--- a/src/HOL/UNITY/ProgressSets.thy Tue Mar 25 10:03:11 2003 +0100
+++ b/src/HOL/UNITY/ProgressSets.thy Wed Mar 26 12:25:56 2003 +0100
@@ -318,12 +318,18 @@
-subsubsection {*Derived Relation from a Lattice*}
+subsubsection {*Lattices and Relations*}
text{*From Meier's thesis, section 4.5.3*}
constdefs
relcl :: "'a set set => ('a * 'a) set"
+ -- {*Derived relation from a lattice*}
"relcl L == {(x,y). y \<in> cl L {x}}"
+
+ latticeof :: "('a * 'a) set => 'a set set"
+ -- {*Derived lattice from a relation: the set of upwards-closed sets*}
+ "latticeof r == {X. \<forall>s t. s \<in> X & (s,t) \<in> r --> t \<in> X}"
+
lemma relcl_refl: "(a,a) \<in> relcl L"
by (simp add: relcl_def subset_cl [THEN subsetD])
@@ -340,14 +346,59 @@
lemma trans_relcl: "lattice L ==> trans (relcl L)"
by (blast intro: relcl_trans transI)
-text{*Related to equation (4.71) of Meier's thesis*}
+lemma lattice_latticeof: "lattice (latticeof r)"
+by (auto simp add: lattice_def latticeof_def)
+
+lemma lattice_singletonI:
+ "[|lattice L; !!s. s \<in> X ==> {s} \<in> L|] ==> X \<in> L"
+apply (cut_tac UN_singleton [of X])
+apply (erule subst)
+apply (simp only: UN_in_lattice)
+done
+
+text{*Equation (4.71) of Meier's thesis. He gives no proof.*}
+lemma cl_latticeof:
+ "[|refl UNIV r; trans r|]
+ ==> cl (latticeof r) X = {t. \<exists>s. s\<in>X & (s,t) \<in> r}"
+apply (rule equalityI)
+ apply (rule cl_least)
+ apply (simp (no_asm_use) add: latticeof_def trans_def, blast)
+ apply (simp add: latticeof_def refl_def, blast)
+apply (simp add: latticeof_def, clarify)
+apply (unfold cl_def, blast)
+done
+
+text{*Related to (4.71).*}
lemma cl_eq_Collect_relcl:
"lattice L ==> cl L X = {t. \<exists>s. s\<in>X & (s,t) \<in> relcl L}"
-apply (cut_tac UN_singleton [of X, symmetric])
-apply (erule ssubst)
+apply (cut_tac UN_singleton [of X])
+apply (erule subst)
apply (force simp only: relcl_def cl_UN)
done
+text{*Meier's theorem of section 4.5.3*}
+theorem latticeof_relcl_eq: "lattice L ==> latticeof (relcl L) = L"
+apply (rule equalityI)
+ prefer 2 apply (force simp add: latticeof_def relcl_def cl_def, clarify)
+apply (rename_tac X)
+apply (rule cl_subset_in_lattice)
+ prefer 2 apply assumption
+apply (drule cl_ident_iff [OF lattice_latticeof, THEN iffD2])
+apply (drule equalityD1)
+apply (rule subset_trans)
+ prefer 2 apply assumption
+apply (thin_tac "?U \<subseteq> X")
+apply (cut_tac A=X in UN_singleton)
+apply (erule subst)
+apply (simp only: cl_UN lattice_latticeof
+ cl_latticeof [OF refl_relcl trans_relcl])
+apply (simp add: relcl_def)
+done
+
+theorem relcl_latticeof_eq:
+ "[|refl UNIV r; trans r|] ==> relcl (latticeof r) = r"
+by (simp add: relcl_def cl_latticeof, blast)
+
subsubsection {*Decoupling Theorems*}
@@ -421,7 +472,7 @@
cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T\<inter>M)))"
-lemma commutativity1:
+lemma commutativity1_lemma:
assumes commutes: "commutes F T B L"
and lattice: "lattice L"
and BL: "B \<in> L"
@@ -439,6 +490,20 @@
apply (blast intro: rev_subsetD [OF _ wp_mono])
done
+lemma commutativity1:
+ assumes leadsTo: "F \<in> A leadsTo B"
+ and lattice: "lattice L"
+ and BL: "B \<in> L"
+ and TL: "T \<in> L"
+ and Fstable: "F \<in> stable T"
+ and Gco: "!!X. X\<in>L ==> G \<in> X-B co X"
+ and commutes: "commutes F T B L"
+ shows "F\<squnion>G \<in> T\<inter>A leadsTo B"
+by (rule progress_set_Union [OF leadsTo _ Fstable subset_refl BL Gco],
+ simp add: progress_set_def commutativity1_lemma commutes lattice BL TL)
+
+
+
text{*Possibly move to Relation.thy, after @{term single_valued}*}
constdefs
funof :: "[('a*'b)set, 'a] => 'b"
@@ -462,8 +527,8 @@
subsubsection{*Commutativity of Functions and Relation*}
text{*Thesis, page 109*}
-(*FIXME: this proof is an unGodly mess*)
-lemma commutativity2:
+(*FIXME: this proof is an ungodly mess*)
+lemma commutativity2_lemma:
assumes dcommutes:
"\<forall>act \<in> Acts F.
\<forall>s \<in> T. \<forall>t. (s,t) \<in> relcl L -->
@@ -478,8 +543,8 @@
apply (simp add: commutes_def, clarify)
apply (rename_tac t)
apply (subgoal_tac "\<exists>s. (s,t) \<in> relcl L & s \<in> T \<inter> wp act M")
- prefer 2 apply (force simp add: cl_eq_Collect_relcl [OF lattice], simp)
-apply clarify
+ prefer 2
+ apply (force simp add: cl_eq_Collect_relcl [OF lattice], simp, clarify)
apply (subgoal_tac "\<forall>u\<in>L. s \<in> u --> t \<in> u")
prefer 2
apply (intro ballI impI)
@@ -504,4 +569,25 @@
apply (blast intro: TL cl_mono [THEN [2] rev_subsetD])
done
+
+lemma commutativity2:
+ assumes leadsTo: "F \<in> A leadsTo B"
+ and dcommutes:
+ "\<forall>act \<in> Acts F.
+ \<forall>s \<in> T. \<forall>t. (s,t) \<in> relcl L -->
+ s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L"
+ and determ: "!!act. act \<in> Acts F ==> single_valued act"
+ and total: "!!act. act \<in> Acts F ==> Domain act = UNIV"
+ and lattice: "lattice L"
+ and BL: "B \<in> L"
+ and TL: "T \<in> L"
+ and Fstable: "F \<in> stable T"
+ and Gco: "!!X. X\<in>L ==> G \<in> X-B co X"
+ shows "F\<squnion>G \<in> T\<inter>A leadsTo B"
+apply (rule commutativity1 [OF leadsTo lattice])
+apply (simp_all add: Gco commutativity2_lemma dcommutes determ total
+ lattice BL TL Fstable)
+done
+
+
end