--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/inductive_package.ML Tue Jun 30 20:39:43 1998 +0200
@@ -0,0 +1,600 @@
+(* Title: HOL/Tools/inductive_package.ML
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Stefan Berghofer, TU Muenchen
+ Copyright 1994 University of Cambridge
+ 1998 TU Muenchen
+
+(Co)Inductive Definition module for HOL
+
+Features:
+* least or greatest fixedpoints
+* user-specified product and sum constructions
+* mutually recursive definitions
+* definitions involving arbitrary monotone operators
+* automatically proves introduction and elimination rules
+
+The recursive sets must *already* be declared as constants in parent theory!
+
+ Introduction rules have the form
+ [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
+ where M is some monotone operator (usually the identity)
+ P(x) is any side condition on the free variables
+ ti, t are any terms
+ Sj, Sk are two of the sets being defined in mutual recursion
+
+Sums are used only for mutual recursion;
+Products are used only to derive "streamlined" induction rules for relations
+*)
+
+signature INDUCTIVE_PACKAGE =
+sig
+ val add_inductive_i : bool -> bool -> bstring -> bool -> bool -> bool -> term list ->
+ term list -> thm list -> thm list -> theory -> theory *
+ {defs:thm list, elims:thm list, raw_induct:thm, induct:thm,
+ intrs:thm list,
+ mk_cases:thm list -> string -> thm, mono:thm,
+ unfold:thm}
+ val add_inductive : bool -> bool -> string list -> string list
+ -> thm list -> thm list -> theory -> theory *
+ {defs:thm list, elims:thm list, raw_induct:thm, induct:thm,
+ intrs:thm list,
+ mk_cases:thm list -> string -> thm, mono:thm,
+ unfold:thm}
+end;
+
+structure InductivePackage : INDUCTIVE_PACKAGE =
+struct
+
+(*For proving monotonicity of recursion operator*)
+val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono,
+ ex_mono, Collect_mono, in_mono, vimage_mono];
+
+val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (concl_of vimageD);
+
+(*Delete needless equality assumptions*)
+val refl_thin = prove_goal HOL.thy "!!P. [| a=a; P |] ==> P"
+ (fn _ => [assume_tac 1]);
+
+(*For simplifying the elimination rule*)
+val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE, disjE, Pair_inject];
+
+val vimage_name = Sign.intern_const (sign_of Vimage.thy) "op -``";
+val mono_name = Sign.intern_const (sign_of Ord.thy) "mono";
+
+(* make injections needed in mutually recursive definitions *)
+
+fun mk_inj cs sumT c x =
+ let
+ fun mk_inj' T n i =
+ if n = 1 then x else
+ let val n2 = n div 2;
+ val Type (_, [T1, T2]) = T
+ in
+ if i <= n2 then
+ Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
+ else
+ Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
+ end
+ in mk_inj' sumT (length cs) (1 + find_index_eq c cs)
+ end;
+
+(* make "vimage" terms for selecting out components of mutually rec.def. *)
+
+fun mk_vimage cs sumT t c = if length cs < 2 then t else
+ let
+ val cT = HOLogic.dest_setT (fastype_of c);
+ val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT
+ in
+ Const (vimage_name, vimageT) $
+ Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
+ end;
+
+(**************************** well-formedness checks **************************)
+
+fun err_in_rule sign t msg = error ("Ill-formed introduction rule\n" ^
+ (Sign.string_of_term sign t) ^ "\n" ^ msg);
+
+fun err_in_prem sign t p msg = error ("Ill-formed premise\n" ^
+ (Sign.string_of_term sign p) ^ "\nin introduction rule\n" ^
+ (Sign.string_of_term sign t) ^ "\n" ^ msg);
+
+val msg1 = "Conclusion of introduction rule must have form\
+ \ ' t : S_i '";
+val msg2 = "Premises mentioning recursive sets must have form\
+ \ ' t : M S_i '";
+val msg3 = "Recursion term on left of member symbol";
+
+fun check_rule sign cs r =
+ let
+ fun check_prem prem = if exists (Logic.occs o (rpair prem)) cs then
+ (case prem of
+ (Const ("op :", _) $ t $ u) =>
+ if exists (Logic.occs o (rpair t)) cs then
+ err_in_prem sign r prem msg3 else ()
+ | _ => err_in_prem sign r prem msg2)
+ else ()
+
+ in (case (HOLogic.dest_Trueprop o Logic.strip_imp_concl) r of
+ (Const ("op :", _) $ _ $ u) =>
+ if u mem cs then map (check_prem o HOLogic.dest_Trueprop)
+ (Logic.strip_imp_prems r)
+ else err_in_rule sign r msg1
+ | _ => err_in_rule sign r msg1)
+ end;
+
+fun try' f msg sign t = (f t) handle _ => error (msg ^ Sign.string_of_term sign t);
+
+(*********************** properties of (co)inductive sets *********************)
+
+(***************************** elimination rules ******************************)
+
+fun mk_elims cs cTs params intr_ts =
+ let
+ val used = foldr add_term_names (intr_ts, []);
+ val [aname, pname] = variantlist (["a", "P"], used);
+ val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
+
+ fun dest_intr r =
+ let val Const ("op :", _) $ t $ u =
+ HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
+ in (u, t, Logic.strip_imp_prems r) end;
+
+ val intrs = map dest_intr intr_ts;
+
+ fun mk_elim (c, T) =
+ let
+ val a = Free (aname, T);
+
+ fun mk_elim_prem (_, t, ts) =
+ list_all_free (map dest_Free ((foldr add_term_frees (t::ts, [])) \\ params),
+ Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P));
+ in
+ Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) ::
+ map mk_elim_prem (filter (equal c o #1) intrs), P)
+ end
+ in
+ map mk_elim (cs ~~ cTs)
+ end;
+
+(***************** premises and conclusions of induction rules ****************)
+
+fun mk_indrule cs cTs params intr_ts =
+ let
+ val used = foldr add_term_names (intr_ts, []);
+
+ (* predicates for induction rule *)
+
+ val preds = map Free (variantlist (if length cs < 2 then ["P"] else
+ map (fn i => "P" ^ string_of_int i) (1 upto length cs), used) ~~
+ map (fn T => T --> HOLogic.boolT) cTs);
+
+ (* transform an introduction rule into a premise for induction rule *)
+
+ fun mk_ind_prem r =
+ let
+ val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
+
+ fun subst (prem as (Const ("op :", T) $ t $ u), prems) =
+ let val n = find_index_eq u cs in
+ if n >= 0 then prem :: (nth_elem (n, preds)) $ t :: prems else
+ (subst_free (map (fn (c, P) => (c, HOLogic.mk_binop "op Int"
+ (c, HOLogic.Collect_const (HOLogic.dest_setT
+ (fastype_of c)) $ P))) (cs ~~ preds)) prem)::prems
+ end
+ | subst (prem, prems) = prem::prems;
+
+ val Const ("op :", _) $ t $ u =
+ HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
+
+ in list_all_free (frees,
+ Logic.list_implies (map HOLogic.mk_Trueprop (foldr subst
+ (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r), [])),
+ HOLogic.mk_Trueprop (nth_elem (find_index_eq u cs, preds) $ t)))
+ end;
+
+ val ind_prems = map mk_ind_prem intr_ts;
+
+ (* make conclusions for induction rules *)
+
+ fun mk_ind_concl ((c, P), (ts, x)) =
+ let val T = HOLogic.dest_setT (fastype_of c);
+ val Ts = HOLogic.prodT_factors T;
+ val (frees, x') = foldr (fn (T', (fs, s)) =>
+ ((Free (s, T'))::fs, bump_string s)) (Ts, ([], x));
+ val tuple = HOLogic.mk_tuple T frees;
+ in ((HOLogic.mk_binop "op -->"
+ (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x')
+ end;
+
+ val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 (app HOLogic.conj)
+ (fst (foldr mk_ind_concl (cs ~~ preds, ([], "xa")))))
+
+ in (preds, ind_prems, mutual_ind_concl)
+ end;
+
+(********************** proofs for (co)inductive sets *************************)
+
+(**************************** prove monotonicity ******************************)
+
+fun prove_mono setT fp_fun monos thy =
+ let
+ val _ = writeln " Proving monotonicity...";
+
+ val mono = prove_goalw_cterm [] (cterm_of (sign_of thy) (HOLogic.mk_Trueprop
+ (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun)))
+ (fn _ => [rtac monoI 1, REPEAT (ares_tac (basic_monos @ monos) 1)])
+
+ in mono end;
+
+(************************* prove introduction rules ***************************)
+
+fun prove_intrs coind mono fp_def intr_ts con_defs rec_sets_defs thy =
+ let
+ val _ = writeln " Proving the introduction rules...";
+
+ val unfold = standard (mono RS (fp_def RS
+ (if coind then def_gfp_Tarski else def_lfp_Tarski)));
+
+ fun select_disj 1 1 = []
+ | select_disj _ 1 = [rtac disjI1]
+ | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
+
+ val intrs = map (fn (i, intr) => prove_goalw_cterm rec_sets_defs
+ (cterm_of (sign_of thy) intr) (fn prems =>
+ [(*insert prems and underlying sets*)
+ cut_facts_tac prems 1,
+ stac unfold 1,
+ REPEAT (resolve_tac [vimageI2, CollectI] 1),
+ (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
+ EVERY1 (select_disj (length intr_ts) i),
+ (*Not ares_tac, since refl must be tried before any equality assumptions;
+ backtracking may occur if the premises have extra variables!*)
+ DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 1 APPEND assume_tac 1),
+ (*Now solve the equations like Inl 0 = Inl ?b2*)
+ rewrite_goals_tac con_defs,
+ REPEAT (rtac refl 1)])) (1 upto (length intr_ts) ~~ intr_ts)
+
+ in (intrs, unfold) end;
+
+(*************************** prove elimination rules **************************)
+
+fun prove_elims cs cTs params intr_ts unfold rec_sets_defs thy =
+ let
+ val _ = writeln " Proving the elimination rules...";
+
+ val rules1 = [CollectE, disjE, make_elim vimageD];
+ val rules2 = [exE, conjE, Inl_neq_Inr, Inr_neq_Inl] @
+ map make_elim [Inl_inject, Inr_inject];
+
+ val elims = map (fn t => prove_goalw_cterm rec_sets_defs
+ (cterm_of (sign_of thy) t) (fn prems =>
+ [cut_facts_tac [hd prems] 1,
+ dtac (unfold RS subst) 1,
+ REPEAT (FIRSTGOAL (eresolve_tac rules1)),
+ REPEAT (FIRSTGOAL (eresolve_tac rules2)),
+ EVERY (map (fn prem =>
+ DEPTH_SOLVE_1 (ares_tac (prem::[conjI]) 1)) (tl prems))]))
+ (mk_elims cs cTs params intr_ts)
+
+ in elims end;
+
+(** derivation of simplified elimination rules **)
+
+(*Applies freeness of the given constructors, which *must* be unfolded by
+ the given defs. Cannot simply use the local con_defs because con_defs=[]
+ for inference systems.
+ FIXME: proper handling of conjunctive / disjunctive side conditions?!
+ *)
+fun con_elim_tac simps =
+ let val elim_tac = REPEAT o (eresolve_tac elim_rls)
+ in ALLGOALS(EVERY'[elim_tac,
+ asm_full_simp_tac (simpset_of Nat.thy addsimps simps),
+ elim_tac,
+ REPEAT o bound_hyp_subst_tac])
+ THEN prune_params_tac
+ end;
+
+(*String s should have the form t:Si where Si is an inductive set*)
+fun mk_cases elims defs s =
+ let val prem = assume (read_cterm (sign_of_thm (hd elims)) (s, propT));
+ val elims' = map (try (fn r =>
+ rule_by_tactic (con_elim_tac defs) (prem RS r) |> standard)) elims
+ in case find_first is_some elims' of
+ Some (Some r) => r
+ | None => error ("mk_cases: string '" ^ s ^ "' not of form 't : S_i'")
+ end;
+
+(**************************** prove induction rule ****************************)
+
+fun prove_indrule cs cTs sumT rec_const params intr_ts mono
+ fp_def rec_sets_defs thy =
+ let
+ val _ = writeln " Proving the induction rule...";
+
+ val sign = sign_of thy;
+
+ val (preds, ind_prems, mutual_ind_concl) = mk_indrule cs cTs params intr_ts;
+
+ (* make predicate for instantiation of abstract induction rule *)
+
+ fun mk_ind_pred _ [P] = P
+ | mk_ind_pred T Ps =
+ let val n = (length Ps) div 2;
+ val Type (_, [T1, T2]) = T
+ in Const ("sum_case",
+ [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $
+ mk_ind_pred T1 (take (n, Ps)) $ mk_ind_pred T2 (drop (n, Ps))
+ end;
+
+ val ind_pred = mk_ind_pred sumT preds;
+
+ val ind_concl = HOLogic.mk_Trueprop
+ (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
+ (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0)));
+
+ (* simplification rules for vimage and Collect *)
+
+ val vimage_simps = if length cs < 2 then [] else
+ map (fn c => prove_goalw_cterm [] (cterm_of sign
+ (HOLogic.mk_Trueprop (HOLogic.mk_eq
+ (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c,
+ HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $
+ nth_elem (find_index_eq c cs, preds)))))
+ (fn _ => [rtac vimage_Collect 1, rewrite_goals_tac
+ (map mk_meta_eq [sum_case_Inl, sum_case_Inr]),
+ rtac refl 1])) cs;
+
+ val induct = prove_goalw_cterm [] (cterm_of sign
+ (Logic.list_implies (ind_prems, ind_concl))) (fn prems =>
+ [rtac (impI RS allI) 1,
+ DETERM (etac (mono RS (fp_def RS def_induct)) 1),
+ rewrite_goals_tac (map mk_meta_eq (vimage_Int::vimage_simps)),
+ fold_goals_tac rec_sets_defs,
+ (*This CollectE and disjE separates out the introduction rules*)
+ REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE])),
+ (*Now break down the individual cases. No disjE here in case
+ some premise involves disjunction.*)
+ REPEAT (FIRSTGOAL (eresolve_tac [IntE, CollectE, exE, conjE]
+ ORELSE' hyp_subst_tac)),
+ rewrite_goals_tac (map mk_meta_eq [sum_case_Inl, sum_case_Inr]),
+ EVERY (map (fn prem =>
+ DEPTH_SOLVE_1 (ares_tac (prem::[conjI, refl]) 1)) prems)]);
+
+ val lemma = prove_goalw_cterm rec_sets_defs (cterm_of sign
+ (Logic.mk_implies (ind_concl, mutual_ind_concl))) (fn prems =>
+ [cut_facts_tac prems 1,
+ REPEAT (EVERY
+ [REPEAT (resolve_tac [conjI, impI] 1),
+ TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1,
+ rewrite_goals_tac (map mk_meta_eq [sum_case_Inl, sum_case_Inr]),
+ atac 1])])
+
+ in standard (split_rule (induct RS lemma))
+ end;
+
+(*************** definitional introduction of (co)inductive sets **************)
+
+fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs
+ intr_ts monos con_defs thy params paramTs cTs cnames =
+ let
+ val _ = if verbose then writeln ("Proofs for " ^
+ (if coind then "co" else "") ^ "inductive set(s) " ^ commas cnames) else ();
+
+ val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
+ val setT = HOLogic.mk_setT sumT;
+
+ val fp_name = if coind then Sign.intern_const (sign_of Gfp.thy) "gfp"
+ else Sign.intern_const (sign_of Lfp.thy) "lfp";
+
+ (* transform an introduction rule into a conjunction *)
+ (* [| t : ... S_i ... ; ... |] ==> u : S_j *)
+ (* is transformed into *)
+ (* x = Inj_j u & t : ... Inj_i -`` S ... & ... *)
+
+ fun transform_rule r =
+ let
+ val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
+ val idx = length frees;
+ val subst = subst_free (cs ~~ (map (mk_vimage cs sumT (Bound (idx + 1))) cs));
+ val Const ("op :", _) $ t $ u =
+ HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
+
+ in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P))
+ (frees, foldr1 (app HOLogic.conj)
+ (((HOLogic.eq_const sumT) $ Bound idx $ (mk_inj cs sumT u t))::
+ (map (subst o HOLogic.dest_Trueprop)
+ (Logic.strip_imp_prems r))))
+ end
+
+ (* make a disjunction of all introduction rules *)
+
+ val fp_fun = Abs ("S", setT, (HOLogic.Collect_const sumT) $
+ Abs ("x", sumT, foldr1 (app HOLogic.disj) (map transform_rule intr_ts)));
+
+ (* add definiton of recursive sets to theory *)
+
+ val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name;
+ val full_rec_name = Sign.full_name (sign_of thy) rec_name;
+
+ val rec_const = list_comb
+ (Const (full_rec_name, paramTs ---> setT), params);
+
+ val fp_def_term = Logic.mk_equals (rec_const,
+ Const (fp_name, (setT --> setT) --> setT) $ fp_fun)
+
+ val def_terms = fp_def_term :: (if length cs < 2 then [] else
+ map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs);
+
+ val thy' = thy |>
+ (if declare_consts then
+ Theory.add_consts_i (map (fn (c, n) =>
+ (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
+ else I) |>
+ (if length cs < 2 then I else
+ Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)]) |>
+ Theory.add_path rec_name |>
+ PureThy.add_defss_i [(("defs", def_terms), [])];
+
+ (* get definitions from theory *)
+
+ val fp_def::rec_sets_defs = get_thms thy' "defs";
+
+ (* prove and store theorems *)
+
+ val mono = prove_mono setT fp_fun monos thy';
+ val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts con_defs
+ rec_sets_defs thy';
+ val elims = if no_elim then [] else
+ prove_elims cs cTs params intr_ts unfold rec_sets_defs thy';
+ val raw_induct = if no_ind then TrueI else
+ if coind then standard (rule_by_tactic
+ (rewrite_tac [mk_meta_eq vimage_Un] THEN
+ fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct)))
+ else
+ prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def
+ rec_sets_defs thy';
+ val induct = if coind orelse length cs > 1 then raw_induct
+ else standard (raw_induct RSN (2, rev_mp));
+
+ val thy'' = thy' |>
+ PureThy.add_tthmss [(("intrs", map Attribute.tthm_of intrs), [])] |>
+ (if no_elim then I else PureThy.add_tthmss
+ [(("elims", map Attribute.tthm_of elims), [])]) |>
+ (if no_ind then I else PureThy.add_tthms
+ [(((if coind then "co" else "") ^ "induct",
+ Attribute.tthm_of induct), [])]) |>
+ Theory.parent_path;
+
+ in (thy'',
+ {defs = fp_def::rec_sets_defs,
+ mono = mono,
+ unfold = unfold,
+ intrs = intrs,
+ elims = elims,
+ mk_cases = mk_cases elims,
+ raw_induct = raw_induct,
+ induct = induct})
+ end;
+
+(***************** axiomatic introduction of (co)inductive sets ***************)
+
+fun add_ind_axm verbose declare_consts alt_name coind no_elim no_ind cs
+ intr_ts monos con_defs thy params paramTs cTs cnames =
+ let
+ val _ = if verbose then writeln ("Adding axioms for " ^
+ (if coind then "co" else "") ^ "inductive set(s) " ^ commas cnames) else ();
+
+ val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name;
+
+ val elim_ts = mk_elims cs cTs params intr_ts;
+
+ val (_, ind_prems, mutual_ind_concl) = mk_indrule cs cTs params intr_ts;
+ val ind_t = Logic.list_implies (ind_prems, mutual_ind_concl);
+
+ val thy' = thy |>
+ (if declare_consts then
+ Theory.add_consts_i (map (fn (c, n) =>
+ (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
+ else I) |>
+ Theory.add_path rec_name |>
+ PureThy.add_axiomss_i [(("intrs", intr_ts), []), (("elims", elim_ts), [])] |>
+ (if coind then I
+ else PureThy.add_axioms_i [(("internal_induct", ind_t), [])]);
+
+ val intrs = get_thms thy' "intrs";
+ val elims = get_thms thy' "elims";
+ val raw_induct = if coind then TrueI else
+ standard (split_rule (get_thm thy' "internal_induct"));
+ val induct = if coind orelse length cs > 1 then raw_induct
+ else standard (raw_induct RSN (2, rev_mp));
+
+ val thy'' = thy' |>
+ (if coind then I
+ else PureThy.add_tthms [(("induct", Attribute.tthm_of induct), [])]) |>
+ Theory.parent_path
+
+ in (thy'',
+ {defs = [],
+ mono = TrueI,
+ unfold = TrueI,
+ intrs = intrs,
+ elims = elims,
+ mk_cases = mk_cases elims,
+ raw_induct = raw_induct,
+ induct = induct})
+ end;
+
+(********************** introduction of (co)inductive sets ********************)
+
+fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs
+ intr_ts monos con_defs thy =
+ let
+ val _ = Theory.requires thy "Inductive"
+ ((if coind then "co" else "") ^ "inductive definitions");
+
+ val sign = sign_of thy;
+
+ (*parameters should agree for all mutually recursive components*)
+ val (_, params) = strip_comb (hd cs);
+ val paramTs = map (try' (snd o dest_Free) "Parameter in recursive\
+ \ component is not a free variable: " sign) params;
+
+ val cTs = map (try' (HOLogic.dest_setT o fastype_of)
+ "Recursive component not of type set: " sign) cs;
+
+ val cnames = map (try' (Sign.base_name o fst o dest_Const o head_of)
+ "Recursive set not previously declared as constant: " sign) cs;
+
+ val _ = assert_all Syntax.is_identifier cnames
+ (fn a => "Base name of recursive set not an identifier: " ^ a);
+
+ val _ = map (check_rule sign cs) intr_ts;
+
+ in
+ (if !quick_and_dirty then add_ind_axm else add_ind_def)
+ verbose declare_consts alt_name coind no_elim no_ind cs intr_ts monos
+ con_defs thy params paramTs cTs cnames
+ end;
+
+(***************************** external interface *****************************)
+
+fun add_inductive verbose coind c_strings intr_strings monos con_defs thy =
+ let
+ val sign = sign_of thy;
+ val cs = map (readtm (sign_of thy) HOLogic.termTVar) c_strings;
+ val intr_ts = map (readtm (sign_of thy) propT) intr_strings;
+
+ (* the following code ensures that each recursive set *)
+ (* always has the same type in all introduction rules *)
+
+ val {tsig, ...} = Sign.rep_sg sign;
+ val add_term_consts_2 =
+ foldl_aterms (fn (cs, Const c) => c ins cs | (cs, _) => cs);
+ fun varify (t, (i, ts)) =
+ let val t' = map_term_types (incr_tvar (i + 1)) (Type.varify (t, []))
+ in (maxidx_of_term t', t'::ts) end;
+ val (i, cs') = foldr varify (cs, (~1, []));
+ val (i', intr_ts') = foldr varify (intr_ts, (i, []));
+ val rec_consts = foldl add_term_consts_2 ([], cs');
+ val intr_consts = foldl add_term_consts_2 ([], intr_ts');
+ fun unify (env, (cname, cT)) =
+ let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
+ in (foldl (fn ((env', j'), Tp) => Type.unify tsig j' env' Tp)
+ (env, (replicate (length consts) cT) ~~ consts)) handle _ =>
+ error ("Occurrences of constant '" ^ cname ^
+ "' have incompatible types")
+ end;
+ val (env, _) = foldl unify (([], i'), rec_consts);
+ fun typ_subst_TVars_2 env T = let val T' = typ_subst_TVars env T
+ in if T = T' then T else typ_subst_TVars_2 env T' end;
+ val subst = fst o Type.freeze_thaw o
+ (map_term_types (typ_subst_TVars_2 env));
+ val cs'' = map subst cs';
+ val intr_ts'' = map subst intr_ts';
+
+ in add_inductive_i verbose false "" coind false false cs'' intr_ts''
+ monos con_defs thy
+ end;
+
+end;