--- a/src/HOL/ex/NBE.thy Tue Feb 19 20:34:30 2008 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1321 +0,0 @@
-(* ID: $Id$
- Author: Klaus Aehlig, Tobias Nipkow
- Work in progress
-*)
-header {* Normalization by Evaluation *}
-
-theory NBE imports Main (*Executable_Set*) begin
-
-ML"Syntax.ambiguity_level := 1000000"
-
-declare Let_def[simp]
-
-types lam_var_name = nat
- ml_var_name = nat
-
-typedecl const_name
-(*
-types const_name = nat
-
-consts_code undefined ("(raise Match)")
-*)
-
-datatype ml = (* rep of universal datatype *)
- C const_name "ml list" | V lam_var_name "ml list"
- | Fun ml "ml list" nat
- | "apply" ml ml (* function 'apply' *)
- (* ML *)
- | V_ML ml_var_name | A_ML ml "ml list" | Lam_ML ml
- | CC const_name (* ref to compiled code *)
-
-datatype tm = Ct const_name | Vt lam_var_name | Lam tm | At tm tm
- | term_of ml (* function 'to_term' *)
-
-lemma [simp]: "x \<in> set vs \<Longrightarrow> size x < Suc (list_size size vs)"
-by (induct vs) auto
-lemma [simp]:"x \<in> set vs \<Longrightarrow> size x < Suc (size v + list_size size vs)"
-by (induct vs) auto
-
-locale Vars =
- fixes r s t:: tm
- and rs ss ts :: "tm list"
- and u v w :: ml
- and us vs ws :: "ml list"
- and nm :: const_name
- and x :: lam_var_name
- and X :: ml_var_name
-
-inductive_set Pure_tms :: "tm set"
-where
- "Ct s : Pure_tms"
-| "Vt x : Pure_tms"
-| "t : Pure_tms ==> Lam t : Pure_tms"
-| "s : Pure_tms ==> t : Pure_tms ==> At s t : Pure_tms"
-
-consts
- R :: "(const_name * tm list * tm)set" (* reduction rules *)
- compR :: "(const_name * ml list * ml)set" (* compiled reduction rules *)
-
-fun lift_ml :: "nat \<Rightarrow> ml \<Rightarrow> ml" ("lift") where
-"lift i (C nm vs) = C nm (map (lift i) vs)" |
-"lift i (V x vs) = V (if x < i then x else x+1) (map (lift i) vs)" |
-"lift i (Fun v vs n) = Fun (lift i v) (map (lift i) vs) n" |
-"lift i (apply u v) = apply (lift i u) (lift i v)" |
-"lift i (V_ML X) = V_ML X" |
-"lift i (A_ML v vs) = A_ML (lift i v) (map (lift i) vs)" |
-"lift i (Lam_ML v) = Lam_ML (lift i v)" |
-"lift i (CC nm) = CC nm"
-
-lemmas ml_induct = lift_ml.induct[of "%i v. P v", standard]
-
-fun lift_tm :: "nat \<Rightarrow> tm \<Rightarrow> tm" ("lift") where
-"lift i (Ct nm) = Ct nm" |
-"lift i (Vt x) = Vt(if x < i then x else x+1)" |
-"lift i (Lam t) = Lam (lift (i+1) t)" |
-"lift i (At s t) = At (lift i s) (lift i t)" |
-"lift i (term_of v) = term_of (lift i v)"
-
-fun lift_ml_ML :: "nat \<Rightarrow> ml \<Rightarrow> ml" ("lift\<^bsub>ML\<^esub>") where
-"lift\<^bsub>ML\<^esub> i (C nm vs) = C nm (map (lift\<^bsub>ML\<^esub> i) vs)" |
-"lift\<^bsub>ML\<^esub> i (V x vs) = V x (map (lift\<^bsub>ML\<^esub> i) vs)" |
-"lift\<^bsub>ML\<^esub> i (Fun v vs n) = Fun (lift\<^bsub>ML\<^esub> i v) (map (lift\<^bsub>ML\<^esub> i) vs) n" |
-"lift\<^bsub>ML\<^esub> i (apply u v) = apply (lift\<^bsub>ML\<^esub> i u) (lift\<^bsub>ML\<^esub> i v)" |
-"lift\<^bsub>ML\<^esub> i (V_ML X) = V_ML (if X < i then X else X+1)" |
-"lift\<^bsub>ML\<^esub> i (A_ML v vs) = A_ML (lift\<^bsub>ML\<^esub> i v) (map (lift\<^bsub>ML\<^esub> i) vs)" |
-"lift\<^bsub>ML\<^esub> i (Lam_ML v) = Lam_ML (lift\<^bsub>ML\<^esub> (i+1) v)" |
-"lift\<^bsub>ML\<^esub> i (CC nm) = CC nm"
-
-fun lift_tm_ML :: "nat \<Rightarrow> tm \<Rightarrow> tm" ("lift\<^bsub>ML\<^esub>") where
-"lift\<^bsub>ML\<^esub> i (Ct nm) = Ct nm" |
-"lift\<^bsub>ML\<^esub> i (Vt x) = Vt x" |
-"lift\<^bsub>ML\<^esub> i (Lam t) = Lam (lift\<^bsub>ML\<^esub> i t)" |
-"lift\<^bsub>ML\<^esub> i (At s t) = At (lift\<^bsub>ML\<^esub> i s) (lift\<^bsub>ML\<^esub> i t)" |
-"lift\<^bsub>ML\<^esub> i (term_of v) = term_of (lift\<^bsub>ML\<^esub> i v)"
-
-constdefs
- cons :: "tm \<Rightarrow> (nat \<Rightarrow> tm) \<Rightarrow> (nat \<Rightarrow> tm)" (infix "##" 65)
-"t##f \<equiv> \<lambda>i. case i of 0 \<Rightarrow> t | Suc j \<Rightarrow> lift 0 (f j)"
- cons_ML :: "ml \<Rightarrow> (nat \<Rightarrow> ml) \<Rightarrow> (nat \<Rightarrow> ml)" (infix "##" 65)
-"v##f \<equiv> \<lambda>i. case i of 0 \<Rightarrow> v::ml | Suc j \<Rightarrow> lift\<^bsub>ML\<^esub> 0 (f j)"
-
-text{* Only for pure terms! *}
-primrec subst :: "(nat \<Rightarrow> tm) \<Rightarrow> tm \<Rightarrow> tm" where
-"subst f (Ct nm) = Ct nm" |
-"subst f (Vt x) = f x" |
-"subst f (Lam t) = Lam (subst (Vt 0 ## f) t)" |
-"subst f (At s t) = At (subst f s) (subst f t)"
-
-lemma list_size_map [simp]: "list_size f (map g xs) = list_size (f o g) xs"
-by (induct xs) simp_all
-
-lemma list_size_cong [cong]:
- "\<lbrakk>xs = ys; \<And>x. x \<in> set ys \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> list_size f xs = list_size g ys"
-by (induct xs arbitrary: ys) auto
-
-lemma size_lift_ml[simp]: "size(lift i (v::ml)) = size v"
-by (induct i v rule: lift_ml.induct) simp_all
-lemma size_lift_tm[simp]: "size(lift i t) = size(t::tm)"
-by (induct i t rule: lift_tm.induct) simp_all
-
-lemma size_lift_ml_ML[simp]: "size(lift\<^bsub>ML\<^esub> i (v::ml)) = size v"
-by (induct i v rule: lift_ml_ML.induct) simp_all
-lemma size_lift_tm_ML[simp]: "size(lift\<^bsub>ML\<^esub> i t) = size(t::tm)"
-by (induct i t rule: lift_tm_ML.induct) simp_all
-
-fun subst_ml_ML :: "(nat \<Rightarrow> ml) \<Rightarrow> ml \<Rightarrow> ml" ("subst\<^bsub>ML\<^esub>") where
-"subst\<^bsub>ML\<^esub> f (C nm vs) = C nm (map (subst\<^bsub>ML\<^esub> f) vs)" |
-"subst\<^bsub>ML\<^esub> f (V x vs) = V x (map (subst\<^bsub>ML\<^esub> f) vs)" |
-"subst\<^bsub>ML\<^esub> f (Fun v vs n) = Fun (subst\<^bsub>ML\<^esub> f v) (map (subst\<^bsub>ML\<^esub> f) vs) n" |
-"subst\<^bsub>ML\<^esub> f (apply u v) = apply (subst\<^bsub>ML\<^esub> f u) (subst\<^bsub>ML\<^esub> f v)" |
-"subst\<^bsub>ML\<^esub> f (V_ML X) = f X" |
-"subst\<^bsub>ML\<^esub> f (A_ML v vs) = A_ML (subst\<^bsub>ML\<^esub> f v) (map (subst\<^bsub>ML\<^esub> f) vs)" |
-"subst\<^bsub>ML\<^esub> f (Lam_ML v) = Lam_ML (subst\<^bsub>ML\<^esub> (V_ML 0 ## f) v)" |
-"subst\<^bsub>ML\<^esub> f (CC nm) = CC nm"
-
-fun subst_tm_ML :: "(nat \<Rightarrow> ml) \<Rightarrow> tm \<Rightarrow> tm" ("subst\<^bsub>ML\<^esub>") where
-"subst\<^bsub>ML\<^esub> f (Ct nm) = Ct nm" |
-"subst\<^bsub>ML\<^esub> f (Vt x) = Vt x" |
-"subst\<^bsub>ML\<^esub> f (Lam t) = Lam (subst\<^bsub>ML\<^esub> (lift 0 o f) t)" |
-"subst\<^bsub>ML\<^esub> f (At s t) = At (subst\<^bsub>ML\<^esub> f s) (subst\<^bsub>ML\<^esub> f t)" |
-"subst\<^bsub>ML\<^esub> f (term_of v) = term_of (subst\<^bsub>ML\<^esub> f v)"
-
-(* FIXME currrently needed for code generator *)
-lemmas [code] = lift_tm_ML.simps lift_ml_ML.simps
-lemmas [code] = lift_tm.simps lift_ml.simps
-lemmas [code] = subst_tm_ML.simps subst_ml_ML.simps
-
-abbreviation
- subst_decr :: "nat \<Rightarrow> tm \<Rightarrow> nat \<Rightarrow> tm" where
- "subst_decr k t == %n. if n<k then Vt n else if n=k then t else Vt(n - 1)"
-abbreviation
- subst_decr_ML :: "nat \<Rightarrow> ml \<Rightarrow> nat \<Rightarrow> ml" where
- "subst_decr_ML k v == %n. if n<k then V_ML n else if n=k then v else V_ML(n - 1)"
-abbreviation
- subst1 :: "tm \<Rightarrow> tm \<Rightarrow> nat \<Rightarrow> tm" ("(_/[_'/_])" [300, 0, 0] 300) where
- "s[t/k] == subst (subst_decr k t) s"
-abbreviation
- subst1_ML :: "ml \<Rightarrow> ml \<Rightarrow> nat \<Rightarrow> ml" ("(_/[_'/_])" [300, 0, 0] 300) where
- "u[v/k] == subst\<^bsub>ML\<^esub> (subst_decr_ML k v) u"
-
-
-lemma size_subst_ml_ML[simp]:
- "(!x. size(f x) = 0) \<longrightarrow> size(subst\<^bsub>ML\<^esub> f (v::ml)) = size v"
-by (induct f v rule: subst_ml_ML.induct)
- (simp_all add: cons_ML_def split: nat.split)
-lemma size_subst_tm_ML[simp]:
- "(!x. size(f x) = 0) \<longrightarrow> size(subst\<^bsub>ML\<^esub> f t) = size(t::tm)"
-by (induct f t rule: subst_tm_ML.induct) (simp_all add: o_def)
-
-lemma lift_lift_ml: includes Vars shows
- "i < k+1 \<Longrightarrow> lift (Suc k) (lift i v) = lift i (lift k v)"
-by(induct i v rule:lift_ml.induct)
- (simp_all add:map_compose[symmetric])
-lemma lift_lift_tm: includes Vars shows
- "i < k+1 \<Longrightarrow> lift (Suc k) (lift i t) = lift i (lift k t)"
-by(induct t arbitrary: i rule:lift_tm.induct)(simp_all add:lift_lift_ml)
-
-corollary lift_o_lift: shows
- "i < k+1 \<Longrightarrow> lift_tm (Suc k) o (lift_tm i) = lift_tm i o lift_tm k" and
- "i < k+1 \<Longrightarrow> lift_ml (Suc k) o (lift_ml i) = lift_ml i o lift_ml k"
-by(rule ext, simp add:lift_lift_ml lift_lift_tm)+
-
-lemma lift_lift_ml_ML: includes Vars shows
- "i < k+1 \<Longrightarrow> lift\<^bsub>ML\<^esub> (Suc k) (lift\<^bsub>ML\<^esub> i v) = lift\<^bsub>ML\<^esub> i (lift\<^bsub>ML\<^esub> k v)"
-by(induct v arbitrary: i rule:lift_ml_ML.induct)
- (simp_all add:map_compose[symmetric])
-lemma lift_lift_tm_ML: includes Vars shows
- "i < k+1 \<Longrightarrow> lift\<^bsub>ML\<^esub> (Suc k) (lift\<^bsub>ML\<^esub> i t) = lift\<^bsub>ML\<^esub> i (lift\<^bsub>ML\<^esub> k t)"
-by(induct t arbitrary: i rule:lift_tm_ML.induct)(simp_all add:lift_lift_ml_ML)
-
-
-lemma lift_lift_ml_ML_comm: includes Vars shows
- "lift j (lift\<^bsub>ML\<^esub> i v) = lift\<^bsub>ML\<^esub> i (lift j v)"
-by(induct v arbitrary: i j rule:lift_ml_ML.induct)
- (simp_all add:map_compose[symmetric])
-lemma lift_lift_tm_ML_comm: includes Vars shows
- "lift j (lift\<^bsub>ML\<^esub> i t) = lift\<^bsub>ML\<^esub> i (lift j t)"
-by(induct t arbitrary: i j rule:lift_tm_ML.induct)
- (simp_all add:lift_lift_ml_ML_comm)
-
-lemma [simp]:
- "V_ML 0 ## subst_decr_ML k v = subst_decr_ML (Suc k) (lift\<^bsub>ML\<^esub> 0 v)"
-by(rule ext)(simp add:cons_ML_def split:nat.split)
-
-lemma [simp]: "lift 0 o subst_decr_ML k v = subst_decr_ML k (lift 0 v)"
-by(rule ext)(simp add:cons_ML_def split:nat.split)
-
-lemma subst_lift_ml_id[simp]: includes Vars shows "(lift\<^bsub>ML\<^esub> k u)[v/k] = u"
-apply(induct k u arbitrary: v rule: lift_ml_ML.induct)
-apply (simp_all add:map_idI map_compose[symmetric])
-apply (simp cong:if_cong)
-done
-lemma subst_lift_tm_id[simp]: includes Vars shows
- "subst\<^bsub>ML\<^esub> (subst_decr_ML k v) (lift\<^bsub>ML\<^esub> k t) = t"
-by (induct k t arbitrary: v rule: lift_tm_ML.induct) simp_all
-
-inductive_set
- tRed :: "(tm * tm)set" (* beta red + eta exp + R reduction on pure terms *)
- and tred :: "[tm, tm] => bool" (infixl "\<rightarrow>" 50)
-where
- "s \<rightarrow> t == (s, t) \<in> tRed"
-| "At (Lam t) s \<rightarrow> t[s/0]"
-| "t \<rightarrow> Lam (At (lift 0 t) (Vt 0))"
-| "(nm,ts,t) : R ==> foldl At (Ct nm) (map (subst rs) ts) \<rightarrow> subst rs t"
-| "t \<rightarrow> t' ==> Lam t \<rightarrow> Lam t'"
-| "s \<rightarrow> s' ==> At s t \<rightarrow> At s' t"
-| "t \<rightarrow> t' ==> At s t \<rightarrow> At s t'"
-
-abbreviation
- treds :: "[tm, tm] => bool" (infixl "\<rightarrow>*" 50) where
- "s \<rightarrow>* t == (s, t) \<in> tRed^*"
-
-inductive_set
- tRed_list :: "(tm list * tm list) set"
- and treds_list :: "[tm list, tm list] \<Rightarrow> bool" (infixl "\<rightarrow>*" 50)
-where
- "ss \<rightarrow>* ts == (ss, ts) \<in> tRed_list"
-| "[] \<rightarrow>* []"
-| "ts \<rightarrow>* ts' ==> t \<rightarrow>* t' ==> t#ts \<rightarrow>* t'#ts'"
-
-declare tRed_list.intros[simp]
-
-lemma tRed_list_refl[simp]: includes Vars shows "ts \<rightarrow>* ts"
-by(induct ts) auto
-
-
-fun ML_closed :: "nat \<Rightarrow> ml \<Rightarrow> bool"
-and ML_closed_t :: "nat \<Rightarrow> tm \<Rightarrow> bool" where
-"ML_closed i (C nm vs) = (ALL v:set vs. ML_closed i v)" |
-"ML_closed i (V nm vs) = (ALL v:set vs. ML_closed i v)" |
-"ML_closed i (Fun f vs n) = (ML_closed i f & (ALL v:set vs. ML_closed i v))" |
-"ML_closed i (A_ML v vs) = (ML_closed i v & (ALL v:set vs. ML_closed i v))" |
-"ML_closed i (apply v w) = (ML_closed i v & ML_closed i w)" |
-"ML_closed i (CC nm) = True" |
-"ML_closed i (V_ML X) = (X<i)" |
-"ML_closed i (Lam_ML v) = ML_closed (i+1) v" |
-"ML_closed_t i (term_of v) = ML_closed i v" |
-"ML_closed_t i (At r s) = (ML_closed_t i r & ML_closed_t i s)" |
-"ML_closed_t i (Lam t) = (ML_closed_t i t)" |
-"ML_closed_t i v = True"
-thm ML_closed.simps ML_closed_t.simps
-
-inductive_set
- Red :: "(ml * ml)set"
- and Redt :: "(tm * tm)set"
- and Redl :: "(ml list * ml list)set"
- and red :: "[ml, ml] => bool" (infixl "\<Rightarrow>" 50)
- and redl :: "[ml list, ml list] => bool" (infixl "\<Rightarrow>" 50)
- and redt :: "[tm, tm] => bool" (infixl "\<Rightarrow>" 50)
- and reds :: "[ml, ml] => bool" (infixl "\<Rightarrow>*" 50)
- and redts :: "[tm, tm] => bool" (infixl "\<Rightarrow>*" 50)
-where
- "s \<Rightarrow> t == (s, t) \<in> Red"
-| "s \<Rightarrow> t == (s, t) \<in> Redl"
-| "s \<Rightarrow> t == (s, t) \<in> Redt"
-| "s \<Rightarrow>* t == (s, t) \<in> Red^*"
-| "s \<Rightarrow>* t == (s, t) \<in> Redt^*"
-(* ML *)
-| "A_ML (Lam_ML u) [v] \<Rightarrow> u[v/0]"
-(* compiled rules *)
-| "(nm,vs,v) : compR ==> ALL i. ML_closed 0 (f i) \<Longrightarrow> A_ML (CC nm) (map (subst\<^bsub>ML\<^esub> f) vs) \<Rightarrow> subst\<^bsub>ML\<^esub> f v"
-(* apply *)
-| apply_Fun1: "apply (Fun f vs (Suc 0)) v \<Rightarrow> A_ML f (vs @ [v])"
-| apply_Fun2: "n > 0 ==>
- apply (Fun f vs (Suc n)) v \<Rightarrow> Fun f (vs @ [v]) n"
-| apply_C: "apply (C nm vs) v \<Rightarrow> C nm (vs @ [v])"
-| apply_V: "apply (V x vs) v \<Rightarrow> V x (vs @ [v])"
-(* term_of *)
-| term_of_C: "term_of (C nm vs) \<Rightarrow> foldl At (Ct nm) (map term_of vs)"
-| term_of_V: "term_of (V x vs) \<Rightarrow> foldl At (Vt x) (map term_of vs)"
-| term_of_Fun: "term_of(Fun vf vs n) \<Rightarrow>
- Lam (term_of ((apply (lift 0 (Fun vf vs n)) (V_ML 0))[V 0 []/0]))"
-(* Context *)
-| ctxt_Lam: "t \<Rightarrow> t' ==> Lam t \<Rightarrow> Lam t'"
-| ctxt_At1: "s \<Rightarrow> s' ==> At s t \<Rightarrow> At s' t"
-| ctxt_At2: "t \<Rightarrow> t' ==> At s t \<Rightarrow> At s t'"
-| ctxt_term_of: "v \<Rightarrow> v' ==> term_of v \<Rightarrow> term_of v'"
-| ctxt_C: "vs \<Rightarrow> vs' ==> C nm vs \<Rightarrow> C nm vs'"
-| ctxt_V: "vs \<Rightarrow> vs' ==> V x vs \<Rightarrow> V x vs'"
-| ctxt_Fun1: "f \<Rightarrow> f' ==> Fun f vs n \<Rightarrow> Fun f' vs n"
-| ctxt_Fun3: "vs \<Rightarrow> vs' ==> Fun f vs n \<Rightarrow> Fun f vs' n"
-| ctxt_apply1: "s \<Rightarrow> s' ==> apply s t \<Rightarrow> apply s' t"
-| ctxt_apply2: "t \<Rightarrow> t' ==> apply s t \<Rightarrow> apply s t'"
-| ctxt_A_ML1: "f \<Rightarrow> f' ==> A_ML f vs \<Rightarrow> A_ML f' vs"
-| ctxt_A_ML2: "vs \<Rightarrow> vs' ==> A_ML f vs \<Rightarrow> A_ML f vs'"
-| ctxt_list1: "v \<Rightarrow> v' ==> v#vs \<Rightarrow> v'#vs"
-| ctxt_list2: "vs \<Rightarrow> vs' ==> v#vs \<Rightarrow> v#vs'"
-
-
-consts
- ar :: "const_name \<Rightarrow> nat"
-
-axioms
-ar_pos: "ar nm > 0"
-
-types env = "ml list"
-
-consts eval :: "tm \<Rightarrow> env \<Rightarrow> ml"
-primrec
-"eval (Vt x) e = e!x"
-"eval (Ct nm) e = Fun (CC nm) [] (ar nm)"
-"eval (At s t) e = apply (eval s e) (eval t e)"
-"eval (Lam t) e = Fun (Lam_ML (eval t ((V_ML 0) # map (lift\<^bsub>ML\<^esub> 0) e))) [] 1"
-
-fun size' :: "ml \<Rightarrow> nat" where
-"size' (C nm vs) = (\<Sum>v\<leftarrow>vs. size' v)+1" |
-"size' (V nm vs) = (\<Sum>v\<leftarrow>vs. size' v)+1" |
-"size' (Fun f vs n) = (size' f + (\<Sum>v\<leftarrow>vs. size' v))+1" |
-"size' (A_ML v vs) = (size' v + (\<Sum>v\<leftarrow>vs. size' v))+1" |
-"size' (apply v w) = (size' v + size' w)+1" |
-"size' (CC nm) = 1" |
-"size' (V_ML X) = 1" |
-"size' (Lam_ML v) = size' v + 1"
-
-lemma listsum_size'[simp]:
- "v \<in> set vs \<Longrightarrow> size' v < Suc(listsum (map size' vs))"
-by(induct vs)(auto)
-
-corollary cor_listsum_size'[simp]:
- "v \<in> set vs \<Longrightarrow> size' v < Suc(m + listsum (map size' vs))"
-using listsum_size'[of v vs] by arith
-
-lemma size'_lift_ML: "size' (lift\<^bsub>ML\<^esub> k v) = size' v"
-apply(induct v arbitrary:k rule:size'.induct)
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp)
-apply simp
-apply simp
-apply(simp)
-done
-
-(* FIXME needed? *)
-lemma size_subst_ml_ML[simp]: includes Vars shows
- "!i. size(f i) = 0 \<Longrightarrow> size(subst\<^bsub>ML\<^esub> f v) = size(v)"
-by (induct f v rule: subst_ml_ML.induct)
- (simp_all add: cons_ML_def split: nat.split)
-lemma size_subst_tm_ML[simp]: includes Vars shows
- "!i. size(f i) = 0 \<Longrightarrow> size(subst\<^bsub>ML\<^esub> f t) = size(t)"
-by (induct f t rule: subst_tm_ML.induct)(simp_all add: o_def)
-
-(* FIXME name and use explicitly *)
-lemma [simp]:
- "\<forall>i j. size'(f i) = 1 \<Longrightarrow> size' (subst\<^bsub>ML\<^esub> f v) = size' v"
-apply(induct v arbitrary:f rule:size'.induct)
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(erule meta_allE)
-apply(erule meta_mp)
-apply(simp add:cons_ML_def size'_lift_ML split:nat.split)
-done
-
-lemma [simp]: "size' (lift i v) = size' v"
-apply(induct v arbitrary:i rule:size'.induct)
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply(simp add:map_compose[symmetric])
-apply(rule arg_cong[where f = listsum])
-apply(rule map_ext)
-apply simp
-apply simp
-apply simp
-apply simp
-apply simp
-done
-
-(* the kernel function as in Section 4.1 of "Operational aspects\<dots>" *)
-
-function kernel :: "ml \<Rightarrow> tm" ("_!" 300) where
-"(C nm vs)! = foldl At (Ct nm) (map kernel vs)" |
-"(Lam_ML v)! = Lam (((lift 0 v)[V 0 []/0])!)" |
-"(Fun f vs n)! = foldl At (f!) (map kernel vs)" |
-"(A_ML v vs)! = foldl At (v!) (map kernel vs)" |
-"(apply v w)! = At (v!) (w!)" |
-"(CC nm)! = Ct nm" |
-"(V x vs)! = foldl At (Vt x) (map kernel vs)" |
-"(V_ML X)! = undefined"
-by pat_completeness auto
-termination by(relation "measure size'") auto
-
-consts kernelt :: "tm \<Rightarrow> tm" ("_!" 300)
-primrec
-"(Ct nm)! = Ct nm"
-"(term_of v)! = v!"
-"(Vt x)! = Vt x"
-"(At s t)! = At (s!) (t!)"
-"(Lam t)! = Lam (t!)"
-
-abbreviation
- kernels :: "ml list \<Rightarrow> tm list" ("_!" 300) where
- "vs ! == map kernel vs"
-
-(* soundness of the code generator *)
-axioms
-compiler_correct:
-"(nm, vs, v) : compR ==> ALL i. ML_closed 0 (f i) \<Longrightarrow> (nm, (map (subst\<^bsub>ML\<^esub> f) vs)!, (subst\<^bsub>ML\<^esub> f v)!) : R"
-
-
-consts
- free_vars :: "tm \<Rightarrow> lam_var_name set"
-primrec
-"free_vars (Ct nm) = {}"
-"free_vars (Vt x) = {x}"
-"free_vars (Lam t) = {i. EX j : free_vars t. j = i+1}"
-"free_vars (At s t) = free_vars s \<union> free_vars t"
-
-lemma [simp]: "t : Pure_tms \<Longrightarrow> lift\<^bsub>ML\<^esub> k t = t"
-by (erule Pure_tms.induct) simp_all
-
-lemma kernel_pure: includes Vars assumes "t : Pure_tms" shows "t! = t"
-using assms by (induct) simp_all
-
-lemma lift_eval:
- "t : Pure_tms \<Longrightarrow> ALL e k. (ALL i : free_vars t. i < size e) --> lift k (eval t e) = eval t (map (lift k) e)"
-apply(induct set:Pure_tms)
-apply simp_all
-apply clarsimp
-apply(erule_tac x = "V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e" in allE)
-apply simp
-apply(erule impE)
- apply clarsimp
- apply(case_tac i)apply simp
- apply simp
-apply (simp add: map_compose[symmetric])
-apply (simp add: o_def lift_lift_ml_ML_comm)
-done
-
-lemma lift_ML_eval[rule_format]:
- "t : Pure_tms \<Longrightarrow> ALL e k. (ALL i : free_vars t. i < size e) --> lift\<^bsub>ML\<^esub> k (eval t e) = eval t (map (lift\<^bsub>ML\<^esub> k) e)"
-apply(induct set:Pure_tms)
-apply simp_all
-apply clarsimp
-apply(erule_tac x = "V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e" in allE)
-apply simp
-apply(erule impE)
- apply clarsimp
- apply(case_tac i)apply simp
- apply simp
-apply (simp add: map_compose[symmetric])
-apply (simp add:o_def lift_lift_ml_ML)
-done
-
-lemma [simp]: includes Vars shows "(v ## f) 0 = v"
-by(simp add:cons_ML_def)
-
-lemma [simp]: includes Vars shows "(v ## f) (Suc n) = lift\<^bsub>ML\<^esub> 0 (f n)"
-by(simp add:cons_ML_def)
-
-lemma lift_o_shift: "lift k o (V_ML 0 ## f) = (V_ML 0 ## (lift k \<circ> f))"
-apply(rule ext)
-apply (simp add:cons_ML_def lift_lift_ml_ML_comm split:nat.split)
-done
-
-lemma lift_subst_ML_ml:
- "lift_ml k (subst\<^bsub>ML\<^esub> f v) = subst\<^bsub>ML\<^esub> (lift_ml k o f) (lift_ml k v)"
-by (induct k v arbitrary: f rule: lift_ml.induct)
- (simp_all add:map_compose[symmetric] o_assoc lift_o_lift lift_o_shift)
-lemma lift_subst_ML_tm: shows
- "lift_tm k (subst\<^bsub>ML\<^esub> f t) = subst\<^bsub>ML\<^esub> (lift_ml k o f) (lift_tm k t)"
-by(induct k t arbitrary: f rule: lift_tm.induct)
- (simp_all add: o_assoc lift_o_lift lift_subst_ML_ml)
-
-corollary lift_subst_ML1:
- "\<forall>v k. lift_ml 0 (u[v/k]) = (lift_ml 0 u)[lift 0 v/k]"
-apply(induct u rule:ml_induct)
-apply(simp_all add:lift_lift_ml map_compose[symmetric] lift_subst_ML_ml)
-apply(subst lift_lift_ml_ML_comm)apply simp
-done
-(*
-lemma lift_ML_lift_ML_ml: includes Vars shows
- "i < k+1 \<Longrightarrow> lift\<^bsub>ML\<^esub> (Suc k) (lift\<^bsub>ML\<^esub> i v) = lift\<^bsub>ML\<^esub> i (lift\<^bsub>ML\<^esub> k v)"
-by (induct k v arbitrary: i rule: lift_ml_ML.induct)
- (simp_all add:map_compose[symmetric])
-lemma lift_ML_lift_ML_tm: includes Vars shows
- "i < k+1 \<Longrightarrow> lift\<^bsub>ML\<^esub> (Suc k) (lift\<^bsub>ML\<^esub> i t) = lift\<^bsub>ML\<^esub> i (lift\<^bsub>ML\<^esub> k t)"
-by(induct k t arbitrary: i rule: lift_tm_ML.induct)
- (simp_all add:lift_ML_lift_ML_ml)
-*)
-(*FIXME move up *)
-corollary lift_ML_o_lift_ML: shows
- "i < k+1 \<Longrightarrow> lift_tm_ML (Suc k) o (lift_tm_ML i) = lift_tm_ML i o lift_tm_ML k" and
- "i < k+1 \<Longrightarrow> lift_ml_ML (Suc k) o (lift_ml_ML i) = lift_ml_ML i o lift_ml_ML k"
-apply(rule ext, simp add: lift_lift_tm_ML)
-apply(rule ext, simp add: lift_lift_ml_ML)
-done
-
-abbreviation insrt where
-"insrt k f ==
- (%i. if i<k then lift_ml_ML k (f i) else if i=k then V_ML k else lift_ml_ML k (f(i - 1)))"
-
-lemma subst_insrt_lift_ml: includes Vars shows
- "subst\<^bsub>ML\<^esub> (insrt k f) (lift\<^bsub>ML\<^esub> k v) = lift\<^bsub>ML\<^esub> k (subst\<^bsub>ML\<^esub> f v)"
-apply (induct k v arbitrary: f k rule: lift_ml_ML.induct)
-apply (simp_all add:map_compose[symmetric] o_assoc lift_o_lift lift_o_shift)
-apply(subgoal_tac "V_ML 0 ## insrt k f = insrt (Suc k) (V_ML 0 ## f)")
- apply simp
-apply (simp add:expand_fun_eq lift_lift_ml_ML cons_ML_def split:nat.split)
-done
-lemma subst_insrt_lift_tm: includes Vars shows
- "subst\<^bsub>ML\<^esub> (insrt k f) (lift\<^bsub>ML\<^esub> k t) = lift\<^bsub>ML\<^esub> k (subst\<^bsub>ML\<^esub> f t)"
-apply (induct k t arbitrary: f k rule: lift_tm_ML.induct)
-apply (simp_all)
- apply(subgoal_tac "lift 0 \<circ> insrt k f = insrt k (lift 0 \<circ> f)")
- apply simp
- apply(rule ext)
- apply (simp add:lift_lift_ml_ML_comm)
-apply(subgoal_tac "V_ML 0 ## insrt k f = insrt (Suc k) (V_ML 0 ## f)")
- apply (simp add:subst_insrt_lift_ml)
- apply (simp add:expand_fun_eq lift_lift_ml_ML cons_ML_def split:nat.split)
-done
-
-corollary subst_cons_lift: includes Vars shows
- "subst\<^bsub>ML\<^esub> (V_ML 0 ## f) o (lift_ml_ML 0) = lift_ml_ML 0 o (subst_ml_ML f)"
-apply(rule ext)
-apply(simp add: cons_ML_def subst_insrt_lift_ml[symmetric])
-apply(subgoal_tac "nat_case (V_ML 0) (\<lambda>j. lift\<^bsub>ML\<^esub> 0 (f j)) = (\<lambda>i. if i = 0 then V_ML 0 else lift\<^bsub>ML\<^esub> 0 (f (i - 1)))")
- apply simp
-apply(rule ext, simp split:nat.split)
-done
-
-lemma subst_eval[rule_format]: "t : Pure_tms \<Longrightarrow>
- ALL f e. (ALL i : free_vars t. i < size e) \<longrightarrow> subst\<^bsub>ML\<^esub> f (eval t e) = eval t (map (subst\<^bsub>ML\<^esub> f) e)"
-apply(induct set:Pure_tms)
-apply simp_all
-apply clarsimp
-apply(erule_tac x="V_ML 0 ## f" in allE)
-apply(erule_tac x= "(V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e)" in allE)
-apply(erule impE)
- apply clarsimp
- apply(case_tac i)apply simp
- apply simp
-apply (simp add:subst_cons_lift map_compose[symmetric])
-done
-
-
-theorem kernel_eval[rule_format]: includes Vars shows
- "t : Pure_tms ==>
- ALL e. (ALL i : free_vars t. i < size e) \<longrightarrow> (ALL i < size e. e!i = V i []) --> (eval t e)! = t!"
-apply(induct set:Pure_tms)
-apply simp_all
-apply clarsimp
-apply(subst lift_eval) apply simp
- apply clarsimp
- apply(case_tac i)apply simp
- apply simp
-apply(subst subst_eval) apply simp
- apply clarsimp
- apply(case_tac i)apply simp
- apply simp
-apply(erule_tac x="map (subst\<^bsub>ML\<^esub> (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1)))
- (map (lift 0) (V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e))" in allE)
-apply(erule impE)
-apply(clarsimp)
- apply(case_tac i)apply simp
- apply simp
-apply(erule impE)
-apply(clarsimp)
- apply(case_tac i)apply simp
- apply simp
-apply simp
-done
-
-lemma ML_closed_lift_ML_ml[simp]:
- includes Vars shows "ML_closed k v \<Longrightarrow> lift\<^bsub>ML\<^esub> k v = v"
-by(induct k v rule: lift_ml_ML.induct)(simp_all add:list_eq_iff_nth_eq)
-lemma ML_closed_lift_ML_tm[simp]:
- includes Vars shows "ML_closed_t k t \<Longrightarrow> lift\<^bsub>ML\<^esub> k t = t"
-by(induct k t rule: lift_tm_ML.induct)(simp_all)
-
-lemma ML_closed_subst_ML_ml[simp]: includes Vars shows
- "ML_closed k v \<Longrightarrow> !i<k. f i = V_ML i \<Longrightarrow> subst\<^bsub>ML\<^esub> f v = v"
-apply (induct f v arbitrary: k rule: subst_ml_ML.induct)
-apply (auto simp add: list_eq_iff_nth_eq)
-apply(simp add:Ball_def)
-apply(erule_tac x="vs!i" in meta_allE)
-apply(erule_tac x="k" in meta_allE)
-apply simp
-apply(erule_tac x="vs!i" in meta_allE)
-apply(erule_tac x="k" in meta_allE)
-apply simp
-apply(erule_tac x="vs!i" in meta_allE)
-apply(erule_tac x="k" in meta_allE)
-apply(erule_tac x="k" in meta_allE)
-apply simp
-apply(erule_tac x="vs!i" in meta_allE)
-apply(erule_tac x="k" in meta_allE)
-apply(erule_tac x="k" in meta_allE)
-apply simp
-apply(erule_tac x="Suc k" in meta_allE)
-apply (simp add:cons_ML_def split:nat.split)
-done
-lemma ML_closed_subst_ML_tm[simp]: includes Vars shows
- "ML_closed_t k t \<Longrightarrow> !i<k. f i = V_ML i \<Longrightarrow> subst\<^bsub>ML\<^esub> f t = t"
-by (induct f t arbitrary: k rule: subst_tm_ML.induct) (auto)
-
-lemma ML_closed_lift_ml[simp]:
- includes Vars shows "ML_closed k v \<Longrightarrow> ML_closed k (lift m v)"
-by(induct k v arbitrary: m rule: lift_ml_ML.induct)
- (simp_all add:list_eq_iff_nth_eq)
-lemma ML_closed_lift_tm[simp]:
- includes Vars shows "ML_closed_t k t \<Longrightarrow> ML_closed_t k (lift m t)"
-by(induct k t arbitrary: m rule: lift_tm_ML.induct)(simp_all)
-
-lemma red_Lam[simp]: includes Vars shows "t \<rightarrow>* t' ==> Lam t \<rightarrow>* Lam t'"
-apply(induct rule:rtrancl_induct)
-apply(simp_all)
-apply(blast intro: rtrancl_into_rtrancl tRed.intros)
-done
-
-lemma red_At1[simp]: includes Vars shows "t \<rightarrow>* t' ==> At t s \<rightarrow>* At t' s"
-apply(induct rule:rtrancl_induct)
-apply(simp_all)
-apply(blast intro: rtrancl_into_rtrancl tRed.intros)
-done
-
-lemma red_At2[simp]: includes Vars shows "t \<rightarrow>* t' ==> At s t \<rightarrow>* At s t'"
-apply(induct rule:rtrancl_induct)
-apply(simp_all)
-apply(blast intro:rtrancl_into_rtrancl tRed.intros)
-done
-
-lemma tRed_list_foldl_At:
- "ts \<rightarrow>* ts' \<Longrightarrow> s \<rightarrow>* s' \<Longrightarrow> foldl At s ts \<rightarrow>* foldl At s' ts'"
-apply(induct arbitrary:s s' rule:tRed_list.induct)
-apply simp
-apply simp
-apply(blast dest: red_At1 red_At2 intro:rtrancl_trans)
-done
-
-lemma [trans]: "s = t \<Longrightarrow> t \<rightarrow> t' \<Longrightarrow> s \<rightarrow> t'"
-by simp
-
-
-lemma subst_foldl[simp]:
- "subst f (foldl At s ts) = foldl At (subst f s) (map (subst f) ts)"
-by (induct ts arbitrary: s) auto
-
-
-lemma foldl_At_size: "size ts = size ts' \<Longrightarrow>
- foldl At s ts = foldl At s' ts' \<longleftrightarrow> s = s' & ts = ts'"
-by (induct arbitrary: s s' rule:list_induct2) simp_all
-
-consts depth_At :: "tm \<Rightarrow> nat"
-primrec
-"depth_At(Ct cn) = 0"
-"depth_At(Vt x) = 0"
-"depth_At(Lam t) = 0"
-"depth_At(At s t) = depth_At s + 1"
-"depth_At(term_of v) = 0"
-
-lemma depth_At_foldl:
- "depth_At(foldl At s ts) = depth_At s + size ts"
-by (induct ts arbitrary: s) simp_all
-
-lemma foldl_At_eq_length:
- "foldl At s ts = foldl At s ts' \<Longrightarrow> length ts = length ts'"
-apply(subgoal_tac "depth_At(foldl At s ts) = depth_At(foldl At s ts')")
-apply(erule thin_rl)
- apply (simp add:depth_At_foldl)
-apply simp
-done
-
-lemma foldl_At_eq[simp]: "foldl At s ts = foldl At s ts' \<longleftrightarrow> ts = ts'"
-apply(rule)
- prefer 2 apply simp
-apply(blast dest:foldl_At_size foldl_At_eq_length)
-done
-
-lemma [simp]: "foldl At s ts ! = foldl At (s!) (map kernelt ts)"
-by (induct ts arbitrary: s) simp_all
-
-lemma [simp]: "(kernelt \<circ> term_of) = kernel"
-by(rule ext) simp
-
-lemma shift_subst_decr:
- "Vt 0 ## subst_decr k t = subst_decr (Suc k) (lift 0 t)"
-apply(rule ext)
-apply (simp add:cons_def split:nat.split)
-done
-
-lemma lift_foldl_At[simp]:
- "lift k (foldl At s ts) = foldl At (lift k s) (map (lift k) ts)"
-by(induct ts arbitrary:s) simp_all
-
-subsection "Horrible detour"
-
-definition "liftn n == lift_ml 0 ^ n"
-
-lemma [simp]: "liftn n (C i vs) = C i (map (liftn n) vs)"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add: map_compose[symmetric])
-done
-
-lemma [simp]: "liftn n (CC nm) = CC nm"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add: map_compose[symmetric])
-done
-
-lemma [simp]: "liftn n (apply v w) = apply (liftn n v) (liftn n w)"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add: map_compose[symmetric])
-done
-
-lemma [simp]: "liftn n (A_ML v vs) = A_ML (liftn n v) (map (liftn n) vs)"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add: map_compose[symmetric])
-done
-
-lemma [simp]:
- "liftn n (Fun v vs i) = Fun (liftn n v) (map (liftn n) vs) i"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add: map_compose[symmetric] id_def)
-done
-
-lemma [simp]: "liftn n (Lam_ML v) = Lam_ML (liftn n v)"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add: map_compose[symmetric] id_def)
-done
-
-lemma liftn_liftn_add: "liftn m (liftn n v) = liftn (m+n) v"
-by(simp add:liftn_def funpow_add)
-
-lemma [simp]: "liftn n (V_ML k) = V_ML k"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all)
-done
-
-lemma liftn_lift_ML_comm: "liftn n (lift\<^bsub>ML\<^esub> 0 v) = lift\<^bsub>ML\<^esub> 0 (liftn n v)"
-apply(unfold liftn_def)
-apply(induct n)
-apply (simp_all add:lift_lift_ml_ML_comm)
-done
-
-lemma liftn_cons: "liftn n ((V_ML 0 ## f) x) = (V_ML 0 ## (liftn n o f)) x"
-apply(simp add:cons_ML_def liftn_lift_ML_comm split:nat.split)
-done
-
-text{* End of horrible detour *}
-
-lemma includes Vars shows foldl_Pure[simp]:
- "t : Pure_tms \<Longrightarrow> \<forall>t\<in>set ts. t : Pure_tms \<Longrightarrow>
- (!!s t. s : Pure_tms \<Longrightarrow> t : Pure_tms \<Longrightarrow> f s t : Pure_tms) \<Longrightarrow>
- foldl f t ts \<in> Pure_tms"
-by(induct ts arbitrary: t) simp_all
-
-declare Pure_tms.intros[simp]
-
-lemma ML_closed_Suc: "ML_closed n v \<Longrightarrow> ML_closed (Suc n) (lift\<^bsub>ML\<^esub> k v)"
-by (induct k v arbitrary: n rule: lift_ml_ML.induct) simp_all
-
-lemma subst_ml_ML_coincidence:
- "ML_closed k v \<Longrightarrow> !i<k. f i = g i \<Longrightarrow> subst\<^bsub>ML\<^esub> f v = subst\<^bsub>ML\<^esub> g v"
-by (induct f v arbitrary: k g rule: subst_ml_ML.induct)
- (auto simp:cons_ML_def split:nat.split)
-lemma subst_tm_ML_coincidence:
- "ML_closed_t k t \<Longrightarrow> !i<k. f i = g i \<Longrightarrow> subst\<^bsub>ML\<^esub> f t = subst\<^bsub>ML\<^esub> g t"
-by (induct f t arbitrary: k g rule: subst_tm_ML.induct)
- (auto simp:subst_ml_ML_coincidence)
-
-lemma ML_closed_subst_ML1_ml:
- "!i. ML_closed k (f i) \<Longrightarrow> ML_closed k (subst\<^bsub>ML\<^esub> f v)"
-by(induct f v arbitrary: k rule: subst_ml_ML.induct)
- (auto simp:cons_ML_def ML_closed_Suc split:nat.split)
-lemma ML_closed_subst_ML1_tm:
- "!i. ML_closed k (f i) \<Longrightarrow> ML_closed_t k (subst\<^bsub>ML\<^esub> f t)"
-by(induct f t arbitrary: k rule: subst_tm_ML.induct)
- (simp_all add:ML_closed_subst_ML1_ml)
-
-lemma ML_closed_t_foldl_At:
- "ML_closed_t k (foldl At t ts) \<longleftrightarrow>
- ML_closed_t k t & (ALL t:set ts. ML_closed_t k t)"
-by(induct ts arbitrary: t) simp_all
-
-lemma subst_Vt: "t : Pure_tms \<Longrightarrow> subst Vt t = t"
-apply(induct set:Pure_tms)
-apply simp_all
-apply(subgoal_tac "Vt 0 ## Vt = Vt")
-apply simp
-apply(rule ext)
-apply(simp add:cons_def split:nat.split)
-done
-
-lemma ML_closed_Pure_tms: "ML_closed 0 v \<Longrightarrow> v! : Pure_tms"
-apply(induct v rule:kernel.induct)
-apply auto
-apply(rule Pure_tms.intros)
-apply(erule meta_mp)
-apply(subgoal_tac "ML_closed (Suc 0) (lift 0 v)")
-apply(subgoal_tac "ML_closed 0 (subst\<^bsub>ML\<^esub> (\<lambda>n. V 0 []) (lift 0 v))")
-apply(drule subst_ml_ML_coincidence[of _ _ "\<lambda>n. V 0 []" "\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1)"])back
-apply simp
-apply metis
-apply simp
-apply(rule ML_closed_subst_ML1_ml)
-apply simp+
-done
-
-corollary subst_Vt_kernel: "ML_closed 0 v \<Longrightarrow> subst Vt (v!) = v!"
-by (metis ML_closed_Pure_tms subst_Vt)
-
-lemma ML_closed_subst_ML3_ml:
- "ML_closed k v \<Longrightarrow> !i<k. ML_closed l (f i) \<Longrightarrow> ML_closed l (subst\<^bsub>ML\<^esub> f v)"
-by(induct f v arbitrary: k l rule: subst_ml_ML.induct)
- (auto simp:cons_ML_def ML_closed_Suc split:nat.split)
-lemma ML_closed_subst_ML3_tm:
- "ML_closed_t k t \<Longrightarrow> !i<k. ML_closed l (f i) \<Longrightarrow> ML_closed_t l (subst\<^bsub>ML\<^esub> f t)"
-by(induct f t arbitrary: k l rule: subst_tm_ML.induct)
- (auto simp:ML_closed_subst_ML3_ml)
-
-lemma kernel_lift_tm: "ML_closed 0 v \<Longrightarrow> (lift i v)! = lift i (v!)"
-apply(induct v arbitrary: i rule: kernel.induct)
-apply (simp_all add:list_eq_iff_nth_eq)
-apply(erule_tac x="Suc i" in meta_allE)
-apply(erule meta_impE)
-defer
-apply (simp add:lift_subst_ML_ml)
-apply(subgoal_tac "lift (Suc i) \<circ> (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1)) = (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1))")
-apply (simp add:lift_lift_ml)
-apply(rule ext)
-apply(simp)
-apply(subst ML_closed_subst_ML3_ml[of "1"])
-apply(simp)
-apply(simp)
-apply(simp)
-done
-
-lemma subst_ML_ml_comp: includes Vars shows
- "!i. h i = subst\<^bsub>ML\<^esub> f (g i) \<Longrightarrow> subst\<^bsub>ML\<^esub> f (subst\<^bsub>ML\<^esub> g v) = subst\<^bsub>ML\<^esub> h v"
-apply (induct h v arbitrary: f g rule: subst_ml_ML.induct)
-apply (simp add: list_eq_iff_nth_eq)
-apply (simp add: list_eq_iff_nth_eq)
-apply (simp add: list_eq_iff_nth_eq)
-apply (simp add: list_eq_iff_nth_eq)
-apply (simp)
-apply (simp add: list_eq_iff_nth_eq)
-apply (simp)
-apply(erule meta_allE)+
-apply(erule meta_mp)
-apply(auto simp:cons_ML_def split:nat.split)
-apply (metis cons_ML_def o_apply subst_cons_lift)
-done
-lemma subst_ML_tm_comp: includes Vars shows
- "!i. h i = subst\<^bsub>ML\<^esub> f (g i) \<Longrightarrow> subst\<^bsub>ML\<^esub> f (subst\<^bsub>ML\<^esub> g t) = subst\<^bsub>ML\<^esub> h t"
-apply (induct h t arbitrary: f g rule: subst_tm_ML.induct)
-apply (simp)
-apply (simp)
-apply (simp)
-apply (metis lift_subst_ML_ml o_apply subst_ML_ml_comp subst_ml_ML.simps(5))
-apply (simp)
-apply simp
-apply (metis subst_ML_ml_comp subst_ml_ML.simps(5))
-done
-
-lemma if_cong0: "If x y z = If x y z"
-by simp
-
-corollary [simp]: "ML_closed 0 v \<Longrightarrow> subst\<^bsub>ML\<^esub> f v = v"
-using ML_closed_subst_ML_ml[where k=0] by simp
-
-fun subst_ml :: "(nat \<Rightarrow> nat) \<Rightarrow> ml \<Rightarrow> ml" where
-"subst_ml f (C nm vs) = C nm (map (subst_ml f) vs)" |
-"subst_ml f (V x vs) = V (f x) (map (subst_ml f) vs)" |
-"subst_ml f (Fun v vs n) = Fun (subst_ml f v) (map (subst_ml f) vs) n" |
-"subst_ml f (apply u v) = apply (subst_ml f u) (subst_ml f v)" |
-"subst_ml f (V_ML X) = V_ML X" |
-"subst_ml f (A_ML v vs) = A_ML (subst_ml f v) (map (subst_ml f) vs)" |
-"subst_ml f (Lam_ML v) = Lam_ML (subst_ml f v)" |
-"subst_ml f (CC nm) = CC nm"
-
-lemma lift_ML_subst_ml:
-"lift\<^bsub>ML\<^esub> k (subst_ml f v) = subst_ml f (lift\<^bsub>ML\<^esub> k v)"
-apply (induct f v arbitrary: k rule:subst_ml.induct)
-apply (simp_all add:list_eq_iff_nth_eq)
-done
-
-lemma subst_ml_subst_ML: includes Vars shows
- "subst_ml f (subst\<^bsub>ML\<^esub> g v) = subst\<^bsub>ML\<^esub> (subst_ml f o g) (subst_ml f v)"
-apply (induct g v arbitrary: f rule: subst_ml_ML.induct)
-apply(simp_all add:list_eq_iff_nth_eq)
-apply(subgoal_tac "(subst_ml fa \<circ> V_ML 0 ## f) = V_ML 0 ## (subst_ml fa \<circ> f)")
-apply simp
-apply(rule ext)
-apply(simp add:cons_ML_def lift_ML_subst_ml split:nat.split)
-done
-
-lemma lift_Pure_tms[simp]: "t : Pure_tms \<Longrightarrow> lift k t : Pure_tms"
-by(induct arbitrary:k set:Pure_tms) simp_all
-
-lemma lift_subst_aux:
- "t : Pure_tms \<Longrightarrow> !i<k. g i = lift k (f i) \<Longrightarrow>
- ALL i>= k. g(Suc i) = lift k (f i) \<Longrightarrow>
- g k = Vt k \<Longrightarrow> lift k (subst f t) = subst g (lift k t)"
-apply(induct arbitrary:f g k set:Pure_tms)
-apply (simp_all add: split:nat.split)
-apply(erule meta_allE)+
-apply(erule meta_impE)
-defer
-apply(erule meta_impE)
-defer
-apply(erule meta_mp)
-apply (simp_all add: cons_def lift_lift_ml lift_lift_tm split:nat.split)
-done
-
-corollary lift_subst:
- "t : Pure_tms \<Longrightarrow> lift 0 (subst f t) = subst (Vt 0 ## f) (lift 0 t)"
-by (simp add: lift_subst_aux cons_def lift_lift_ml split:nat.split)
-
-lemma subst_comp: includes Vars shows
- "t : Pure_tms \<Longrightarrow> !i. g i : Pure_tms \<Longrightarrow>
- h = (%i. subst f (g i)) \<Longrightarrow> subst f (subst g t) = subst h t"
-apply(induct arbitrary:f g h set:Pure_tms)
-apply simp
-apply simp
-defer
-apply simp
-apply (simp (no_asm))
-apply(erule meta_allE)+
-apply(erule meta_impE)
-defer
-apply(erule meta_mp)
-prefer 2 apply (simp add:cons_def split:nat.split)
-apply(rule ext)
-apply(subst (1) cons_def)
-apply(subst (2) cons_def)
-apply(simp split:nat.split)
-apply rule apply (simp add:cons_def)
-apply(simp add:lift_subst)
-done
-
-lemma lift_is_subst_ml:"lift k v = subst_ml (%n. if n<k then n else n+1) v"
-by(induct k v rule:lift_ml.induct)(simp_all add:list_eq_iff_nth_eq)
-
-lemma subst_ml_comp:
- "subst_ml f (subst_ml g v) = subst_ml (f o g) v"
-by(induct g v rule:subst_ml.induct)(simp_all add:list_eq_iff_nth_eq)
-
-lemma subst_kernel:
- "ML_closed 0 v \<Longrightarrow> subst (%n. Vt (f n)) (v!) = (subst_ml f v)!"
-apply (induct v arbitrary: f rule:kernel.induct)
-apply (simp_all add:list_eq_iff_nth_eq)
-apply(erule_tac x="%n. case n of 0 \<Rightarrow> 0 | Suc k \<Rightarrow> Suc(f k)" in meta_allE)
-apply(erule_tac meta_impE)
-apply(rule ML_closed_subst_ML3_ml[where k="Suc 0"])
-apply (metis ML_closed_lift_ml)
-apply simp
-apply(subgoal_tac "(\<lambda>n. Vt (case n of 0 \<Rightarrow> 0 | Suc k \<Rightarrow> Suc (f k))) = (Vt 0 ## (\<lambda>n. Vt (f n)))")
-apply (simp add:subst_ml_subst_ML)
-defer
-apply(simp add:expand_fun_eq cons_def split:nat.split)
-apply(simp add:cons_def)
-defer
-apply(simp add:lift_is_subst_ml subst_ml_comp)
-apply(rule arg_cong[where f = kernel])
-apply(subgoal_tac "(nat_case 0 (\<lambda>k. Suc (f k)) \<circ> Suc) = Suc o f")
-prefer 2 apply(simp add:expand_fun_eq split:nat.split)
-apply(subgoal_tac "(subst_ml (nat_case 0 (\<lambda>k. Suc (f k))) \<circ>
- (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1)))
- = (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1))")
-apply simp
-apply(simp add: expand_fun_eq split:nat.split)
-done
-
-lemma kernel_subst1:
- "ML_closed 0 v \<Longrightarrow> ML_closed (Suc 0) u \<Longrightarrow>
- kernel(u[v/0]) = (kernel((lift 0 u)[V 0 []/0]))[v!/0]"
-proof(induct u arbitrary:v rule:kernel.induct)
- case (2 w)
- show ?case (is "?L = ?R")
- proof -
- have "?L = Lam (lift 0 (w[lift\<^bsub>ML\<^esub> 0 v/Suc 0])[V 0 []/0]!)"
- by (simp cong:if_cong0)
- also have "\<dots> = Lam ((lift 0 w)[lift\<^bsub>ML\<^esub> 0 (lift 0 v)/Suc 0][V 0 []/0]!)"
- by (metis kernel.simps(2) lift_lift_ml_ML_comm lift_subst_ML1)
- also have "\<dots> = Lam (subst\<^bsub>ML\<^esub> (%n. if n=0 then V 0 [] else
- if n=Suc 0 then lift 0 v else V_ML (n - 2)) (lift 0 w) !)"
- apply simp
- apply(rule arg_cong[where f = kernel])
- apply(rule subst_ML_ml_comp)
- using 2
- apply auto
- done
- also have "\<dots> = Lam ((lift 0 w)[V 0 []/0][lift 0 v/0]!)"
- apply simp
- apply(rule arg_cong[where f = kernel])
- apply(rule subst_ML_ml_comp[symmetric])
- using 2
- apply auto
- done
- also have "\<dots> = Lam ((lift_ml 0 ((lift_ml 0 w)[V 0 []/0]))[V 0 []/0]![(lift 0 v)!/0])"
- apply(rule arg_cong[where f = Lam])
- apply(rule 2(1))
- apply (metis ML_closed_lift_ml 2)
- apply(subgoal_tac "ML_closed (Suc(Suc 0)) w")
- defer
- using 2
- apply force
- apply(subgoal_tac "ML_closed (Suc (Suc 0)) (lift 0 w)")
- defer
- apply(erule ML_closed_lift_ml)
- apply(erule ML_closed_subst_ML3_ml)
- apply simp
- done
- also have "\<dots> = Lam ((lift_ml 0 (lift_ml 0 w)[V 1 []/0])[V 0 []/0]![(lift 0 v)!/0])" (is "_ = ?M")
- apply(subgoal_tac "lift_ml 0 (lift_ml 0 w[V 0 []/0])[V 0 []/0] =
- lift_ml 0 (lift_ml 0 w)[V 1 []/0][V 0 []/0]")
- apply simp
- apply(subst lift_subst_ML_ml)
- apply(simp add:comp_def if_distrib[where f="lift_ml 0"] cong:if_cong)
- done
- finally have "?L = ?M" .
- have "?R = Lam (subst (Vt 0 ## subst_decr 0 (v!))
- (lift 0 (lift_ml 0 w[V 0 []/Suc 0])[V 0 []/0]!))"
- apply(subgoal_tac "(V_ML 0 ## (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - Suc 0))) = subst_decr_ML (Suc 0) (V 0 [])")
- apply(simp cong:if_cong)
- apply(simp add:expand_fun_eq cons_ML_def split:nat.splits)
- done
- also have "\<dots> = Lam (subst (Vt 0 ## subst_decr 0 (v!))
- ((lift 0 (lift_ml 0 w))[V 1 []/Suc 0][V 0 []/0]!))"
- apply(subgoal_tac "lift 0 (lift 0 w[V 0 []/Suc 0]) = lift 0 (lift 0 w)[V 1 []/Suc 0]")
- apply simp
- apply(subst lift_subst_ML_ml)
- apply(simp add:comp_def if_distrib[where f="lift_ml 0"] cong:if_cong)
- done
- also have "(lift_ml 0 (lift_ml 0 w))[V 1 []/Suc 0][V 0 []/0] =
- (lift 0 (lift_ml 0 w))[V 0 []/0][V 1 []/ 0]" (is "?l = ?r")
- proof -
- have "?l = subst\<^bsub>ML\<^esub> (%n. if n= 0 then V 0 [] else if n = 1 then V 1 [] else
- V_ML (n - 2))
- (lift_ml 0 (lift_ml 0 w))"
- by(auto intro!:subst_ML_ml_comp)
- also have "\<dots> = ?r" by(auto intro!:subst_ML_ml_comp[symmetric])
- finally show ?thesis .
- qed
- also have "Lam (subst (Vt 0 ## subst_decr 0 (v!)) (?r !)) = ?M"
- proof-
- have "subst (subst_decr (Suc 0) (lift_tm 0 (kernel v))) (lift_ml 0 (lift_ml 0 w)[V 0 []/0][V 1 []/0]!) =
- subst (subst_decr 0 (kernel(lift_ml 0 v))) (lift_ml 0 (lift_ml 0 w)[V 1 []/0][V 0 []/0]!)" (is "?a = ?b")
- proof-
- def pi == "%n::nat. if n = 0 then 1 else if n = 1 then 0 else n"
- have "(\<lambda>i. Vt (pi i)[lift 0 (v!)/0]) = subst_decr (Suc 0) (lift 0 (v!))"
- by(rule ext)(simp add:pi_def)
- hence "?a =
- subst (subst_decr 0 (lift_tm 0 (kernel v))) (subst (% n. Vt (pi n)) (lift_ml 0 (lift_ml 0 w)[V 0 []/0][V 1 []/0]!))"
- apply(subst subst_comp[OF _ _ refl])
- prefer 3 apply simp
- using 2(3)
- apply simp
- apply(rule ML_closed_Pure_tms)
- apply(rule ML_closed_subst_ML3_ml[where k="Suc 0"])
- apply(rule ML_closed_subst_ML3_ml[where k="Suc(Suc 0)"])
- apply simp
- apply simp
- apply simp
- apply simp
- done
- also have "\<dots> =
- (subst_ml pi (lift_ml 0 (lift_ml 0 w)[V 0 []/0][V 1 []/0]))![lift_tm 0 (v!)/0]"
- apply(subst subst_kernel)
- using 2 apply auto
- apply(rule ML_closed_subst_ML3_ml[where k="Suc 0"])
- apply(rule ML_closed_subst_ML3_ml[where k="Suc(Suc 0)"])
- apply simp
- apply simp
- apply simp
- done
- also have "\<dots> = (subst_ml pi (lift_ml 0 (lift_ml 0 w)[V 0 []/0][V 1 []/0]))![lift 0 v!/0]"
- proof -
- have "lift 0 (v!) = lift 0 v!" by (metis 2(2) kernel_lift_tm)
- thus ?thesis by (simp cong:if_cong)
- qed
- also have "\<dots> = ?b"
- proof-
- have 1: "subst_ml pi (lift 0 (lift 0 w)) = lift 0 (lift 0 w)"
- apply(simp add:lift_is_subst_ml subst_ml_comp)
- apply(subgoal_tac "pi \<circ> (Suc \<circ> Suc) = (Suc \<circ> Suc)")
- apply(simp)
- apply(simp add:pi_def expand_fun_eq)
- done
- have "subst_ml pi (lift_ml 0 (lift_ml 0 w)[V 0 []/0][V 1 []/0]) =
- lift_ml 0 (lift_ml 0 w)[V 1 []/0][V 0 []/0]"
- apply(subst subst_ml_subst_ML)
- apply(subst subst_ml_subst_ML)
- apply(subst 1)
- apply(subst subst_ML_ml_comp)
- apply(rule)
- apply(rule)
- apply(rule subst_ML_ml_comp[symmetric])
- apply(auto simp:pi_def)
- done
- thus ?thesis by simp
- qed
- finally show ?thesis .
- qed
- thus ?thesis by(simp cong:if_cong0 add:shift_subst_decr)
- qed
- finally have "?R = ?M" .
- then show "?L = ?R" using `?L = ?M` by metis
-qed
-qed (simp_all add:list_eq_iff_nth_eq)
-
-
-theorem Red_sound: includes Vars
- shows "v \<Rightarrow> v' \<Longrightarrow> ML_closed 0 v \<Longrightarrow> v! \<rightarrow>* v'! & ML_closed 0 v'"
- and "t \<Rightarrow> t' \<Longrightarrow> ML_closed_t 0 t \<Longrightarrow> kernelt t \<rightarrow>* kernelt t' & ML_closed_t 0 t'"
- and "(vs :: ml list) \<Rightarrow> vs' \<Longrightarrow> !v : set vs . ML_closed 0 v \<Longrightarrow> map kernel vs \<rightarrow>* map kernel vs' & (! v':set vs'. ML_closed 0 v')"
-proof(induct rule:Red_Redt_Redl.inducts)
- fix u v
- let ?v = "A_ML (Lam_ML u) [v]"
- assume cl: "ML_closed 0 (A_ML (Lam_ML u) [v])"
- let ?u' = "(lift_ml 0 u)[V 0 []/0]"
- have "?v! = At (Lam ((?u')!)) (v !)" by simp
- also have "\<dots> \<rightarrow> (?u' !)[v!/0]" (is "_ \<rightarrow> ?R") by(rule tRed.intros)
- also have "?R = u[v/0]!" using cl
- apply(cut_tac u = "u" and v = "v" in kernel_subst1)
- apply(simp_all)
- done
- finally have "kernel(A_ML (Lam_ML u) [v]) \<rightarrow>* kernel(u[v/0])" (is ?A) by(rule r_into_rtrancl)
- moreover have "ML_closed 0 (u[v/0])" (is "?C")
- proof -
- let ?f = "\<lambda>n. if n = 0 then v else V_ML (n - 1)"
- let ?g = "\<lambda>n. v"
- have clu: "ML_closed (Suc 0) u" and clv: "ML_closed 0 v" using cl by simp+
- have "ML_closed 0 (subst\<^bsub>ML\<^esub> ?g u)"
- by (metis COMBK_def ML_closed_subst_ML1_ml clv)
- hence "ML_closed 0 (subst\<^bsub>ML\<^esub> ?f u)"
- using subst_ml_ML_coincidence[OF clu, of ?f ?g] by auto
- thus ?thesis by simp
- qed
- ultimately show "?A & ?C" ..
-next
- case term_of_C thus ?case
- by (auto simp:ML_closed_t_foldl_At map_compose[symmetric])
-next
- fix f :: "nat \<Rightarrow> ml" and nm vs v
- assume f: "\<forall>i. ML_closed 0 (f i)" and compR: "(nm, vs, v) \<in> compR"
- have "map (subst Vt) (map (subst\<^bsub>ML\<^esub> f) vs!) = map (subst\<^bsub>ML\<^esub> f) vs!"
- by(simp add:list_eq_iff_nth_eq subst_Vt_kernel ML_closed_subst_ML1_ml[OF f])
- with tRed.intros(3)[OF compiler_correct[OF compR f], of Vt,simplified map_compose]
- have red: "foldl At (Ct nm) ((map (subst\<^bsub>ML\<^esub> f) vs) !) \<rightarrow>
- (subst\<^bsub>ML\<^esub> f v)!" (is "_ \<rightarrow> ?R")
- by(simp add:subst_Vt_kernel ML_closed_subst_ML1_ml[OF f])
- hence "A_ML (CC nm) (map (subst\<^bsub>ML\<^esub> f) vs)! \<rightarrow>* subst\<^bsub>ML\<^esub> f v!" (is ?A) by simp
- moreover
- have "ML_closed 0 (subst\<^bsub>ML\<^esub> f v)" (is ?C) by(metis ML_closed_subst_ML1_ml f)
- ultimately show "?A & ?C" ..
-next
- case term_of_V thus ?case
- by (auto simp:map_compose[symmetric]ML_closed_t_foldl_At)
-next
- case (term_of_Fun vf vs n)
- hence "foldl At (lift 0 vf!)
- (map (subst\<^bsub>ML\<^esub> (\<lambda>n. if n = 0 then V 0 [] else V_ML (n - 1)))
- (map (lift 0) vs)!)
- = lift 0 (foldl At (vf!) (map kernel vs))"
- by (simp add:kernel_lift_tm list_eq_iff_nth_eq)
- hence "term_of (Fun vf vs n)! \<rightarrow>*
- Lam (term_of (apply (lift 0 (Fun vf vs n)) (V_ML 0)[V 0 []/0]))!"
- using term_of_Fun
- apply (simp del:lift_foldl_At)
- apply (metis kernel.simps r_into_rtrancl tRed.intros(2))
- done
- moreover
- have "ML_closed_t 0
- (Lam (term_of (apply (lift 0 (Fun vf vs n)) (V_ML 0)[V 0 []/0])))"
- using term_of_Fun by simp
- ultimately show ?case ..
-next
- case apply_Fun1 thus ?case by simp
-next
- case apply_Fun2 thus ?case by simp
-next
- case apply_C thus ?case by simp
-next
- case apply_V thus ?case by simp
-next
- case ctxt_Lam thus ?case by(auto)
-next
- case ctxt_At1 thus ?case by(auto)
-next
- case ctxt_At2 thus ?case by (auto)
-next
- case ctxt_term_of thus ?case by (auto)
-next
- case ctxt_C thus ?case by (fastsimp simp:tRed_list_foldl_At)
-next
- case ctxt_V thus ?case by (fastsimp simp:tRed_list_foldl_At)
-next
- case ctxt_Fun1 thus ?case by (fastsimp simp:tRed_list_foldl_At)
-next
- case ctxt_Fun3 thus ?case by (fastsimp simp:tRed_list_foldl_At)
-next
- case ctxt_apply1 thus ?case by auto
-next
- case ctxt_apply2 thus ?case by auto
-next
- case ctxt_A_ML1 thus ?case by (fastsimp simp:tRed_list_foldl_At)
-next
- case ctxt_A_ML2 thus ?case by (fastsimp simp:tRed_list_foldl_At)
-next
- case ctxt_list1 thus ?case by simp
-next
- case ctxt_list2 thus ?case by simp
-qed
-
-
-lemma [simp]: "Ct n = foldl At t ts \<longleftrightarrow> t = Ct n & ts = []"
-by (induct ts arbitrary:t) auto
-
-corollary kernel_inv: includes Vars shows
- "(t :: tm) \<Rightarrow>* t' ==> ML_closed_t 0 t ==> t! \<rightarrow>* t'! \<and> ML_closed_t 0 t' "
-apply(induct rule: rtrancl.induct)
-apply (metis rtrancl_eq_or_trancl)
-apply (metis Red_sound rtrancl_trans)
-done
-
-lemma ML_closed_t_term_of_eval:
- "t : Pure_tms \<Longrightarrow> ALL i : free_vars t. i < size e \<Longrightarrow>
- !i<length e. ML_closed n (e!i) \<Longrightarrow> ML_closed_t n (term_of (eval t e))"
-apply(induct arbitrary:n e rule: Pure_tms.induct)
-apply simp
-apply simp
-apply simp
-prefer 2 apply simp
-apply(erule_tac x="Suc n" in meta_allE)
-apply(erule_tac x="V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e" in meta_allE)
-apply(subgoal_tac "\<forall>i\<in>free_vars t. i < length (V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e)")
-prefer 2
-apply simp
-apply (metis Nat.less_trans gr0_implies_Suc gr_implies_not0 linorder_neq_iff not_less_eq)
-apply(subgoal_tac " \<forall>i<length (V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e).
- ML_closed (Suc n) ((V_ML 0 # map (lift\<^bsub>ML\<^esub> 0) e) ! i)")
-apply (auto simp:nth_Cons')
-apply (metis ML_closed_Suc Nat.less_trans Suc_eq_add_numeral_1 Suc_pred' add_0_left less_add_Suc2 less_antisym)
-done
-
-theorem includes Vars
-assumes t: "t : Pure_tms" and t': "t' : Pure_tms" and
-closed: "free_vars t = {}" and reds: "term_of (eval t []) \<Rightarrow>* t'"
-shows "t \<rightarrow>* t'"
-proof -
- have ML_cl: "ML_closed_t 0 (term_of (eval t []))"
- apply(rule ML_closed_t_term_of_eval[OF t])
- using closed apply auto done
- have "(eval t [])! = t!"
- using kernel_eval[OF t, where e="[]"] closed by simp
- hence "(term_of (eval t []))! = t!" by simp
- moreover have "term_of (eval t [])! \<rightarrow>* t'!"
- using kernel_inv[OF reds ML_cl] by auto
- ultimately have "t! \<rightarrow>* t'!" by simp
- thus ?thesis using kernel_pure t t' by auto
-qed
-
-end