--- a/doc-src/Main/Docs/Main_Doc.thy Wed Mar 28 14:54:33 2012 +0200
+++ b/doc-src/Main/Docs/Main_Doc.thy Wed Mar 28 16:12:17 2012 +0200
@@ -105,8 +105,8 @@
\section{Set}
-Sets are predicates: @{text[source]"'a set = 'a \<Rightarrow> bool"}
-\bigskip
+%Sets are predicates: @{text[source]"'a set = 'a \<Rightarrow> bool"}
+%\bigskip
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
@@ -236,7 +236,7 @@
\section{Relation}
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
@{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('b*'c)set\<Rightarrow>('a*'c)set"}\\
@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
@@ -254,13 +254,17 @@
@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
-\end{supertabular}
+\end{tabular}
\subsubsection*{Syntax}
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
@{term"converse r"} & @{term[source]"converse r"} & (\verb$^-1$)
\end{tabular}
+\medskip
+
+\noindent
+Type synonym @{typ"'a rel"} @{text"="} @{typ "('a * 'a)set"}
\section{Equiv\_Relations}
@@ -338,6 +342,7 @@
@{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
@{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
@{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op ^ :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
@{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
@{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
@{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
@@ -495,6 +500,7 @@
@{const List.drop} & @{typeof List.drop}\\
@{const List.dropWhile} & @{typeof List.dropWhile}\\
@{const List.filter} & @{typeof List.filter}\\
+@{const List.find} & @{typeof List.find}\\
@{const List.fold} & @{typeof List.fold}\\
@{const List.foldr} & @{typeof List.foldr}\\
@{const List.foldl} & @{typeof List.foldl}\\
@@ -557,9 +563,6 @@
Maps model partial functions and are often used as finite tables. However,
the domain of a map may be infinite.
-@{text"'a \<rightharpoonup> 'b = 'a \<Rightarrow> 'b option"}
-\bigskip
-
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
@{const Map.empty} & @{typeof Map.empty}\\
@{const Map.map_add} & @{typeof Map.map_add}\\
--- a/doc-src/Main/Docs/document/Main_Doc.tex Wed Mar 28 14:54:33 2012 +0200
+++ b/doc-src/Main/Docs/document/Main_Doc.tex Wed Mar 28 16:12:17 2012 +0200
@@ -113,8 +113,8 @@
\section{Set}
-Sets are predicates: \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{27}{\isacharprime}}a\ set\ \ {\isaliteral{3D}{\isacharequal}}\ \ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequote}}}
-\bigskip
+%Sets are predicates: \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{27}{\isacharprime}}a\ set\ \ {\isaliteral{3D}{\isacharequal}}\ \ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequote}}}
+%\bigskip
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
\isa{{\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{7D}{\isacharbraceright}}} & \isa{{\isaliteral{27}{\isacharprime}}a\ set}\\
@@ -244,7 +244,7 @@
\section{Relation}
-\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
\isa{converse} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ set}\\
\isa{op\ O} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}c{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}c{\isaliteral{29}{\isacharparenright}}\ set}\\
\isa{op\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}b{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ set}\\
@@ -262,13 +262,17 @@
\isa{irrefl} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}\\
\isa{total{\isaliteral{5F}{\isacharunderscore}}on} & \isa{{\isaliteral{27}{\isacharprime}}a\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}\\
\isa{total} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}\\
-\end{supertabular}
+\end{tabular}
\subsubsection*{Syntax}
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
\isa{r{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}} & \isa{{\isaliteral{22}{\isachardoublequote}}converse\ r{\isaliteral{22}{\isachardoublequote}}} & (\verb$^-1$)
\end{tabular}
+\medskip
+
+\noindent
+Type synonym \isa{{\isaliteral{27}{\isacharprime}}a\ rel} \isa{{\isaliteral{3D}{\isacharequal}}} \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ set}
\section{Equiv\_Relations}
@@ -345,6 +349,7 @@
\isa{op\ {\isaliteral{2B}{\isacharplus}}} &
\isa{op\ {\isaliteral{2D}{\isacharminus}}} &
\isa{op\ {\isaliteral{2A}{\isacharasterisk}}} &
+\isa{op\ {\isaliteral{5E}{\isacharcircum}}} &
\isa{op\ div}&
\isa{op\ mod}&
\isa{op\ dvd}\\
@@ -502,6 +507,7 @@
\isa{drop} & \isa{nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list}\\
\isa{dropWhile} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list}\\
\isa{filter} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list}\\
+\isa{List{\isaliteral{2E}{\isachardot}}find} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ option}\\
\isa{fold} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b}\\
\isa{foldr} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b}\\
\isa{foldl} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ list\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a}\\
@@ -564,9 +570,6 @@
Maps model partial functions and are often used as finite tables. However,
the domain of a map may be infinite.
-\isa{{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C7269676874686172706F6F6E75703E}{\isasymrightharpoonup}}\ {\isaliteral{27}{\isacharprime}}b\ \ {\isaliteral{3D}{\isacharequal}}\ \ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ option}
-\bigskip
-
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
\isa{Map{\isaliteral{2E}{\isachardot}}empty} & \isa{{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ option}\\
\isa{op\ {\isaliteral{2B}{\isacharplus}}{\isaliteral{2B}{\isacharplus}}} & \isa{{\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ option{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ option{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}a\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{27}{\isacharprime}}b\ option}\\