--- a/src/Pure/Pure.thy Tue Oct 07 20:27:31 2014 +0200
+++ b/src/Pure/Pure.thy Tue Oct 07 20:34:17 2014 +0200
@@ -234,37 +234,37 @@
subsection \<open>Meta-level connectives in assumptions\<close>
lemma meta_mp:
- assumes "PROP P ==> PROP Q" and "PROP P"
+ assumes "PROP P \<Longrightarrow> PROP Q" and "PROP P"
shows "PROP Q"
- by (rule \<open>PROP P ==> PROP Q\<close> [OF \<open>PROP P\<close>])
+ by (rule \<open>PROP P \<Longrightarrow> PROP Q\<close> [OF \<open>PROP P\<close>])
lemmas meta_impE = meta_mp [elim_format]
lemma meta_spec:
- assumes "!!x. PROP P x"
+ assumes "\<And>x. PROP P x"
shows "PROP P x"
- by (rule \<open>!!x. PROP P x\<close>)
+ by (rule \<open>\<And>x. PROP P x\<close>)
lemmas meta_allE = meta_spec [elim_format]
lemma swap_params:
- "(!!x y. PROP P x y) == (!!y x. PROP P x y)" ..
+ "(\<And>x y. PROP P x y) \<equiv> (\<And>y x. PROP P x y)" ..
subsection \<open>Meta-level conjunction\<close>
lemma all_conjunction:
- "(!!x. PROP A x &&& PROP B x) == ((!!x. PROP A x) &&& (!!x. PROP B x))"
+ "(\<And>x. PROP A x &&& PROP B x) \<equiv> ((\<And>x. PROP A x) &&& (\<And>x. PROP B x))"
proof
- assume conj: "!!x. PROP A x &&& PROP B x"
- show "(!!x. PROP A x) &&& (!!x. PROP B x)"
+ assume conj: "\<And>x. PROP A x &&& PROP B x"
+ show "(\<And>x. PROP A x) &&& (\<And>x. PROP B x)"
proof -
fix x
from conj show "PROP A x" by (rule conjunctionD1)
from conj show "PROP B x" by (rule conjunctionD2)
qed
next
- assume conj: "(!!x. PROP A x) &&& (!!x. PROP B x)"
+ assume conj: "(\<And>x. PROP A x) &&& (\<And>x. PROP B x)"
fix x
show "PROP A x &&& PROP B x"
proof -
@@ -274,17 +274,17 @@
qed
lemma imp_conjunction:
- "(PROP A ==> PROP B &&& PROP C) == ((PROP A ==> PROP B) &&& (PROP A ==> PROP C))"
+ "(PROP A \<Longrightarrow> PROP B &&& PROP C) \<equiv> ((PROP A \<Longrightarrow> PROP B) &&& (PROP A \<Longrightarrow> PROP C))"
proof
- assume conj: "PROP A ==> PROP B &&& PROP C"
- show "(PROP A ==> PROP B) &&& (PROP A ==> PROP C)"
+ assume conj: "PROP A \<Longrightarrow> PROP B &&& PROP C"
+ show "(PROP A \<Longrightarrow> PROP B) &&& (PROP A \<Longrightarrow> PROP C)"
proof -
assume "PROP A"
from conj [OF \<open>PROP A\<close>] show "PROP B" by (rule conjunctionD1)
from conj [OF \<open>PROP A\<close>] show "PROP C" by (rule conjunctionD2)
qed
next
- assume conj: "(PROP A ==> PROP B) &&& (PROP A ==> PROP C)"
+ assume conj: "(PROP A \<Longrightarrow> PROP B) &&& (PROP A \<Longrightarrow> PROP C)"
assume "PROP A"
show "PROP B &&& PROP C"
proof -
@@ -294,16 +294,16 @@
qed
lemma conjunction_imp:
- "(PROP A &&& PROP B ==> PROP C) == (PROP A ==> PROP B ==> PROP C)"
+ "(PROP A &&& PROP B \<Longrightarrow> PROP C) \<equiv> (PROP A \<Longrightarrow> PROP B \<Longrightarrow> PROP C)"
proof
- assume r: "PROP A &&& PROP B ==> PROP C"
+ assume r: "PROP A &&& PROP B \<Longrightarrow> PROP C"
assume ab: "PROP A" "PROP B"
show "PROP C"
proof (rule r)
from ab show "PROP A &&& PROP B" .
qed
next
- assume r: "PROP A ==> PROP B ==> PROP C"
+ assume r: "PROP A \<Longrightarrow> PROP B \<Longrightarrow> PROP C"
assume conj: "PROP A &&& PROP B"
show "PROP C"
proof (rule r)