added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
--- a/src/HOL/Library/While_Combinator.thy Fri Jul 09 10:08:10 2010 +0200
+++ b/src/HOL/Library/While_Combinator.thy Fri Jul 09 16:32:25 2010 +0200
@@ -1,5 +1,6 @@
(* Title: HOL/Library/While_Combinator.thy
Author: Tobias Nipkow
+ Author: Alexander Krauss
Copyright 2000 TU Muenchen
*)
@@ -9,27 +10,90 @@
imports Main
begin
-text {*
- We define the while combinator as the "mother of all tail recursive functions".
-*}
+subsection {* Option result *}
+
+definition while_option :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" where
+"while_option b c s = (if (\<exists>k. ~ b ((c ^^ k) s))
+ then Some ((c ^^ (LEAST k. ~ b ((c ^^ k) s))) s)
+ else None)"
-function (tailrec) while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
-where
- while_unfold[simp del]: "while b c s = (if b s then while b c (c s) else s)"
-by auto
+theorem while_option_unfold[code]:
+"while_option b c s = (if b s then while_option b c (c s) else Some s)"
+proof cases
+ assume "b s"
+ show ?thesis
+ proof (cases "\<exists>k. ~ b ((c ^^ k) s)")
+ case True
+ then obtain k where 1: "~ b ((c ^^ k) s)" ..
+ with `b s` obtain l where "k = Suc l" by (cases k) auto
+ with 1 have "~ b ((c ^^ l) (c s))" by (auto simp: funpow_swap1)
+ then have 2: "\<exists>l. ~ b ((c ^^ l) (c s))" ..
+ from 1
+ have "(LEAST k. ~ b ((c ^^ k) s)) = Suc (LEAST l. ~ b ((c ^^ Suc l) s))"
+ by (rule Least_Suc) (simp add: `b s`)
+ also have "... = Suc (LEAST l. ~ b ((c ^^ l) (c s)))"
+ by (simp add: funpow_swap1)
+ finally
+ show ?thesis
+ using True 2 `b s` by (simp add: funpow_swap1 while_option_def)
+ next
+ case False
+ then have "~ (\<exists>l. ~ b ((c ^^ Suc l) s))" by blast
+ then have "~ (\<exists>l. ~ b ((c ^^ l) (c s)))"
+ by (simp add: funpow_swap1)
+ with False `b s` show ?thesis by (simp add: while_option_def)
+ qed
+next
+ assume [simp]: "~ b s"
+ have least: "(LEAST k. ~ b ((c ^^ k) s)) = 0"
+ by (rule Least_equality) auto
+ moreover
+ have "\<exists>k. ~ b ((c ^^ k) s)" by (rule exI[of _ "0::nat"]) auto
+ ultimately show ?thesis unfolding while_option_def by auto
+qed
-declare while_unfold[code]
+lemma while_option_stop:
+assumes "while_option b c s = Some t"
+shows "~ b t"
+proof -
+ from assms have ex: "\<exists>k. ~ b ((c ^^ k) s)"
+ and t: "t = (c ^^ (LEAST k. ~ b ((c ^^ k) s))) s"
+ by (auto simp: while_option_def split: if_splits)
+ from LeastI_ex[OF ex]
+ show "~ b t" unfolding t .
+qed
+
+theorem while_option_rule:
+assumes step: "!!s. P s ==> b s ==> P (c s)"
+and result: "while_option b c s = Some t"
+and init: "P s"
+shows "P t"
+proof -
+ def k == "LEAST k. ~ b ((c ^^ k) s)"
+ from assms have t: "t = (c ^^ k) s"
+ by (simp add: while_option_def k_def split: if_splits)
+ have 1: "ALL i<k. b ((c ^^ i) s)"
+ by (auto simp: k_def dest: not_less_Least)
+
+ { fix i assume "i <= k" then have "P ((c ^^ i) s)"
+ by (induct i) (auto simp: init step 1) }
+ thus "P t" by (auto simp: t)
+qed
+
+
+subsection {* Totalized version *}
+
+definition while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
+where "while b c s = the (while_option b c s)"
+
+lemma while_unfold:
+ "while b c s = (if b s then while b c (c s) else s)"
+unfolding while_def by (subst while_option_unfold) simp
lemma def_while_unfold:
assumes fdef: "f == while test do"
shows "f x = (if test x then f(do x) else x)"
-proof -
- have "f x = while test do x" using fdef by simp
- also have "\<dots> = (if test x then while test do (do x) else x)"
- by(rule while_unfold)
- also have "\<dots> = (if test x then f(do x) else x)" by(simp add:fdef[symmetric])
- finally show ?thesis .
-qed
+unfolding fdef by (fact while_unfold)
text {*
@@ -88,9 +152,7 @@
done
-text {*
- An example of using the @{term while} combinator.
-*}
+subsection {* Example *}
text{* Cannot use @{thm[source]set_eq_subset} because it leads to
looping because the antisymmetry simproc turns the subset relationship