--- a/src/HOL/equalities.ML Wed Nov 26 17:31:02 1997 +0100
+++ b/src/HOL/equalities.ML Wed Nov 26 17:32:52 1997 +0100
@@ -105,7 +105,7 @@
Addsimps [insert_image];
goal thy "(f``A = {}) = (A = {})";
-by (blast_tac (claset() addSEs [equalityE]) 1);
+by (blast_tac (claset() addSEs [equalityCE]) 1);
qed "image_is_empty";
AddIffs [image_is_empty];
@@ -149,7 +149,7 @@
Addsimps[Int_empty_right];
goal thy "(A Int B = {}) = (A <= Compl B)";
-by (blast_tac (claset() addSEs [equalityE]) 1);
+by (blast_tac (claset() addSEs [equalityCE]) 1);
qed "disjoint_eq_subset_Compl";
goal thy "UNIV Int B = B";
@@ -171,7 +171,7 @@
qed "Int_Un_distrib2";
goal thy "(A<=B) = (A Int B = A)";
-by (blast_tac (claset() addSEs [equalityE]) 1);
+by (blast_tac (claset() addSEs [equalityCE]) 1);
qed "subset_Int_eq";
goal thy "(A Int B = UNIV) = (A = UNIV & B = UNIV)";
@@ -233,13 +233,13 @@
Addsimps[Un_insert_right];
goal thy "(insert a B) Int C = (if a:C then insert a (B Int C) \
-\ else B Int C)";
+\ else B Int C)";
by (simp_tac (simpset() addsplits [expand_if]) 1);
by (Blast_tac 1);
qed "Int_insert_left";
goal thy "A Int (insert a B) = (if a:A then insert a (A Int B) \
-\ else A Int B)";
+\ else A Int B)";
by (simp_tac (simpset() addsplits [expand_if]) 1);
by (Blast_tac 1);
qed "Int_insert_right";
@@ -254,7 +254,7 @@
qed "Un_Int_crazy";
goal thy "(A<=B) = (A Un B = B)";
-by (blast_tac (claset() addSEs [equalityE]) 1);
+by (blast_tac (claset() addSEs [equalityCE]) 1);
qed "subset_Un_eq";
goal thy "(A <= insert b C) = (A <= C | b:A & A-{b} <= C)";
@@ -301,7 +301,7 @@
(*Halmos, Naive Set Theory, page 16.*)
goal thy "((A Int B) Un C = A Int (B Un C)) = (C<=A)";
-by (blast_tac (claset() addSEs [equalityE]) 1);
+by (blast_tac (claset() addSEs [equalityCE]) 1);
qed "Un_Int_assoc_eq";
@@ -332,12 +332,12 @@
qed "Union_Int_subset";
goal thy "(Union M = {}) = (! A : M. A = {})";
-by (blast_tac (claset() addEs [equalityE]) 1);
-qed"Union_empty_conv";
+by (blast_tac (claset() addEs [equalityCE]) 1);
+qed "Union_empty_conv";
AddIffs [Union_empty_conv];
goal thy "(Union(C) Int A = {}) = (! B:C. B Int A = {})";
-by (blast_tac (claset() addSEs [equalityE]) 1);
+by (blast_tac (claset() addSEs [equalityCE]) 1);
qed "Union_disjoint";
section "Inter";
@@ -444,7 +444,7 @@
by (Blast_tac 1);
qed "Int_Union";
-(* Devlin, Setdamentals of Contemporary Set Theory, page 12, exercise 5:
+(* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:
Union of a family of unions **)
goal thy "(UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)";
by (Blast_tac 1);