reintroduced old model reconstruction code -- still needs to be ported
authorblanchet
Thu, 13 Mar 2014 13:18:13 +0100
changeset 56088 db61a0a62b2c
parent 56087 2cd8fcb4804d
child 56089 99c82a837f8a
reintroduced old model reconstruction code -- still needs to be ported
src/HOL/SMT2.thy
src/HOL/Tools/SMT2/smt2_setup_solvers.ML
src/HOL/Tools/SMT2/smtlib2_interface.ML
src/HOL/Tools/SMT2/z3_new_model.ML
--- a/src/HOL/SMT2.thy	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/SMT2.thy	Thu Mar 13 13:18:13 2014 +0100
@@ -102,6 +102,7 @@
 ML_file "Tools/SMT2/smt2_translate.ML"
 ML_file "Tools/SMT2/smtlib2.ML"
 ML_file "Tools/SMT2/smtlib2_interface.ML"
+ML_file "Tools/SMT2/z3_new_model.ML"
 ML_file "Tools/SMT2/z3_new_proof.ML"
 ML_file "Tools/SMT2/smt2_solver.ML"
 ML_file "Tools/SMT2/z3_new_interface.ML"
--- a/src/HOL/Tools/SMT2/smt2_setup_solvers.ML	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/Tools/SMT2/smt2_setup_solvers.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -167,7 +167,7 @@
   default_max_relevant = 350 (* FUDGE *),
   supports_filter = true,
   outcome = z3_on_first_or_last_line,
-  cex_parser = NONE,
+  cex_parser = SOME Z3_New_Model.parse_counterex,
   replay = SOME Z3_New_Proof_Replay.replay }
 
 end
--- a/src/HOL/Tools/SMT2/smtlib2_interface.ML	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/Tools/SMT2/smtlib2_interface.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -138,8 +138,7 @@
        (sort (fast_string_ord o pairself fst) funcs)
   |> fold (Buffer.add o enclose "(assert " ")\n" o SMTLIB2.str_of o
        tree_of_sterm 0) ts
-  |> Buffer.add "(check-sat)\n"
-  |> Buffer.add "(get-proof)\n"
+  |> Buffer.add "(check-sat)\n(get-proof)\n(get-model)\n"
   |> Buffer.content
 
 (* interface *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_model.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,336 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_model.ML
+    Author:     Sascha Boehme and Philipp Meyer, TU Muenchen
+
+Parser for counterexamples generated by Z3.
+*)
+
+signature Z3_NEW_MODEL =
+sig
+  val parse_counterex: Proof.context -> SMT2_Translate.replay_data -> string list ->
+    term list * term list
+end
+
+structure Z3_New_Model: Z3_NEW_MODEL =
+struct
+
+(* counterexample expressions *)
+
+datatype expr = True | False | Number of int * int option | Value of int |
+  Array of array | App of string * expr list
+and array = Fresh of expr | Store of (array * expr) * expr
+
+
+(* parsing *)
+
+val space = Scan.many Symbol.is_ascii_blank
+fun spaced p = p --| space
+fun in_parens p = spaced (Scan.$$ "(") |-- p --| spaced (Scan.$$ ")")
+fun in_braces p = spaced (Scan.$$ "{") |-- p --| spaced (Scan.$$ "}")
+
+val digit = (fn
+  "0" => SOME 0 | "1" => SOME 1 | "2" => SOME 2 | "3" => SOME 3 |
+  "4" => SOME 4 | "5" => SOME 5 | "6" => SOME 6 | "7" => SOME 7 |
+  "8" => SOME 8 | "9" => SOME 9 | _ => NONE)
+
+val nat_num = spaced (Scan.repeat1 (Scan.some digit) >>
+  (fn ds => fold (fn d => fn i => i * 10 + d) ds 0))
+val int_num = spaced (Scan.optional ($$ "-" >> K (fn i => ~i)) I :|--
+  (fn sign => nat_num >> sign))
+
+val is_char = Symbol.is_ascii_letter orf Symbol.is_ascii_digit orf
+  member (op =) (raw_explode "_+*-/%~=<>$&|?!.@^#")
+val name = spaced (Scan.many1 is_char >> implode)
+
+fun $$$ s = spaced (Scan.this_string s)
+
+fun array_expr st = st |> in_parens (
+  $$$ "const" |-- expr >> Fresh ||
+  $$$ "store" |-- array_expr -- expr -- expr >> Store)
+
+and expr st = st |> (
+  $$$ "true" >> K True ||
+  $$$ "false" >> K False ||
+  int_num -- Scan.option ($$$ "/" |-- int_num) >> Number ||
+  $$$ "val!" |-- nat_num >> Value ||
+  name >> (App o rpair []) ||
+  array_expr >> Array ||
+  in_parens (name -- Scan.repeat1 expr) >> App)
+
+fun args st = ($$$ "->" >> K [] || expr ::: args) st
+val args_case = args -- expr
+val else_case = $$$ "else" -- $$$ "->" |-- expr >> pair ([] : expr list)
+
+val func =
+  let fun cases st = (else_case >> single || args_case ::: cases) st
+  in in_braces cases end
+
+val cex = space |--
+  Scan.repeat (name --| $$$ "->" -- (func || expr >> (single o pair [])))
+
+fun resolve terms ((n, k), cases) =
+  (case Symtab.lookup terms n of
+    NONE => NONE
+  | SOME t => SOME ((t, k), cases))
+
+fun annotate _ (_, []) = NONE
+  | annotate terms (n, [([], c)]) = resolve terms ((n, 0), (c, []))
+  | annotate _ (_, [_]) = NONE
+  | annotate terms (n, cases as (args, _) :: _) =
+      let val (cases', (_, else_case)) = split_last cases
+      in resolve terms ((n, length args), (else_case, cases')) end
+
+fun read_cex terms ls =
+  maps (cons "\n" o raw_explode) ls
+  |> try (fst o Scan.finite Symbol.stopper cex)
+  |> the_default []
+  |> map_filter (annotate terms)
+
+
+(* translation into terms *)
+
+fun max_value vs =
+  let
+    fun max_val_expr (Value i) = Integer.max i
+      | max_val_expr (App (_, es)) = fold max_val_expr es
+      | max_val_expr (Array a) = max_val_array a
+      | max_val_expr _ = I
+
+    and max_val_array (Fresh e) = max_val_expr e
+      | max_val_array (Store ((a, e1), e2)) =
+          max_val_array a #> max_val_expr e1 #> max_val_expr e2
+
+    fun max_val (_, (ec, cs)) =
+      max_val_expr ec #> fold (fn (es, e) => fold max_val_expr (e :: es)) cs
+
+  in fold max_val vs ~1 end
+
+fun with_context terms f vs = fst (fold_map f vs (terms, max_value vs + 1))
+
+fun get_term n T es (cx as (terms, next_val)) =
+  (case Symtab.lookup terms n of
+    SOME t => ((t, es), cx)
+  | NONE =>
+      let val t = Var (("skolem", next_val), T)
+      in ((t, []), (Symtab.update (n, t) terms, next_val + 1)) end)
+
+fun trans_expr _ True = pair @{const True}
+  | trans_expr _ False = pair @{const False}
+  | trans_expr T (Number (i, NONE)) = pair (HOLogic.mk_number T i)
+  | trans_expr T (Number (i, SOME j)) =
+      pair (Const (@{const_name divide}, [T, T] ---> T) $
+        HOLogic.mk_number T i $ HOLogic.mk_number T j)
+  | trans_expr T (Value i) = pair (Var (("value", i), T))
+  | trans_expr T (Array a) = trans_array T a
+  | trans_expr T (App (n, es)) = get_term n T es #-> (fn (t, es') =>
+      let val Ts = fst (SMT2_Utils.dest_funT (length es') (Term.fastype_of t))
+      in
+        fold_map (uncurry trans_expr) (Ts ~~ es') #>> Term.list_comb o pair t
+      end)
+
+and trans_array T a =
+  let val (dT, rT) = Term.dest_funT T
+  in
+    (case a of
+      Fresh e => trans_expr rT e #>> (fn t => Abs ("x", dT, t))
+    | Store ((a', e1), e2) =>
+        trans_array T a' ##>> trans_expr dT e1 ##>> trans_expr rT e2 #>>
+        (fn ((m, k), v) =>
+          Const (@{const_name fun_upd}, [T, dT, rT] ---> T) $ m $ k $ v))
+  end
+
+fun trans_pattern T ([], e) = trans_expr T e #>> pair []
+  | trans_pattern T (arg :: args, e) =
+      trans_expr (Term.domain_type T) arg ##>>
+      trans_pattern (Term.range_type T) (args, e) #>>
+      (fn (arg', (args', e')) => (arg' :: args', e'))
+
+fun mk_fun_upd T U = Const (@{const_name fun_upd}, [T --> U, T, U, T] ---> U)
+
+fun mk_update ([], u) _ = u
+  | mk_update ([t], u) f =
+      uncurry mk_fun_upd (Term.dest_funT (Term.fastype_of f)) $ f $ t $ u
+  | mk_update (t :: ts, u) f =
+      let
+        val (dT, rT) = Term.dest_funT (Term.fastype_of f)
+        val (dT', rT') = Term.dest_funT rT
+      in
+        mk_fun_upd dT rT $ f $ t $
+          mk_update (ts, u) (absdummy dT' (Const ("_", rT')))
+      end
+
+fun mk_lambda Ts (t, pats) =
+  fold_rev absdummy Ts t |> fold mk_update pats
+
+fun translate ((t, k), (e, cs)) =
+  let
+    val T = Term.fastype_of t
+    val (Us, U) = SMT2_Utils.dest_funT k (Term.fastype_of t)
+
+    fun mk_full_def u' pats =
+      pats
+      |> filter_out (fn (_, u) => u aconv u')
+      |> HOLogic.mk_eq o pair t o mk_lambda Us o pair u'
+
+    fun mk_eq (us, u) = HOLogic.mk_eq (Term.list_comb (t, us), u)
+    fun mk_eqs u' [] = [HOLogic.mk_eq (t, u')]
+      | mk_eqs _ pats = map mk_eq pats
+  in
+    trans_expr U e ##>>
+    (if k = 0 then pair [] else fold_map (trans_pattern T) cs) #>>
+    (fn (u', pats) => (mk_eqs u' pats, mk_full_def u' pats))
+  end
+
+
+(* normalization *)
+
+fun partition_eqs f =
+  let
+    fun part t (xs, ts) =
+      (case try HOLogic.dest_eq t of
+        SOME (l, r) => (case f l r of SOME x => (x::xs, ts) | _ => (xs, t::ts))
+      | NONE => (xs, t :: ts))
+  in (fn ts => fold part ts ([], [])) end
+
+fun first_eq pred =
+  let
+    fun part _ [] = NONE
+      | part us (t :: ts) =
+          (case try (pred o HOLogic.dest_eq) t of
+            SOME (SOME lr) => SOME (lr, fold cons us ts)
+          | _ => part (t :: us) ts)
+  in (fn ts => part [] ts) end
+
+fun replace_vars tab =
+  let
+    fun repl v = the_default v (AList.lookup (op aconv) tab v)
+    fun replace (v as Var _) = repl v
+      | replace (v as Free _) = repl v
+      | replace t = t
+  in map (Term.map_aterms replace) end
+
+fun remove_int_nat_coercions (eqs, defs) =
+  let
+    fun mk_nat_num t i =
+      (case try HOLogic.dest_number i of
+        SOME (_, n) => SOME (t, HOLogic.mk_number @{typ nat} n)
+      | NONE => NONE)
+    fun nat_of (@{const of_nat (int)} $ (t as Var _)) i = mk_nat_num t i
+      | nat_of (@{const nat} $ i) (t as Var _) = mk_nat_num t i
+      | nat_of _ _ = NONE
+    val (nats, eqs') = partition_eqs nat_of eqs
+
+    fun is_coercion t =
+      (case try HOLogic.dest_eq t of
+        SOME (@{const of_nat (int)}, _) => true
+      | SOME (@{const nat}, _) => true
+      | _ => false)
+  in pairself (replace_vars nats) (eqs', filter_out is_coercion defs) end
+
+fun unfold_funapp (eqs, defs) =
+  let
+    fun unfold_app (Const (@{const_name SMT2.fun_app}, _) $ f $ t) = f $ t
+      | unfold_app t = t
+    fun unfold_eq ((eq as Const (@{const_name HOL.eq}, _)) $ t $ u) =
+          eq $ unfold_app t $ u
+      | unfold_eq t = t
+
+    fun is_fun_app t =
+      (case try HOLogic.dest_eq t of
+        SOME (Const (@{const_name SMT2.fun_app}, _), _) => true
+      | _ => false)
+
+  in (map unfold_eq eqs, filter_out is_fun_app defs) end
+
+val unfold_eqs =
+  let
+    val is_ground = not o Term.exists_subterm Term.is_Var
+    fun is_non_rec (v, t) = not (Term.exists_subterm (equal v) t)
+
+    fun rewr_var (l as Var _, r) = if is_ground r then SOME (l, r) else NONE
+      | rewr_var (r, l as Var _) = if is_ground r then SOME (l, r) else NONE
+      | rewr_var _ = NONE
+
+    fun rewr_free' e = if is_non_rec e then SOME e else NONE
+    fun rewr_free (e as (Free _, _)) = rewr_free' e
+      | rewr_free (e as (_, Free _)) = rewr_free' (swap e)
+      | rewr_free _ = NONE
+
+    fun is_trivial (Const (@{const_name HOL.eq}, _) $ t $ u) = t aconv u
+      | is_trivial _ = false
+
+    fun replace r = replace_vars [r] #> filter_out is_trivial
+
+    fun unfold_vars (es, ds) =
+      (case first_eq rewr_var es of
+        SOME (lr, es') => unfold_vars (pairself (replace lr) (es', ds))
+      | NONE => (es, ds))
+
+    fun unfold_frees ues (es, ds) =
+      (case first_eq rewr_free es of
+        SOME (lr, es') =>
+          pairself (replace lr) (es', ds)
+          |> unfold_frees (HOLogic.mk_eq lr :: replace lr ues)
+      | NONE => (ues @ es, ds))
+
+  in unfold_vars #> unfold_frees [] end
+
+fun swap_free ((eq as Const (@{const_name HOL.eq}, _)) $ t $ (u as Free _)) =
+      eq $ u $ t
+  | swap_free t = t
+
+fun frees_for_vars ctxt (eqs, defs) =
+  let
+    fun fresh_free i T (cx as (frees, ctxt)) =
+      (case Inttab.lookup frees i of
+        SOME t => (t, cx)
+      | NONE =>
+          let
+            val (n, ctxt') = yield_singleton Variable.variant_fixes "" ctxt
+            val t = Free (n, T)
+          in (t, (Inttab.update (i, t) frees, ctxt')) end)
+
+    fun repl_var (Var ((_, i), T)) = fresh_free i T
+      | repl_var (t $ u) = repl_var t ##>> repl_var u #>> op $
+      | repl_var (Abs (n, T, t)) = repl_var t #>> (fn t' => Abs (n, T, t'))
+      | repl_var t = pair t
+  in
+    (Inttab.empty, ctxt)
+    |> fold_map repl_var eqs
+    ||>> fold_map repl_var defs
+    |> fst
+  end
+
+
+(* overall procedure *)
+
+val is_free_constraint = Term.exists_subterm (fn Free _ => true | _ => false)
+
+fun is_free_def (Const (@{const_name HOL.eq}, _) $ Free _ $ _) = true
+  | is_free_def _ = false
+
+fun defined tp =
+  try (pairself (fst o HOLogic.dest_eq)) tp
+  |> the_default false o Option.map (op aconv)
+
+fun add_free_defs free_cs defs =
+  let val (free_defs, defs') = List.partition is_free_def defs
+  in (free_cs @ filter_out (member defined free_cs) free_defs, defs') end
+
+fun is_const_def (Const (@{const_name HOL.eq}, _) $ Const _ $ _) = true
+  | is_const_def _ = false
+
+(* TODO: Adapt parser to SMT-LIB 2 format for models *)
+fun parse_counterex ctxt ({terms, ...} : SMT2_Translate.replay_data) ls =
+  read_cex terms ls
+  |> with_context terms translate
+  |> apfst flat o split_list
+  |> remove_int_nat_coercions
+  |> unfold_funapp
+  |> unfold_eqs
+  |>> map swap_free
+  |>> filter is_free_constraint
+  |-> add_free_defs
+  |> frees_for_vars ctxt
+  ||> filter is_const_def
+
+end