Repaired a proof that did, after all, refer to the theorem nat_induct2.
--- a/src/HOLCF/ex/Stream.thy Tue Feb 10 09:58:58 2009 +0000
+++ b/src/HOLCF/ex/Stream.thy Tue Feb 10 10:25:09 2009 +0000
@@ -252,7 +252,9 @@
lemma stream_finite_ind2:
"[| P UU; !! x. x ~= UU ==> P (x && UU); !! y z s. [| y ~= UU; z ~= UU; P s |] ==> P (y && z && s )|] ==>
!s. P (stream_take n$s)"
-apply (rule nat_induct2 [of _ n],auto)
+apply (rule nat_less_induct [of _ n],auto)
+apply (case_tac n, auto)
+apply (case_tac nat, auto)
apply (case_tac "s=UU",clarsimp)
apply (drule stream_exhaust_eq [THEN iffD1],clarsimp)
apply (case_tac "s=UU",clarsimp)