--- a/src/HOL/Hilbert_Choice.thy Mon Mar 21 20:38:39 2016 +0100
+++ b/src/HOL/Hilbert_Choice.thy Mon Mar 21 21:18:08 2016 +0100
@@ -762,7 +762,7 @@
next
fix n m :: nat assume "m < n" "n \<le> N"
then show "f m < f n"
- proof (induct rule: less_Suc_induct[consumes 1])
+ proof (induct rule: less_Suc_induct)
case (1 i)
then have "i < N" by simp
then have "f i \<noteq> f (Suc i)"
--- a/src/HOL/Nat.thy Mon Mar 21 20:38:39 2016 +0100
+++ b/src/HOL/Nat.thy Mon Mar 21 21:18:08 2016 +0100
@@ -928,7 +928,7 @@
by (rule less_induct) (auto intro: step simp:le_simps)
text\<open>An induction rule for estabilishing binary relations\<close>
-lemma less_Suc_induct:
+lemma less_Suc_induct [consumes 1]:
assumes less: "i < j"
and step: "!!i. P i (Suc i)"
and trans: "!!i j k. i < j ==> j < k ==> P i j ==> P j k ==> P i k"
@@ -1646,7 +1646,7 @@
proof (cases "n < n'")
case True
then show ?thesis
- by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
+ by (induct n n' rule: less_Suc_induct) (auto intro: mono)
qed (insert \<open>n \<le> n'\<close>, auto) \<comment> \<open>trivial for @{prop "n = n'"}\<close>
lemma lift_Suc_antimono_le:
@@ -1655,14 +1655,14 @@
proof (cases "n < n'")
case True
then show ?thesis
- by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
+ by (induct n n' rule: less_Suc_induct) (auto intro: mono)
qed (insert \<open>n \<le> n'\<close>, auto) \<comment> \<open>trivial for @{prop "n = n'"}\<close>
lemma lift_Suc_mono_less:
assumes mono: "\<And>n. f n < f (Suc n)" and "n < n'"
shows "f n < f n'"
using \<open>n < n'\<close>
-by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
+by (induct n n' rule: less_Suc_induct) (auto intro: mono)
lemma lift_Suc_mono_less_iff:
"(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m"