Some basic rules are now stored with "open" derivations, to facilitate
simplification of proof terms.
--- a/src/Pure/drule.ML Fri Aug 31 16:06:21 2001 +0200
+++ b/src/Pure/drule.ML Fri Aug 31 16:07:56 2001 +0200
@@ -39,6 +39,7 @@
(indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
val zero_var_indexes : thm -> thm
val standard : thm -> thm
+ val standard' : thm -> thm
val rotate_prems : int -> thm -> thm
val rearrange_prems : int list -> thm -> thm
val assume_ax : theory -> string -> thm
@@ -62,6 +63,7 @@
val transitive_thm : thm
val refl_implies : thm
val symmetric_fun : thm -> thm
+ val extensional : thm -> thm
val imp_cong : thm
val swap_prems_eq : thm
val equal_abs_elim : cterm -> thm -> thm
@@ -88,7 +90,6 @@
val tag : tag -> 'a attribute
val untag : string -> 'a attribute
val tag_lemma : 'a attribute
- val tag_assumption : 'a attribute
val tag_internal : 'a attribute
val has_internal : tag list -> bool
val close_derivation : thm -> thm
@@ -249,7 +250,6 @@
fun simple_tag name x = tag (name, []) x;
fun tag_lemma x = simple_tag "lemma" x;
-fun tag_assumption x = simple_tag "assumption" x;
val internal_tag = ("internal", []);
fun tag_internal x = tag internal_tag x;
@@ -329,15 +329,17 @@
if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
else thm;
-fun standard th =
+fun standard' th =
let val {maxidx,...} = rep_thm th in
th
|> implies_intr_hyps
|> forall_intr_frees |> forall_elim_vars (maxidx + 1)
|> strip_shyps_warning
- |> zero_var_indexes |> Thm.varifyT |> Thm.compress |> close_derivation
+ |> zero_var_indexes |> Thm.varifyT |> Thm.compress
end;
+val standard = close_derivation o standard';
+
(*Convert all Vars in a theorem to Frees. Also return a function for
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.
@@ -480,6 +482,8 @@
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
fun store_standard_thm name thm = store_thm name (standard thm);
+fun open_store_thm name thm = hd (PureThy.open_smart_store_thms (name, [thm]));
+fun open_store_standard_thm name thm = open_store_thm name (standard' thm);
val reflexive_thm =
let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
@@ -497,6 +501,11 @@
fun symmetric_fun thm = thm RS symmetric_thm;
+fun extensional eq =
+ let val eq' =
+ abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
+ in equal_elim (eta_conversion (cprop_of eq')) eq' end;
+
val imp_cong =
let
val ABC = read_prop "PROP A ==> PROP B == PROP C"
@@ -504,7 +513,7 @@
val AC = read_prop "PROP A ==> PROP C"
val A = read_prop "PROP A"
in
- store_standard_thm "imp_cong" (implies_intr ABC (equal_intr
+ open_store_standard_thm "imp_cong" (implies_intr ABC (equal_intr
(implies_intr AB (implies_intr A
(equal_elim (implies_elim (assume ABC) (assume A))
(implies_elim (assume AB) (assume A)))))
@@ -520,7 +529,7 @@
val A = read_prop "PROP A"
val B = read_prop "PROP B"
in
- store_standard_thm "swap_prems_eq" (equal_intr
+ open_store_standard_thm "swap_prems_eq" (equal_intr
(implies_intr ABC (implies_intr B (implies_intr A
(implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
(implies_intr BAC (implies_intr A (implies_intr B
@@ -533,12 +542,12 @@
(*** Some useful meta-theorems ***)
(*The rule V/V, obtains assumption solving for eresolve_tac*)
-val asm_rl = store_standard_thm "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
+val asm_rl = open_store_standard_thm "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
val _ = store_thm "_" asm_rl;
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
val cut_rl =
- store_standard_thm "cut_rl"
+ open_store_standard_thm "cut_rl"
(Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
@@ -547,7 +556,7 @@
let val V = read_prop "PROP V"
and VW = read_prop "PROP V ==> PROP W";
in
- store_standard_thm "revcut_rl"
+ open_store_standard_thm "revcut_rl"
(implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
end;
@@ -555,7 +564,7 @@
val thin_rl =
let val V = read_prop "PROP V"
and W = read_prop "PROP W";
- in store_standard_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
+ in open_store_standard_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
end;
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
@@ -564,9 +573,9 @@
and QV = read_prop "!!x::'a. PROP V"
and x = read_cterm proto_sign ("x", TypeInfer.logicT);
in
- store_standard_thm "triv_forall_equality"
- (standard (equal_intr (implies_intr QV (forall_elim x (assume QV)))
- (implies_intr V (forall_intr x (assume V)))))
+ open_store_standard_thm "triv_forall_equality"
+ (equal_intr (implies_intr QV (forall_elim x (assume QV)))
+ (implies_intr V (forall_intr x (assume V))))
end;
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
@@ -580,7 +589,7 @@
val minor1 = assume cminor1;
val cminor2 = read_prop "PROP PhiB";
val minor2 = assume cminor2;
- in store_standard_thm "swap_prems_rl"
+ in open_store_standard_thm "swap_prems_rl"
(implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
(implies_elim (implies_elim major minor1) minor2))))
end;
@@ -593,7 +602,7 @@
let val PQ = read_prop "PROP phi ==> PROP psi"
and QP = read_prop "PROP psi ==> PROP phi"
in
- store_standard_thm "equal_intr_rule"
+ open_store_standard_thm "equal_intr_rule"
(implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
end;