--- a/src/HOL/Complete_Lattice.thy Wed Aug 03 16:08:02 2011 +0200
+++ b/src/HOL/Complete_Lattice.thy Wed Aug 03 23:21:52 2011 +0200
@@ -392,7 +392,29 @@
end
-class complete_boolean_algebra = boolean_algebra + complete_lattice
+class complete_distrib_lattice = complete_lattice +
+ assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
+ assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
+begin
+
+(*lemma dual_complete_distrib_lattice:
+ "class.complete_distrib_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
+ apply (rule class.complete_distrib_lattice.intro)
+ apply (fact dual_complete_lattice)
+ apply (rule class.complete_distrib_lattice_axioms.intro)
+ apply (simp_all add: inf_Sup sup_Inf)*)
+
+subclass distrib_lattice proof -- {* Question: is it sufficient to include @{class distrib_lattice}
+ and proof @{fact inf_Sup} and @{fact sup_Inf} from that? *}
+ fix a b c
+ from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" .
+ then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def Inf_binary)
+qed
+
+end
+
+class complete_boolean_algebra = boolean_algebra + complete_lattice -- {* Question: is this
+ also a @{class complete_distrib_lattice}? *}
begin
lemma dual_complete_boolean_algebra:
@@ -489,7 +511,7 @@
subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
-instantiation bool :: complete_boolean_algebra
+instantiation bool :: complete_lattice
begin
definition
@@ -521,26 +543,28 @@
by (auto simp add: Bex_def SUP_def Sup_bool_def)
qed
+instance bool :: "{complete_distrib_lattice, complete_boolean_algebra}" proof
+qed (auto simp add: Inf_bool_def Sup_bool_def)
+
instantiation "fun" :: (type, complete_lattice) complete_lattice
begin
definition
- "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
+ "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)"
lemma Inf_apply:
- "(\<Sqinter>A) x = \<Sqinter>{y. \<exists>f\<in>A. y = f x}"
+ "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)"
by (simp add: Inf_fun_def)
definition
- "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
+ "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)"
lemma Sup_apply:
- "(\<Squnion>A) x = \<Squnion>{y. \<exists>f\<in>A. y = f x}"
+ "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)"
by (simp add: Sup_fun_def)
instance proof
-qed (auto simp add: le_fun_def Inf_apply Sup_apply
- intro: Inf_lower Sup_upper Inf_greatest Sup_least)
+qed (auto simp add: le_fun_def Inf_apply Sup_apply intro: INF_leI le_SUP_I le_INF_I SUP_leI)
end
@@ -552,6 +576,9 @@
"(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply)
+instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof
+qed (auto simp add: inf_apply sup_apply Inf_apply Sup_apply INF_def SUP_def inf_Sup sup_Inf image_image)
+
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..