--- a/src/HOL/Analysis/Derivative.thy Thu Sep 19 16:38:32 2019 +0200
+++ b/src/HOL/Analysis/Derivative.thy Thu Sep 19 17:24:15 2019 +0100
@@ -239,6 +239,9 @@
lemma frechet_derivative_id [simp]: "frechet_derivative id (at a) = id"
using differentiable_def frechet_derivative_works has_derivative_id has_derivative_unique by blast
+lemma frechet_derivative_ident [simp]: "frechet_derivative (\<lambda>x. x) (at a) = (\<lambda>x. x)"
+ by (metis eq_id_iff frechet_derivative_id)
+
subsection \<open>Differentiability implies continuity\<close>
--- a/src/HOL/Library/Boolean_Algebra.thy Thu Sep 19 16:38:32 2019 +0200
+++ b/src/HOL/Library/Boolean_Algebra.thy Thu Sep 19 17:24:15 2019 +0100
@@ -102,17 +102,7 @@
subsection \<open>Conjunction\<close>
lemma conj_zero_right [simp]: "x \<^bold>\<sqinter> \<zero> = \<zero>"
-proof -
- from conj_cancel_right have "x \<^bold>\<sqinter> \<zero> = x \<^bold>\<sqinter> (x \<^bold>\<sqinter> \<sim> x)"
- by simp
- also from conj_assoc have "\<dots> = (x \<^bold>\<sqinter> x) \<^bold>\<sqinter> \<sim> x"
- by (simp only: ac_simps)
- also from conj_absorb have "\<dots> = x \<^bold>\<sqinter> \<sim> x"
- by simp
- also have "\<dots> = \<zero>"
- by simp
- finally show ?thesis .
-qed
+ using conj.left_idem conj_cancel_right by fastforce
lemma compl_one [simp]: "\<sim> \<one> = \<zero>"
by (rule compl_unique [OF conj_zero_right disj_zero_right])
@@ -241,7 +231,7 @@
lemmas xor_ac = xor.assoc xor.commute xor.left_commute
lemma xor_def2: "x \<oplus> y = (x \<^bold>\<squnion> y) \<^bold>\<sqinter> (\<sim> x \<^bold>\<squnion> \<sim> y)"
- by (simp only: xor_def conj_disj_distribs disj_ac conj_ac conj_cancel_right disj_zero_left)
+ using conj.commute conj_disj_distrib2 disj.commute xor_def by auto
lemma xor_zero_right [simp]: "x \<oplus> \<zero> = x"
by (simp only: xor_def compl_zero conj_one_right conj_zero_right disj_zero_right)
@@ -262,20 +252,10 @@
by (simp only: xor_assoc [symmetric] xor_self xor_zero_left)
lemma xor_compl_left [simp]: "\<sim> x \<oplus> y = \<sim> (x \<oplus> y)"
- apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
- apply (simp only: conj_disj_distribs)
- apply (simp only: conj_cancel_right conj_cancel_left)
- apply (simp only: disj_zero_left disj_zero_right)
- apply (simp only: disj_ac conj_ac)
- done
+ by (metis xor_assoc xor_one_left)
lemma xor_compl_right [simp]: "x \<oplus> \<sim> y = \<sim> (x \<oplus> y)"
- apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
- apply (simp only: conj_disj_distribs)
- apply (simp only: conj_cancel_right conj_cancel_left)
- apply (simp only: disj_zero_left disj_zero_right)
- apply (simp only: disj_ac conj_ac)
- done
+ using xor_commute xor_compl_left by auto
lemma xor_cancel_right: "x \<oplus> \<sim> x = \<one>"
by (simp only: xor_compl_right xor_self compl_zero)
@@ -295,12 +275,7 @@
qed
lemma conj_xor_distrib2: "(y \<oplus> z) \<^bold>\<sqinter> x = (y \<^bold>\<sqinter> x) \<oplus> (z \<^bold>\<sqinter> x)"
-proof -
- have "x \<^bold>\<sqinter> (y \<oplus> z) = (x \<^bold>\<sqinter> y) \<oplus> (x \<^bold>\<sqinter> z)"
- by (rule conj_xor_distrib)
- then show "(y \<oplus> z) \<^bold>\<sqinter> x = (y \<^bold>\<sqinter> x) \<oplus> (z \<^bold>\<sqinter> x)"
- by (simp only: conj_commute)
-qed
+ by (simp add: conj.commute conj_xor_distrib)
lemmas conj_xor_distribs = conj_xor_distrib conj_xor_distrib2