--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/conv.ML Thu May 10 00:39:51 2007 +0200
@@ -0,0 +1,95 @@
+(* Title: Pure/conv.ML
+ ID: $Id$
+ Author: Amine Chaieb and Makarius
+
+Conversions: primitive equality reasoning.
+*)
+
+infix 1 AND;
+infix 0 OR;
+
+signature CONV =
+sig
+ type conv = cterm -> thm
+ val no_conv: conv
+ val all_conv: conv
+ val option_conv: conv -> cterm -> thm option
+ val AND: conv * conv -> conv
+ val OR: conv * conv -> conv
+ val forall_conv: int -> conv -> conv
+ val concl_conv: int -> conv -> conv
+ val prems_conv: int -> (int -> conv) -> conv
+ val goals_conv: (int -> bool) -> conv -> conv
+ val fconv_rule: conv -> thm -> thm
+end;
+
+structure Conv: CONV =
+struct
+
+(* conversionals *)
+
+type conv = cterm -> thm
+
+fun no_conv _ = raise CTERM ("no conversion", []);
+val all_conv = Thm.reflexive;
+
+val is_refl = op aconv o Logic.dest_equals o Thm.prop_of;
+
+fun option_conv conv ct =
+ (case try conv ct of
+ NONE => NONE
+ | SOME eq => if is_refl eq then NONE else SOME eq);
+
+fun (conv1 AND conv2) ct =
+ let
+ val eq1 = conv1 ct;
+ val eq2 = conv2 (Thm.rhs_of eq1);
+ in
+ if is_refl eq1 then eq2
+ else if is_refl eq2 then eq1
+ else Thm.transitive eq1 eq2
+ end;
+
+fun (conv1 OR conv2) ct =
+ (case try conv1 ct of SOME eq => eq | NONE => conv2 ct);
+
+
+(* Pure conversions *)
+
+(*rewrite B in !!x1 ... xn. B*)
+fun forall_conv 0 cv ct = cv ct
+ | forall_conv n cv ct =
+ (case try Thm.dest_comb ct of
+ NONE => cv ct
+ | SOME (A, B) =>
+ (case (term_of A, term_of B) of
+ (Const ("all", _), Abs (x, _, _)) =>
+ let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
+ Thm.combination (Thm.reflexive A)
+ (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
+ end
+ | _ => cv ct));
+
+(*rewrite B in A1 ==> ... ==> An ==> B*)
+fun concl_conv 0 cv ct = cv ct
+ | concl_conv n cv ct =
+ (case try Thm.dest_implies ct of
+ NONE => cv ct
+ | SOME (A, B) => Drule.imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
+
+(*rewrite the A's in A1 ==> ... ==> An ==> B*)
+fun prems_conv 0 _ = reflexive
+ | prems_conv n cv =
+ let
+ fun conv i ct =
+ if i = n + 1 then reflexive ct
+ else
+ (case try Thm.dest_implies ct of
+ NONE => reflexive ct
+ | SOME (A, B) => Drule.imp_cong_rule (cv i A) (conv (i + 1) B));
+ in conv 1 end;
+
+fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else all_conv);
+fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
+
+end;