--- a/src/HOL/IntDef.thy Thu Oct 25 16:57:57 2007 +0200
+++ b/src/HOL/IntDef.thy Thu Oct 25 19:27:50 2007 +0200
@@ -426,8 +426,11 @@
subsection{*Embedding of the Integers into any @{text ring_1}: @{term of_int}*}
+context ring_1
+begin
+
definition
- of_int :: "int \<Rightarrow> 'a\<Colon>ring_1"
+ of_int :: "int \<Rightarrow> 'a"
where
"of_int z = contents (\<Union>(i, j) \<in> Rep_Integ z. { of_nat i - of_nat j })"
lemmas [code func del] = of_int_def
@@ -453,15 +456,21 @@
lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
by (cases z, simp add: compare_rls of_int minus)
-lemma of_int_diff [simp]: "of_int (w-z) = of_int w - of_int z"
-by (simp add: diff_minus)
-
lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
apply (cases w, cases z)
apply (simp add: compare_rls of_int left_diff_distrib right_diff_distrib
mult add_ac of_nat_mult)
done
+text{*Collapse nested embeddings*}
+lemma of_int_of_nat_eq [simp]: "of_int (Nat.of_nat n) = of_nat n"
+ by (induct n, auto)
+
+end
+
+lemma of_int_diff [simp]: "of_int (w-z) = of_int w - of_int z"
+by (simp add: diff_minus)
+
lemma of_int_le_iff [simp]:
"(of_int w \<le> (of_int z::'a::ordered_idom)) = (w \<le> z)"
apply (cases w)
@@ -474,7 +483,6 @@
lemmas of_int_0_le_iff [simp] = of_int_le_iff [of 0, simplified]
lemmas of_int_le_0_iff [simp] = of_int_le_iff [of _ 0, simplified]
-
lemma of_int_less_iff [simp]:
"(of_int w < (of_int z::'a::ordered_idom)) = (w < z)"
by (simp add: linorder_not_le [symmetric])
@@ -486,83 +494,83 @@
text{*Class for unital rings with characteristic zero.
Includes non-ordered rings like the complex numbers.*}
class ring_char_0 = ring_1 + semiring_char_0
+begin
lemma of_int_eq_iff [simp]:
- "of_int w = (of_int z \<Colon> 'a\<Colon>ring_char_0) \<longleftrightarrow> w = z"
+ "of_int w = of_int z \<longleftrightarrow> w = z"
apply (cases w, cases z, simp add: of_int)
apply (simp only: diff_eq_eq diff_add_eq eq_diff_eq)
apply (simp only: of_nat_add [symmetric] of_nat_eq_iff)
done
-text{*Every @{text ordered_idom} has characteristic zero.*}
-instance ordered_idom < ring_char_0 ..
-
text{*Special cases where either operand is zero*}
lemmas of_int_0_eq_iff [simp] = of_int_eq_iff [of 0, simplified]
lemmas of_int_eq_0_iff [simp] = of_int_eq_iff [of _ 0, simplified]
-lemma of_int_eq_id [simp]: "of_int = (id :: int => int)"
+end
+
+text{*Every @{text ordered_idom} has characteristic zero.*}
+instance ordered_idom \<subseteq> ring_char_0 ..
+
+lemma of_int_eq_id [simp]: "of_int = id"
proof
- fix z
- show "of_int z = id z"
- by (cases z)
- (simp add: of_int add minus int_def diff_minus)
+ fix z show "of_int z = id z"
+ by (cases z) (simp add: of_int add minus int_def diff_minus)
qed
-lemma of_nat_nat: "0 \<le> z ==> of_nat (nat z) = of_int z"
+lemma of_nat_nat: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
by (cases z rule: eq_Abs_Integ)
(simp add: nat le of_int Zero_int_def of_nat_diff)
subsection{*The Set of Integers*}
-constdefs
- Ints :: "'a::ring_1 set"
- "Ints == range of_int"
+context ring_1
+begin
+
+definition
+ Ints :: "'a set"
+where
+ "Ints = range of_int"
+
+end
notation (xsymbols)
Ints ("\<int>")
-lemma Ints_0 [simp]: "0 \<in> Ints"
+context ring_1
+begin
+
+lemma Ints_0 [simp]: "0 \<in> \<int>"
apply (simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_0 [symmetric])
done
-lemma Ints_1 [simp]: "1 \<in> Ints"
+lemma Ints_1 [simp]: "1 \<in> \<int>"
apply (simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_1 [symmetric])
done
-lemma Ints_add [simp]: "[|a \<in> Ints; b \<in> Ints|] ==> a+b \<in> Ints"
+lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_add [symmetric])
done
-lemma Ints_minus [simp]: "a \<in> Ints ==> -a \<in> Ints"
+lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_minus [symmetric])
done
-lemma Ints_diff [simp]: "[|a \<in> Ints; b \<in> Ints|] ==> a-b \<in> Ints"
-apply (auto simp add: Ints_def)
-apply (rule range_eqI)
-apply (rule of_int_diff [symmetric])
-done
-
-lemma Ints_mult [simp]: "[|a \<in> Ints; b \<in> Ints|] ==> a*b \<in> Ints"
+lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
apply (auto simp add: Ints_def)
apply (rule range_eqI)
apply (rule of_int_mult [symmetric])
done
-text{*Collapse nested embeddings*}
-lemma of_int_of_nat_eq [simp]: "of_int (of_nat n) = of_nat n"
-by (induct n, auto)
-
lemma Ints_cases [cases set: Ints]:
assumes "q \<in> \<int>"
obtains (of_int) z where "q = of_int z"
@@ -574,9 +582,17 @@
qed
lemma Ints_induct [case_names of_int, induct set: Ints]:
- "q \<in> \<int> ==> (!!z. P (of_int z)) ==> P q"
+ "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
by (rule Ints_cases) auto
+end
+
+lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a-b \<in> \<int>"
+apply (auto simp add: Ints_def)
+apply (rule range_eqI)
+apply (rule of_int_diff [symmetric])
+done
+
subsection {* @{term setsum} and @{term setprod} *}
--- a/src/HOL/Nat.thy Thu Oct 25 16:57:57 2007 +0200
+++ b/src/HOL/Nat.thy Thu Oct 25 19:27:50 2007 +0200
@@ -1147,8 +1147,8 @@
using Suc_le_eq less_Suc_eq_le by simp_all
-subsection{*Embedding of the Naturals into any
- @{text semiring_1}: @{term of_nat}*}
+subsection {* Embedding of the Naturals into any
+ @{text semiring_1}: @{term of_nat} *}
context semiring_1
begin
@@ -1156,8 +1156,102 @@
definition
of_nat_def: "of_nat = nat_rec 0 (\<lambda>_. (op +) 1)"
+lemma of_nat_simps [simp, code]:
+ shows of_nat_0: "of_nat 0 = 0"
+ and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
+ unfolding of_nat_def by simp_all
+
+lemma of_nat_1 [simp]: "of_nat 1 = 1"
+ by simp
+
+lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
+ by (induct m) (simp_all add: add_ac)
+
+lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n"
+ by (induct m) (simp_all add: add_ac left_distrib)
+
end
+context ordered_semidom
+begin
+
+lemma zero_le_imp_of_nat: "0 \<le> of_nat m"
+ apply (induct m, simp_all)
+ apply (erule order_trans)
+ apply (rule ord_le_eq_trans [OF _ add_commute])
+ apply (rule less_add_one [THEN less_imp_le])
+ done
+
+lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
+ apply (induct m n rule: diff_induct, simp_all)
+ apply (insert add_less_le_mono [OF zero_less_one zero_le_imp_of_nat], force)
+ done
+
+lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
+ apply (induct m n rule: diff_induct, simp_all)
+ apply (insert zero_le_imp_of_nat)
+ apply (force simp add: not_less [symmetric])
+ done
+
+lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
+ by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
+
+text{*Special cases where either operand is zero*}
+
+lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
+ by (rule of_nat_less_iff [of 0, simplified])
+
+lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
+ by (rule of_nat_less_iff [of _ 0, simplified])
+
+lemma of_nat_le_iff [simp]:
+ "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
+ by (simp add: not_less [symmetric] linorder_not_less [symmetric])
+
+text{*Special cases where either operand is zero*}
+
+lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
+ by (rule of_nat_le_iff [of 0, simplified])
+
+lemma of_nat_le_0_iff [simp, noatp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
+ by (rule of_nat_le_iff [of _ 0, simplified])
+
+end
+
+lemma of_nat_id [simp]: "of_nat n = n"
+ by (induct n) auto
+
+lemma of_nat_eq_id [simp]: "of_nat = id"
+ by (auto simp add: expand_fun_eq)
+
+text{*Class for unital semirings with characteristic zero.
+ Includes non-ordered rings like the complex numbers.*}
+
+class semiring_char_0 = semiring_1 +
+ assumes of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
+
+text{*Every @{text ordered_semidom} has characteristic zero.*}
+
+subclass (in ordered_semidom) semiring_char_0
+ by unfold_locales (simp add: eq_iff order_eq_iff)
+
+context semiring_char_0
+begin
+
+text{*Special cases where either operand is zero*}
+
+lemma of_nat_0_eq_iff [simp, noatp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
+ by (rule of_nat_eq_iff [of 0, simplified])
+
+lemma of_nat_eq_0_iff [simp, noatp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
+ by (rule of_nat_eq_iff [of _ 0, simplified])
+
+lemma inj_of_nat: "inj of_nat"
+ by (simp add: inj_on_def)
+
+end
+
+
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
lemma subst_equals:
@@ -1165,7 +1259,6 @@
shows "u = s"
using 2 1 by (rule trans)
-
use "arith_data.ML"
declaration {* K arith_data_setup *}
@@ -1186,6 +1279,18 @@
-- {* elimination of @{text -} on @{text nat} *}
by (cases "a<b" rule: case_split) (auto simp add: diff_is_0_eq [THEN iffD2])
+context ring_1
+begin
+
+lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
+ by (simp del: of_nat_add
+ add: compare_rls of_nat_add [symmetric] split add: nat_diff_split)
+
+end
+
+lemma abs_of_nat [simp]: "\<bar>of_nat n::'a::ordered_idom\<bar> = of_nat n"
+ by (rule of_nat_0_le_iff [THEN abs_of_nonneg])
+
lemma nat_diff_split_asm:
"P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
-- {* elimination of @{text -} on @{text nat} in assumptions *}
@@ -1333,141 +1438,52 @@
Least_Suc}, since there appears to be no need.*}
-subsection{*Embedding of the Naturals into any
- @{text semiring_1}: @{term of_nat}*}
+subsection {*The Set of Natural Numbers*}
context semiring_1
begin
-lemma of_nat_simps [simp, code]:
- shows of_nat_0: "of_nat 0 = 0"
- and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
- unfolding of_nat_def by simp_all
+definition
+ Nats :: "'a set"
+where
+ "Nats = range of_nat"
end
-lemma of_nat_id [simp]: "(of_nat n \<Colon> nat) = n"
-by (induct n) auto
-
-lemma of_nat_1 [simp]: "of_nat 1 = 1"
-by simp
-
-lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
-by (induct m) (simp_all add: add_ac)
-
-lemma of_nat_mult: "of_nat (m*n) = of_nat m * of_nat n"
-by (induct m) (simp_all add: add_ac left_distrib)
-
-lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)"
- apply (induct m, simp_all)
- apply (erule order_trans)
- apply (rule ord_le_eq_trans [OF _ add_commute])
- apply (rule less_add_one [THEN order_less_imp_le])
- done
-
-lemma less_imp_of_nat_less:
- "m < n ==> of_nat m < (of_nat n::'a::ordered_semidom)"
- apply (induct m n rule: diff_induct, simp_all)
- apply (insert add_less_le_mono [OF zero_less_one zero_le_imp_of_nat], force)
- done
-
-lemma of_nat_less_imp_less:
- "of_nat m < (of_nat n::'a::ordered_semidom) ==> m < n"
- apply (induct m n rule: diff_induct, simp_all)
- apply (insert zero_le_imp_of_nat)
- apply (force simp add: linorder_not_less [symmetric])
- done
-
-lemma of_nat_less_iff [simp]:
- "(of_nat m < (of_nat n::'a::ordered_semidom)) = (m<n)"
-by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
-
-text{*Special cases where either operand is zero*}
-
-lemma of_nat_0_less_iff [simp]: "((0::'a::ordered_semidom) < of_nat n) = (0 < n)"
-by (rule of_nat_less_iff [of 0, simplified])
-
-lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < (0::'a::ordered_semidom)"
-by (rule of_nat_less_iff [of _ 0, simplified])
-
-lemma of_nat_le_iff [simp]:
- "(of_nat m \<le> (of_nat n::'a::ordered_semidom)) = (m \<le> n)"
-by (simp add: linorder_not_less [symmetric])
-
-text{*Special cases where either operand is zero*}
-lemma of_nat_0_le_iff [simp]: "(0::'a::ordered_semidom) \<le> of_nat n"
-by (rule of_nat_le_iff [of 0, simplified])
-lemma of_nat_le_0_iff [simp,noatp]: "(of_nat m \<le> (0::'a::ordered_semidom)) = (m = 0)"
-by (rule of_nat_le_iff [of _ 0, simplified])
-
-text{*Class for unital semirings with characteristic zero.
- Includes non-ordered rings like the complex numbers.*}
-
-class semiring_char_0 = semiring_1 +
- assumes of_nat_eq_iff [simp]:
- "of_nat m = of_nat n \<longleftrightarrow> m = n"
-
-text{*Every @{text ordered_semidom} has characteristic zero.*}
-instance ordered_semidom < semiring_char_0
-by intro_classes (simp add: order_eq_iff)
-
-text{*Special cases where either operand is zero*}
-lemma of_nat_0_eq_iff [simp,noatp]: "((0::'a::semiring_char_0) = of_nat n) = (0 = n)"
-by (rule of_nat_eq_iff [of 0, simplified])
-lemma of_nat_eq_0_iff [simp,noatp]: "(of_nat m = (0::'a::semiring_char_0)) = (m = 0)"
-by (rule of_nat_eq_iff [of _ 0, simplified])
-
-lemma inj_of_nat: "inj (of_nat :: nat \<Rightarrow> 'a::semiring_char_0)"
-by (simp add: inj_on_def)
-
-lemma of_nat_diff:
- "n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring_1)"
-by (simp del: of_nat_add
- add: compare_rls of_nat_add [symmetric] split add: nat_diff_split)
-
-lemma abs_of_nat [simp]: "\<bar>of_nat n::'a::ordered_idom\<bar> = of_nat n"
-by (rule of_nat_0_le_iff [THEN abs_of_nonneg])
-
-
-subsection {*The Set of Natural Numbers*}
-
-definition
- Nats :: "'a::semiring_1 set"
-where
- "Nats = range of_nat"
-
notation (xsymbols)
Nats ("\<nat>")
-lemma of_nat_in_Nats [simp]: "of_nat n \<in> Nats"
-by (simp add: Nats_def)
+context semiring_1
+begin
-lemma Nats_0 [simp]: "0 \<in> Nats"
+lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
+ by (simp add: Nats_def)
+
+lemma Nats_0 [simp]: "0 \<in> \<nat>"
apply (simp add: Nats_def)
apply (rule range_eqI)
apply (rule of_nat_0 [symmetric])
done
-lemma Nats_1 [simp]: "1 \<in> Nats"
+lemma Nats_1 [simp]: "1 \<in> \<nat>"
apply (simp add: Nats_def)
apply (rule range_eqI)
apply (rule of_nat_1 [symmetric])
done
-lemma Nats_add [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> a+b \<in> Nats"
+lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
apply (auto simp add: Nats_def)
apply (rule range_eqI)
apply (rule of_nat_add [symmetric])
done
-lemma Nats_mult [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> a*b \<in> Nats"
+lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
apply (auto simp add: Nats_def)
apply (rule range_eqI)
apply (rule of_nat_mult [symmetric])
done
-lemma of_nat_eq_id [simp]: "of_nat = (id :: nat => nat)"
-by (auto simp add: expand_fun_eq)
+end
text {* the lattice order on @{typ nat} *}
--- a/src/HOL/Orderings.thy Thu Oct 25 16:57:57 2007 +0200
+++ b/src/HOL/Orderings.thy Thu Oct 25 19:27:50 2007 +0200
@@ -685,17 +685,22 @@
subsection {* Transitivity reasoning *}
-lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
-by (rule subst)
+context ord
+begin
-lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
-by (rule ssubst)
+lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c"
+ by (rule subst)
-lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
-by (rule subst)
+lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
+ by (rule ssubst)
-lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
-by (rule ssubst)
+lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c"
+ by (rule subst)
+
+lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c"
+ by (rule ssubst)
+
+end
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
(!!x y. x < y ==> f x < f y) ==> f a < c"
--- a/src/HOL/Ring_and_Field.thy Thu Oct 25 16:57:57 2007 +0200
+++ b/src/HOL/Ring_and_Field.thy Thu Oct 25 19:27:50 2007 +0200
@@ -1908,15 +1908,20 @@
subsection {* Ordered Fields are Dense *}
-lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
+context ordered_semidom
+begin
+
+lemma less_add_one: "a < a + 1"
proof -
- have "a+0 < (a+1::'a::ordered_semidom)"
+ have "a + 0 < a + 1"
by (blast intro: zero_less_one add_strict_left_mono)
thus ?thesis by simp
qed
-lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
-by (blast intro: order_less_trans zero_less_one less_add_one)
+lemma zero_less_two: "0 < 1 + 1"
+ by (blast intro: less_trans zero_less_one less_add_one)
+
+end
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
by (simp add: field_simps zero_less_two)