--- a/src/HOL/Probability/Information.thy Mon Jul 08 17:57:19 2024 +0200
+++ b/src/HOL/Probability/Information.thy Mon Jul 08 22:28:02 2024 +0100
@@ -10,15 +10,6 @@
Independent_Family
begin
-
-lemma log_mult_nz:
- "x\<noteq>0 \<Longrightarrow> y\<noteq>0 \<Longrightarrow> log a (x * y) = log a x + log a y"
- by (simp add: log_def ln_mult divide_inverse distrib_right)
-
-lemma log_divide_nz:
- "x\<noteq>0 \<Longrightarrow> y\<noteq>0 \<Longrightarrow> log a (x / y) = log a x - log a y"
- by (simp add: diff_divide_distrib ln_div log_def)
-
subsection "Information theory"
locale information_space = prob_space +
@@ -554,11 +545,8 @@
show "AE x in S \<Otimes>\<^sub>M
T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x))
= f x"
- using A B unfolding f_def
-
- apply (auto simp: f_def field_simps space_pair_measure Px_nn Py_nn Pxy_nn
- less_le )
- by (smt (verit, del_insts) AE_I2 distrib_left log_divide log_mult mult_eq_0_iff)
+ using A B
+ by (auto simp: f_def field_simps space_pair_measure log_mult log_divide)
qed
show "0 \<le> ?M" unfolding M
@@ -1097,9 +1085,7 @@
have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. Pxyz x * - log b (?f x))"
apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3])
using ae1 ae2 ae3 ae4
- apply (auto simp: log_divide log_mult zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps
- less_le space_pair_measure split: prod.split)
- by (smt (verit, best) AE_I2 fst_conv log_divide mult_cancel_left mult_minus_right snd_conv)
+ by (auto simp: log_mult log_divide field_simps)
then
show "integrable ?P (\<lambda>x. - log b (?f x))"
by (subst integrable_real_density) (auto simp: space_pair_measure)
@@ -1112,9 +1098,7 @@
apply simp
apply (intro integral_cong_AE)
using ae1 ae2 ae3 ae4
- apply (auto simp: zero_less_mult_iff zero_less_divide_iff field_simps
- space_pair_measure less_le split: prod.split)
- by (smt (verit, best) AE_I2 fst_conv log_divide mult_eq_0_iff mult_minus_right snd_conv)
+ by (auto simp: field_simps log_divide)
finally show ?nonneg
by simp
qed
@@ -1214,10 +1198,7 @@
ultimately have I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))"
apply (rule integrable_cong_AE_imp)
using ae1 ae4 Px_nn Pyz_nn Pxyz_nn
- apply (auto simp: log_divide log_mult field_simps zero_less_mult_iff space_pair_measure less_le
- split: prod.split)
- apply (intro AE_I2)
- by (smt (verit, best) distrib_left divide_eq_0_iff fst_conv log_mult mult.commute nonzero_mult_div_cancel_left snd_conv times_divide_eq_right)
+ by (auto simp: log_divide log_mult field_simps)
have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)
(\<lambda>x. Pxyz x * log b (Pxz (fst x, snd (snd x))) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pz (snd (snd x))))"
using finite_entropy_integrable_transform[OF Fxz Pxyz Pxyz_nn, of "\<lambda>x. (fst x, snd (snd x))"]
@@ -1230,42 +1211,8 @@
ultimately have I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))"
apply (rule integrable_cong_AE_imp)
using ae1 ae2 ae3 ae4 Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn
- apply(auto simp: field_simps zero_less_mult_iff less_le space_pair_measure split: prod.split)
- apply (intro AE_I2)
- apply clarify
- proof -
- fix a :: 'c and aa :: 'd and ba :: 'e and x1 :: 'c and ab :: 'd and baa :: 'e
- assume a1: "Pxz (fst (x1, ab, baa), snd (snd (x1, ab, baa))) = 0 \<longrightarrow> Pxyz (x1, ab, baa) = 0"
- assume a2: "Pz (snd (snd (x1, ab, baa))) = 0 \<longrightarrow> Pxyz (x1, ab, baa) = 0"
- assume a3: "Px (fst (x1, ab, baa)) = 0 \<longrightarrow> Pxyz (x1, ab, baa) = 0"
- have f4: "\<forall>r ra rb. (ra::real) * (rb + r) = rb * ra + ra * r"
- by (simp add: vector_space_over_itself.scale_right_distrib)
- have f5: "0 \<noteq> Px x1 \<or> 0 = Pxyz (x1, ab, baa)"
- using a3 by auto
- have f6: "0 \<noteq> Pz baa \<or> 0 = Pxyz (x1, ab, baa)"
- using a2 by force
- have f7: "\<forall>r. (0::real) = 0 * r"
- by simp
- have "0 = Px x1 * Pz baa \<longrightarrow> Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = Pxyz (x1, ab, baa) * (log b (Px x1) + log b (Pz baa) + log b (Pxz (x1, baa) / (Px x1 * Pz baa)))"
- using f6 f5 by simp
- moreover
- { assume "0 \<noteq> Px x1 * Pz baa"
- moreover
- { assume "0 \<noteq> Px x1 * Pz baa \<and> 0 \<noteq> Pxyz (x1, ab, baa)"
- then have "Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = Pxyz (x1, ab, baa) * (log b (Px x1 * Pz baa) + log b (Pxz (x1, baa) / (Px x1 * Pz baa))) \<and> 0 \<noteq> Pxz (x1, baa) / (Px x1 * Pz baa)"
- using a1 by (metis (no_types) divide_eq_0_iff fst_eqD log_mult_nz mult.commute nonzero_eq_divide_eq snd_eqD)
- moreover
- { assume "Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = Pxyz (x1, ab, baa) * (log b (Px x1) + (log b 0 + log b 0)) \<and> 0 \<noteq> Pxz (x1, baa) / (Px x1 * Pz baa) \<and> Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = log b (Px x1) * Pxyz (x1, ab, baa) + Pxyz (x1, ab, baa) * log b (Pz baa * (Pxz (x1, baa) / (Px x1 * Pz baa)))"
- then have "Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = log b (Px x1) * Pxyz (x1, ab, baa) + (log b (Pz baa) * Pxyz (x1, ab, baa) + Pxyz (x1, ab, baa) * log b (Pxz (x1, baa) / (Px x1 * Pz baa)))"
- using f7 f4 by (metis (no_types) divide_eq_0_iff log_mult_nz mult.commute) }
- ultimately have "Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = Pxyz (x1, ab, baa) * (log b (Px x1) + log b (Pz baa) + log b (Pxz (x1, baa) / (Px x1 * Pz baa))) \<or> Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = log b (Px x1) * Pxyz (x1, ab, baa) + (log b (Pz baa) * Pxyz (x1, ab, baa) + Pxyz (x1, ab, baa) * log b (Pxz (x1, baa) / (Px x1 * Pz baa)))"
- using f4 by (simp add: log_mult_nz) }
- ultimately have "Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = Pxyz (x1, ab, baa) * (log b (Px x1) + log b (Pz baa) + log b (Pxz (x1, baa) / (Px x1 * Pz baa))) \<or> Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = Pxyz (x1, ab, baa) * (log b (Px x1) + log b (Pz baa)) + Pxyz (x1, ab, baa) * log b (Pxz (x1, baa) / (Px x1 * Pz baa)) \<or> Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = log b (Px x1) * Pxyz (x1, ab, baa) + (log b (Pz baa) * Pxyz (x1, ab, baa) + Pxyz (x1, ab, baa) * log b (Pxz (x1, baa) / (Px x1 * Pz baa)))"
- using f7 by (metis (no_types)) }
- ultimately show "Pxyz (x1, ab, baa) * log b (Pxz (x1, baa)) = log b (Px x1) * Pxyz (x1, ab, baa) + (log b (Pz baa) * Pxyz (x1, ab, baa) + Pxyz (x1, ab, baa) * log b (Pxz (x1, baa) / (Px x1 * Pz baa)))"
- by argo
- qed
-
+ apply(auto simp: field_simps log_divide log_mult)
+ done
from ae I1 I2 show ?eq
unfolding conditional_mutual_information_def mi_eq
apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz Pyz_nn Pxyz Pxyz_nn]; simp add: space_pair_measure)
@@ -1372,14 +1319,8 @@
have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. Pxyz x * - log b (?f x))"
apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3])
using Pz_nn Pxz_nn Pyz_nn Pxyz_nn ae2 ae3 ae4
- apply (auto simp: log_divide_nz log_mult_nz zero_le_mult_iff zero_less_mult_iff
- zero_less_divide_iff field_simps space_pair_measure less_le split: prod.split)
- apply (intro AE_I2)
- apply (auto simp: )
- by (smt (verit, best) log_divide minus_mult_minus mult_minus_left no_zero_divisors)
-
- then
- show "integrable ?P (\<lambda>x. - log b (?f x))"
+ by (auto simp: log_divide field_simps)
+ then show "integrable ?P (\<lambda>x. - log b (?f x))"
using Pxyz_nn by (auto simp: integrable_real_density)
qed (auto simp: b_gt_1 minus_log_convex)
also have "\<dots> = conditional_mutual_information b S T P X Y Z"
@@ -1391,10 +1332,7 @@
apply simp
apply (intro integral_cong_AE)
using ae1 ae2 ae3 ae4
- apply (auto simp: log_divide_pos zero_less_mult_iff zero_less_divide_iff
- field_simps space_pair_measure less_le integral_cong_AE split: prod.split)
- apply (intro AE_I2)
- by (metis divide_divide_eq_right log_recip mult_1 mult_minus_right)
+ by (auto simp: log_divide zero_less_mult_iff field_simps)
finally show ?nonneg
by simp
qed