (Binding.name "asm_rl") (Thm.trivial (read_prop "?psi"));
+val _ = store_thm_open (Binding.name "_") asm_rl;
 
 (*Meta-level cut rule: [| V==>W; V |] ==> W *)
 val cut_rl =
-  store_standard_thm_open "cut_rl"
+  store_standard_thm_open (Binding.name "cut_rl")
     (Thm.trivial (read_prop "?psi ==> ?theta"));
 
 (*Generalized elim rule for one conclusion; cut_rl with reversed premises:
      [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
 val revcut_rl =
-  let val V = read_prop "V"
-      and VW = read_prop "V ==> W";
+  let
+    val V = read_prop "V";
+    val VW = read_prop "V ==> W";
   in
-    store_standard_thm_open "revcut_rl"
+    store_standard_thm_open (Binding.name "revcut_rl")
       (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
   end;
 
 (*for deleting an unwanted assumption*)
 val thin_rl =
-  let val V = read_prop "V"
-      and W = read_prop "W";
-  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
+  let
+    val V = read_prop "V";
+    val W = read_prop "W";
+    val thm = implies_intr V (implies_intr W (assume W));
+  in store_standard_thm_open (Binding.name "thin_rl") thm end;
 
 (* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
 val triv_forall_equality =
-  let val V  = read_prop "V"
-      and QV = read_prop "!!x::'a. V"
-      and x  = certify (Free ("x", Term.aT []));
+  let
+    val V = read_prop "V";
+    val QV = read_prop "!!x::'a. V";
+    val x = certify (Free ("x", Term.aT []));
   in
-    store_standard_thm_open "triv_forall_equality"
+    store_standard_thm_open (Binding.name "triv_forall_equality")
       (equal_intr (implies_intr QV (forall_elim x (assume QV)))
         (implies_intr V  (forall_intr x (assume V))))
   end;
@@ -617,10 +628,10 @@
 *)
 val distinct_prems_rl =
   let
-    val AAB = read_prop "Phi ==> Phi ==> Psi"
+    val AAB = read_prop "Phi ==> Phi ==> Psi";
     val A = read_prop "Phi";
   in
-    store_standard_thm_open "distinct_prems_rl"
+    store_standard_thm_open (Binding.name "distinct_prems_rl")
       (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
   end;
 
@@ -629,15 +640,17 @@
    `thm COMP swap_prems_rl' swaps the first two premises of `thm'
 *)
 val swap_prems_rl =
-  let val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
-      val major = assume cmajor;
-      val cminor1 = read_prop "PhiA";
-      val minor1 = assume cminor1;
-      val cminor2 = read_prop "PhiB";
-      val minor2 = assume cminor2;
-  in store_standard_thm_open "swap_prems_rl"
-       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
-         (implies_elim (implies_elim major minor1) minor2))))
+  let
+    val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
+    val major = assume cmajor;
+    val cminor1 = read_prop "PhiA";
+    val minor1 = assume cminor1;
+    val cminor2 = read_prop "PhiB";
+    val minor2 = assume cminor2;
+  in
+    store_standard_thm_open (Binding.name "swap_prems_rl")
+      (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
+        (implies_elim (implies_elim major minor1) minor2))))
   end;
 
 (* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
@@ -645,29 +658,36 @@
    Introduction rule for == as a meta-theorem.
 *)
 val equal_intr_rule =
-  let val PQ = read_prop "phi ==> psi"
-      and QP = read_prop "psi ==> phi"
+  let
+    val PQ = read_prop "phi ==> psi";
+    val QP = read_prop "psi ==> phi";
   in
-    store_standard_thm_open "equal_intr_rule"
+    store_standard_thm_open (Binding.name "equal_intr_rule")
       (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
   end;
 
 (* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
 val equal_elim_rule1 =
-  let val eq = read_prop "phi::prop == psi::prop"
-      and P = read_prop "phi"
-  in store_standard_thm_open "equal_elim_rule1"
-    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
+  let
+    val eq = read_prop "phi::prop == psi::prop";
+    val P = read_prop "phi";
+  in
+    store_standard_thm_open (Binding.name "equal_elim_rule1")
+      (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
   end;
 
 (* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
 val equal_elim_rule2 =
-  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
+  store_standard_thm_open (Binding.name "equal_elim_rule2")
+    (symmetric_thm RS equal_elim_rule1);
 
 (* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
 val remdups_rl =
-  let val P = read_prop "phi" and Q = read_prop "psi";
-  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
+  let
+    val P = read_prop "phi";
+    val Q = read_prop "psi";
+    val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
+  in store_standard_thm_open (Binding.name "remdups_rl") thm end;
 
 
 
@@ -688,13 +708,18 @@
 
 val protect = Thm.capply (certify Logic.protectC);
 
-val protectI = store_thm "protectI" (Thm.kind_rule Thm.internalK (standard
-    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
+val protectI =
+  store_thm (Binding.conceal (Binding.name "protectI"))
+    (Thm.kind_rule Thm.internalK (standard
+      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
 
-val protectD = store_thm "protectD" (Thm.kind_rule Thm.internalK (standard
-    (Thm.equal_elim prop_def (Thm.assume (protect A)))));
+val protectD =
+  store_thm (Binding.conceal (Binding.name "protectD"))
+    (Thm.kind_rule Thm.internalK (standard
+      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
 
-val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
+val protect_cong =
+  store_standard_thm_open (Binding.name "protect_cong") (Thm.reflexive (protect A));
 
 fun implies_intr_protected asms th =
   let val asms' = map protect asms in
@@ -707,8 +732,10 @@
 
 (* term *)
 
-val termI = store_thm "termI" (Thm.kind_rule Thm.internalK (standard
-    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
+val termI =
+  store_thm (Binding.conceal (Binding.name "termI"))
+    (Thm.kind_rule Thm.internalK (standard
+      (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
 
 fun mk_term ct =
   let
@@ -735,13 +762,17 @@
 
 (* sort_constraint *)
 
-val sort_constraintI = store_thm "sort_constraintI" (Thm.kind_rule Thm.internalK (standard
-  (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T))));
+val sort_constraintI =
+  store_thm (Binding.conceal (Binding.name "sort_constraintI"))
+    (Thm.kind_rule Thm.internalK (standard
+      (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T))));
 
-val sort_constraint_eq = store_thm "sort_constraint_eq" (Thm.kind_rule Thm.internalK (standard
-  (Thm.equal_intr
-    (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA) (Thm.unvarify sort_constraintI)))
-    (implies_intr_list [A, C] (Thm.assume A)))));
+val sort_constraint_eq =
+  store_thm (Binding.conceal (Binding.name "sort_constraint_eq"))
+    (Thm.kind_rule Thm.internalK (standard
+      (Thm.equal_intr
+        (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA) (Thm.unvarify sort_constraintI)))
+        (implies_intr_list [A, C] (Thm.assume A)))));
 
 end;
 
@@ -773,7 +804,7 @@
         |> Thm.forall_intr cx
         |> Thm.implies_intr cphi
         |> Thm.implies_intr rhs)
-    |> store_standard_thm_open "norm_hhf_eq"
+    |> store_standard_thm_open (Binding.name "norm_hhf_eq")
   end;
 
 val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
--- a/src/Tools/auto_solve.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Tools/auto_solve.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -61,9 +61,9 @@
       end;
 
     fun seek_against_goal () =
-      (case try Proof.flat_goal state of
+      (case try Proof.simple_goal state of
         NONE => NONE
-      | SOME (_, st) =>
+      | SOME {goal = st, ...} =>
           let
             val subgoals = Drule.strip_imp_prems (Thm.cprop_of st);
             val rs =
--- a/src/Tools/quickcheck.ML	Thu Oct 29 13:59:37 2009 +0100
+++ b/src/Tools/quickcheck.ML	Thu Oct 29 14:03:55 2009 +0100
@@ -143,7 +143,7 @@
     val thy = Proof.theory_of state;
     fun strip (Const ("all", _) $ Abs (_, _, t)) = strip t
       | strip t = t;
-    val (_, st) = Proof.flat_goal state;
+    val {goal = st, ...} = Proof.raw_goal state;
     val (gi, frees) = Logic.goal_params (prop_of st) i;
     val gi' = Logic.list_implies (assms, subst_bounds (frees, strip gi))
       |> monomorphic_term thy insts default_T