--- a/doc-src/ZF/ZF_examples.thy Wed Aug 20 13:05:22 2003 +0200
+++ b/doc-src/ZF/ZF_examples.thy Wed Aug 20 13:34:17 2003 +0200
@@ -33,28 +33,93 @@
apply auto
done
-lemma Br_iff: "Br(a, l, r) = Br(a', l', r') <-> a = a' & l = l' & r = r'"
+lemma Br_iff: "Br(a,l,r) = Br(a',l',r') <-> a=a' & l=l' & r=r'"
-- "Proving a freeness theorem."
by (blast elim!: bt.free_elims)
-inductive_cases BrE: "Br(a, l, r) \<in> bt(A)"
+inductive_cases Br_in_bt: "Br(a,l,r) \<in> bt(A)"
-- "An elimination rule, for type-checking."
text {*
-@{thm[display] BrE[no_vars]}
-\rulename{BrE}
+@{thm[display] Br_in_bt[no_vars]}
*};
+subsection{*Primitive recursion*}
+
+consts n_nodes :: "i => i"
+primrec
+ "n_nodes(Lf) = 0"
+ "n_nodes(Br(a,l,r)) = succ(n_nodes(l) #+ n_nodes(r))"
+
+lemma n_nodes_type [simp]: "t \<in> bt(A) ==> n_nodes(t) \<in> nat"
+ by (induct_tac t, auto)
+
+consts n_nodes_aux :: "i => i"
+primrec
+ "n_nodes_aux(Lf) = (\<lambda>k \<in> nat. k)"
+ "n_nodes_aux(Br(a,l,r)) =
+ (\<lambda>k \<in> nat. n_nodes_aux(r) ` (n_nodes_aux(l) ` succ(k)))"
+
+lemma n_nodes_aux_eq [rule_format]:
+ "t \<in> bt(A) ==> \<forall>k \<in> nat. n_nodes_aux(t)`k = n_nodes(t) #+ k"
+ by (induct_tac t, simp_all)
+
+constdefs n_nodes_tail :: "i => i"
+ "n_nodes_tail(t) == n_nodes_aux(t) ` 0"
+
+lemma "t \<in> bt(A) ==> n_nodes_tail(t) = n_nodes(t)"
+ by (simp add: n_nodes_tail_def n_nodes_aux_eq)
+
+
+subsection {*Inductive definitions*}
+
+consts Fin :: "i=>i"
+inductive
+ domains "Fin(A)" \<subseteq> "Pow(A)"
+ intros
+ emptyI: "0 \<in> Fin(A)"
+ consI: "[| a \<in> A; b \<in> Fin(A) |] ==> cons(a,b) \<in> Fin(A)"
+ type_intros empty_subsetI cons_subsetI PowI
+ type_elims PowD [THEN revcut_rl]
+
+
+consts acc :: "i => i"
+inductive
+ domains "acc(r)" \<subseteq> "field(r)"
+ intros
+ vimage: "[| r-``{a}: Pow(acc(r)); a \<in> field(r) |] ==> a \<in> acc(r)"
+ monos Pow_mono
+
+
+consts
+ llist :: "i=>i";
+
+codatatype
+ "llist(A)" = LNil | LCons ("a \<in> A", "l \<in> llist(A)")
+
+
+(*Coinductive definition of equality*)
+consts
+ lleq :: "i=>i"
+
+(*Previously used <*> in the domain and variant pairs as elements. But
+ standard pairs work just as well. To use variant pairs, must change prefix
+ a q/Q to the Sigma, Pair and converse rules.*)
+coinductive
+ domains "lleq(A)" \<subseteq> "llist(A) * llist(A)"
+ intros
+ LNil: "<LNil, LNil> \<in> lleq(A)"
+ LCons: "[| a \<in> A; <l,l'> \<in> lleq(A) |]
+ ==> <LCons(a,l), LCons(a,l')> \<in> lleq(A)"
+ type_intros llist.intros
+
+
subsection{*Powerset example*}
-lemma Pow_mono: "A<=B ==> Pow(A) <= Pow(B)"
- --{* @{subgoals[display,indent=0,margin=65]} *}
+lemma Pow_mono: "A\<subseteq>B ==> Pow(A) \<subseteq> Pow(B)"
apply (rule subsetI)
- --{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule PowI)
- --{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule PowD)
- --{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule subset_trans, assumption)
done
@@ -76,7 +141,9 @@
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule PowD)+
--{* @{subgoals[display,indent=0,margin=65]} *}
-apply (rule Int_greatest, assumption+)
+apply (rule Int_greatest)
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (assumption+)
done
text{*Trying again from the beginning in order to use @{text blast}*}
@@ -84,20 +151,24 @@
by blast
-lemma "C<=D ==> Union(C) <= Union(D)"
+lemma "C\<subseteq>D ==> Union(C) \<subseteq> Union(D)"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule subsetI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule UnionE)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule UnionI)
-apply (erule subsetD, assumption, assumption)
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply (erule subsetD)
--{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
done
-text{*Trying again from the beginning in order to prove from the definitions*}
+text{*A more abstract version of the same proof*}
-lemma "C<=D ==> Union(C) <= Union(D)"
+lemma "C\<subseteq>D ==> Union(C) \<subseteq> Union(D)"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule Union_least)
--{* @{subgoals[display,indent=0,margin=65]} *}
@@ -107,15 +178,25 @@
done
-lemma "[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> (f Un g)`a = f`a"
+lemma "[| a \<in> A; f \<in> A->B; g \<in> C->D; A \<inter> C = 0 |] ==> (f \<union> g)`a = f`a"
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule apply_equality)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule UnI1)
--{* @{subgoals[display,indent=0,margin=65]} *}
-apply (rule apply_Pair, assumption+)
+apply (rule apply_Pair)
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
-apply (rule fun_disjoint_Un, assumption+)
+apply (rule fun_disjoint_Un)
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
+ --{* @{subgoals[display,indent=0,margin=65]} *}
+apply assumption
done
end