--- a/src/ZF/Induct/Term.thy Thu Nov 15 20:01:19 2001 +0100
+++ b/src/ZF/Induct/Term.thy Thu Nov 15 23:21:57 2001 +0100
@@ -167,7 +167,7 @@
*}
lemma term_map [simp]:
- "ts \<in> list(A) \<Longrightarrow> term_map(f, Apply(a, ts)) = Apply(f(a), map(term_map(f), ts))"
+ "ts \<in> list(A) ==> term_map(f, Apply(a, ts)) = Apply(f(a), map(term_map(f), ts))"
by (rule term_map_def [THEN def_term_rec])
lemma term_map_type [TC]:
@@ -188,7 +188,7 @@
*}
lemma term_size [simp]:
- "ts \<in> list(A) \<Longrightarrow> term_size(Apply(a, ts)) = succ(list_add(map(term_size, ts)))"
+ "ts \<in> list(A) ==> term_size(Apply(a, ts)) = succ(list_add(map(term_size, ts)))"
by (rule term_size_def [THEN def_term_rec])
lemma term_size_type [TC]: "t \<in> term(A) ==> term_size(t) \<in> nat"
@@ -200,7 +200,7 @@
*}
lemma reflect [simp]:
- "ts \<in> list(A) \<Longrightarrow> reflect(Apply(a, ts)) = Apply(a, rev(map(reflect, ts)))"
+ "ts \<in> list(A) ==> reflect(Apply(a, ts)) = Apply(a, rev(map(reflect, ts)))"
by (rule reflect_def [THEN def_term_rec])
lemma reflect_type [TC]: "t \<in> term(A) ==> reflect(t) \<in> term(A)"
@@ -212,7 +212,7 @@
*}
lemma preorder [simp]:
- "ts \<in> list(A) \<Longrightarrow> preorder(Apply(a, ts)) = Cons(a, flat(map(preorder, ts)))"
+ "ts \<in> list(A) ==> preorder(Apply(a, ts)) = Cons(a, flat(map(preorder, ts)))"
by (rule preorder_def [THEN def_term_rec])
lemma preorder_type [TC]: "t \<in> term(A) ==> preorder(t) \<in> list(A)"
@@ -224,7 +224,7 @@
*}
lemma postorder [simp]:
- "ts \<in> list(A) \<Longrightarrow> postorder(Apply(a, ts)) = flat(map(postorder, ts)) @ [a]"
+ "ts \<in> list(A) ==> postorder(Apply(a, ts)) = flat(map(postorder, ts)) @ [a]"
by (rule postorder_def [THEN def_term_rec])
lemma postorder_type [TC]: "t \<in> term(A) ==> postorder(t) \<in> list(A)"
--- a/src/ZF/Induct/Tree_Forest.thy Thu Nov 15 20:01:19 2001 +0100
+++ b/src/ZF/Induct/Tree_Forest.thy Thu Nov 15 23:21:57 2001 +0100
@@ -20,10 +20,10 @@
declare tree_forest.intros [simp, TC]
-lemma tree_def: "tree(A) \<equiv> Part(tree_forest(A), Inl)"
+lemma tree_def: "tree(A) == Part(tree_forest(A), Inl)"
by (simp only: tree_forest.defs)
-lemma forest_def: "forest(A) \<equiv> Part(tree_forest(A), Inr)"
+lemma forest_def: "forest(A) == Part(tree_forest(A), Inr)"
by (simp only: tree_forest.defs)
@@ -234,7 +234,8 @@
apply simp_all
done
-lemma map_compose: "z \<in> tree_forest(A) ==> map(h, map(j,z)) = map(\<lambda>u. h(j(u)), z)"
+lemma map_compose:
+ "z \<in> tree_forest(A) ==> map(h, map(j,z)) = map(\<lambda>u. h(j(u)), z)"
apply (erule tree_forest.induct)
apply simp_all
done