converted rinv to inverse;
authorbauerg
Wed, 06 Dec 2000 12:34:12 +0100
changeset 10606 e3229a37d53f
parent 10605 fe12dc60bc3c
child 10607 352f6f209775
converted rinv to inverse;
src/HOL/Real/HahnBanach/Aux.thy
src/HOL/Real/HahnBanach/FunctionNorm.thy
src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
src/HOL/Real/HahnBanach/Subspace.thy
src/HOL/Real/HahnBanach/VectorSpace.thy
src/HOL/Real/RComplete.ML
src/HOL/Real/RealAbs.ML
src/HOL/Real/RealBin.ML
src/HOL/Real/RealDef.ML
src/HOL/Real/RealDef.thy
src/HOL/Real/RealOrd.ML
src/HOL/Real/RealPow.ML
--- a/src/HOL/Real/HahnBanach/Aux.thy	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/HahnBanach/Aux.thy	Wed Dec 06 12:34:12 2000 +0100
@@ -95,18 +95,18 @@
   thus ?thesis by (simp only: real_mult_commute)
 qed
 
-lemma real_rinv_gt_zero1: "#0 < x ==> #0 < rinv x"
+lemma real_inverse_gt_zero1: "#0 < (x::real) ==> #0 < inverse x"
 proof - 
   assume "#0 < x"
   have "0 < x" by simp
-  hence "0 < rinv x" by (rule real_rinv_gt_zero)
+  hence "0 < inverse x" by (rule real_inverse_gt_zero)
   thus ?thesis by simp
 qed
 
-lemma real_mult_inv_right1: "x \<noteq> #0 ==> x * rinv(x) = #1"
+lemma real_mult_inv_right1: "(x::real) \<noteq> #0 ==> x * inverse x = #1"
   by simp
 
-lemma real_mult_inv_left1: "x \<noteq> #0 ==> rinv(x) * x = #1"
+lemma real_mult_inv_left1: "(x::real) \<noteq> #0 ==> inverse x * x = #1"
   by simp
 
 lemma real_le_mult_order1a: 
--- a/src/HOL/Real/HahnBanach/FunctionNorm.thy	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy	Wed Dec 06 12:34:12 2000 +0100
@@ -66,7 +66,7 @@
 constdefs
   B :: "[ 'a set, 'a => real, 'a::{plus, minus, zero} => real ] => real set"
   "B V norm f == 
-  {#0} \<union> {|f x| * rinv (norm x) | x. x \<noteq> 0 \<and> x \<in> V}"
+  {#0} \<union> {|f x| * inverse (norm x) | x. x \<noteq> 0 \<and> x \<in> V}"
 
 text{* $n$ is the function norm of $f$, iff 
 $n$ is the supremum of $B$. 
@@ -146,12 +146,12 @@
 	fix x y
         assume "x \<in> V" "x \<noteq> 0" (***
 
-         have ge: "#0 <= rinv (norm x)";
-          by (rule real_less_imp_le, rule real_rinv_gt_zero, 
+         have ge: "#0 <= inverse (norm x)";
+          by (rule real_less_imp_le, rule real_inverse_gt_zero, 
                 rule normed_vs_norm_gt_zero); ( ***
           proof (rule real_less_imp_le);
-            show "#0 < rinv (norm x)";
-            proof (rule real_rinv_gt_zero);
+            show "#0 < inverse (norm x)";
+            proof (rule real_inverse_gt_zero);
               show "#0 < norm x"; ..;
             qed;
           qed; *** )
@@ -168,17 +168,17 @@
         txt {* The thesis follows by a short calculation using the 
         fact that $f$ is bounded. *}
     
-        assume "y = |f x| * rinv (norm x)"
-        also have "... <= c * norm x * rinv (norm x)"
+        assume "y = |f x| * inverse (norm x)"
+        also have "... <= c * norm x * inverse (norm x)"
         proof (rule real_mult_le_le_mono2)
-          show "#0 <= rinv (norm x)"
-            by (rule real_less_imp_le, rule real_rinv_gt_zero1, 
+          show "#0 <= inverse (norm x)"
+            by (rule real_less_imp_le, rule real_inverse_gt_zero1, 
                 rule normed_vs_norm_gt_zero)
           from a show "|f x| <= c * norm x" ..
         qed
-        also have "... = c * (norm x * rinv (norm x))" 
+        also have "... = c * (norm x * inverse (norm x))" 
           by (rule real_mult_assoc)
-        also have "(norm x * rinv (norm x)) = (#1::real)" 
+        also have "(norm x * inverse (norm x)) = (#1::real)" 
         proof (rule real_mult_inv_right1)
           show nz: "norm x \<noteq> #0" 
             by (rule not_sym, rule lt_imp_not_eq, 
@@ -211,14 +211,14 @@
            elim UnE singletonE CollectE exE conjE) 
       fix x r
       assume "x \<in> V" "x \<noteq> 0" 
-        and r: "r = |f x| * rinv (norm x)"
+        and r: "r = |f x| * inverse (norm x)"
 
       have ge: "#0 <= |f x|" by (simp! only: abs_ge_zero)
-      have "#0 <= rinv (norm x)" 
-        by (rule real_less_imp_le, rule real_rinv_gt_zero1, rule)(***
+      have "#0 <= inverse (norm x)" 
+        by (rule real_less_imp_le, rule real_inverse_gt_zero1, rule)(***
         proof (rule real_less_imp_le);
-          show "#0 < rinv (norm x)"; 
-          proof (rule real_rinv_gt_zero);
+          show "#0 < inverse (norm x)"; 
+          proof (rule real_inverse_gt_zero);
             show "#0 < norm x"; ..;
           qed;
         qed; ***)
@@ -282,12 +282,12 @@
     txt {* For the case $x\neq \zero$ we derive the following
     fact from the definition of the function norm:*}
 
-    have l: "|f x| * rinv (norm x) <= \<parallel>f\<parallel>V,norm"
+    have l: "|f x| * inverse (norm x) <= \<parallel>f\<parallel>V,norm"
     proof (unfold function_norm_def, rule sup_ub)
       from ex_fnorm [OF _ c]
       show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))"
          by (simp! add: is_function_norm_def function_norm_def)
-      show "|f x| * rinv (norm x) \<in> B V norm f" 
+      show "|f x| * inverse (norm x) \<in> B V norm f" 
         by (unfold B_def, intro UnI2 CollectI exI [of _ x]
             conjI, simp)
     qed
@@ -295,9 +295,9 @@
     txt {* The thesis now follows by a short calculation: *}
 
     have "|f x| = |f x| * #1" by (simp!)
-    also from nz have "#1 = rinv (norm x) * norm x" 
+    also from nz have "#1 = inverse (norm x) * norm x" 
       by (simp add: real_mult_inv_left1)
-    also have "|f x| * ... = |f x| * rinv (norm x) * norm x"
+    also have "|f x| * ... = |f x| * inverse (norm x) * norm x"
       by (simp! add: real_mult_assoc)
     also from n l have "... <= \<parallel>f\<parallel>V,norm * norm x"
       by (simp add: real_mult_le_le_mono2)
@@ -365,13 +365,13 @@
             by (simp! add: order_less_imp_not_eq)
         qed
             
-	from lz have "#0 < rinv (norm x)"
-	  by (simp! add: real_rinv_gt_zero1)
-	hence rinv_gez: "#0 <= rinv (norm x)"
+	from lz have "#0 < inverse (norm x)"
+	  by (simp! add: real_inverse_gt_zero1)
+	hence inverse_gez: "#0 <= inverse (norm x)"
           by (rule real_less_imp_le)
 
-	assume "y = |f x| * rinv (norm x)" 
-	also from rinv_gez have "... <= c * norm x * rinv (norm x)"
+	assume "y = |f x| * inverse (norm x)" 
+	also from inverse_gez have "... <= c * norm x * inverse (norm x)"
 	  proof (rule real_mult_le_le_mono2)
 	    show "|f x| <= c * norm x" by (rule bspec)
 	  qed
--- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Wed Dec 06 12:34:12 2000 +0100
@@ -284,22 +284,22 @@
     next
       assume lz: "a < #0" hence nz: "a \<noteq> #0" by simp
       from a1 
-      have "- p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y) <= xi"
+      have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) <= xi"
         by (rule bspec) (simp!)
 
       txt {* The thesis for this case now follows by a short  
       calculation. *}      
-      hence "a * xi <= a * (- p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y))"
+      hence "a * xi <= a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
         by (rule real_mult_less_le_anti [OF lz])
       also 
-      have "... = - a * (p (rinv a \<cdot> y + x0)) - a * (h (rinv a \<cdot> y))"
+      have "... = - a * (p (inverse a \<cdot> y + x0)) - a * (h (inverse a \<cdot> y))"
         by (rule real_mult_diff_distrib)
       also from lz vs y 
-      have "- a * (p (rinv a \<cdot> y + x0)) = p (a \<cdot> (rinv a \<cdot> y + x0))"
+      have "- a * (p (inverse a \<cdot> y + x0)) = p (a \<cdot> (inverse a \<cdot> y + x0))"
         by (simp add: seminorm_abs_homogenous abs_minus_eqI2)
       also from nz vs y have "... = p (y + a \<cdot> x0)"
         by (simp add: vs_add_mult_distrib1)
-      also from nz vs y have "a * (h (rinv a \<cdot> y)) =  h y"
+      also from nz vs y have "a * (h (inverse a \<cdot> y)) =  h y"
         by (simp add: linearform_mult [symmetric])
       finally have "a * xi <= p (y + a \<cdot> x0) - h y" .
 
@@ -312,23 +312,23 @@
 
     next 
       assume gz: "#0 < a" hence nz: "a \<noteq> #0" by simp
-      from a2 have "xi <= p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y)"
+      from a2 have "xi <= p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)"
         by (rule bspec) (simp!)
 
       txt {* The thesis for this case follows by a short
       calculation: *}
 
       with gz 
-      have "a * xi <= a * (p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y))"
+      have "a * xi <= a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
         by (rule real_mult_less_le_mono)
-      also have "... = a * p (rinv a \<cdot> y + x0) - a * h (rinv a \<cdot> y)"
+      also have "... = a * p (inverse a \<cdot> y + x0) - a * h (inverse a \<cdot> y)"
         by (rule real_mult_diff_distrib2) 
       also from gz vs y 
-      have "a * p (rinv a \<cdot> y + x0) = p (a \<cdot> (rinv a \<cdot> y + x0))"
+      have "a * p (inverse a \<cdot> y + x0) = p (a \<cdot> (inverse a \<cdot> y + x0))"
         by (simp add: seminorm_abs_homogenous abs_eqI2)
       also from nz vs y have "... = p (y + a \<cdot> x0)"
         by (simp add: vs_add_mult_distrib1)
-      also from nz vs y have "a * h (rinv a \<cdot> y) = h y"
+      also from nz vs y have "a * h (inverse a \<cdot> y) = h y"
         by (simp add: linearform_mult [symmetric]) 
       finally have "a * xi <= p (y + a \<cdot> x0) - h y" .
  
--- a/src/HOL/Real/HahnBanach/Subspace.thy	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/HahnBanach/Subspace.thy	Wed Dec 06 12:34:12 2000 +0100
@@ -382,9 +382,9 @@
             assume "a = (#0::real)" show ?thesis by (simp!)
           next
             assume "a \<noteq> (#0::real)" 
-            from h have "rinv a \<cdot> a \<cdot> x' \<in> H" 
+            from h have "inverse a \<cdot> a \<cdot> x' \<in> H" 
               by (rule subspace_mult_closed) (simp!)
-            also have "rinv a \<cdot> a \<cdot> x' = x'" by (simp!)
+            also have "inverse a \<cdot> a \<cdot> x' = x'" by (simp!)
             finally have "x' \<in> H" .
             thus ?thesis by contradiction
           qed
--- a/src/HOL/Real/HahnBanach/VectorSpace.thy	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/HahnBanach/VectorSpace.thy	Wed Dec 06 12:34:12 2000 +0100
@@ -348,9 +348,9 @@
 proof (rule classical)
   assume "is_vectorspace V" "x \<in> V" "a \<cdot> x = 0" "x \<noteq> 0"
   assume "a \<noteq> #0"
-  have "x = (rinv a * a) \<cdot> x" by (simp!)
-  also have "... = rinv a \<cdot> (a \<cdot> x)" by (rule vs_mult_assoc)
-  also have "... = rinv a \<cdot> 0" by (simp!)
+  have "x = (inverse a * a) \<cdot> x" by (simp!)
+  also have "... = inverse a \<cdot> (a \<cdot> x)" by (rule vs_mult_assoc)
+  also have "... = inverse a \<cdot> 0" by (simp!)
   also have "... = 0" by (simp!)
   finally have "x = 0" .
   thus "a = #0" by contradiction 
@@ -363,11 +363,11 @@
 proof
   assume "is_vectorspace V" "x \<in> V" "y \<in> V" "a \<noteq> #0"
   have "x = #1 \<cdot> x" by (simp!)
-  also have "... = (rinv a * a) \<cdot> x" by (simp!)
-  also have "... = rinv a \<cdot> (a \<cdot> x)" 
+  also have "... = (inverse a * a) \<cdot> x" by (simp!)
+  also have "... = inverse a \<cdot> (a \<cdot> x)" 
     by (simp! only: vs_mult_assoc)
   also assume ?L
-  also have "rinv a \<cdot> ... = y" by (simp!)
+  also have "inverse a \<cdot> ... = y" by (simp!)
   finally show ?R .
 qed simp
 
--- a/src/HOL/Real/RComplete.ML	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RComplete.ML	Wed Dec 06 12:34:12 2000 +0100
@@ -202,8 +202,8 @@
         Related: Archimedean property of reals
  ----------------------------------------------------------------*)
 
-Goal "#0 < x ==> EX n. rinv(real_of_posnat n) < x";
-by (stac real_of_posnat_rinv_Ex_iff 1);
+Goal "#0 < x ==> EX n. inverse (real_of_posnat n) < x";
+by (stac real_of_posnat_inverse_Ex_iff 1);
 by (EVERY1[rtac ccontr, Asm_full_simp_tac]);
 by (fold_tac [real_le_def]);
 by (subgoal_tac "isUb (UNIV::real set) \
@@ -233,9 +233,9 @@
 by (res_inst_tac [("x","0")] exI 2);
 by (auto_tac (claset() addEs [real_less_trans],
 	      simpset() addsimps [real_of_posnat_one,real_zero_less_one]));
-by (ftac ((rename_numerals real_rinv_gt_zero) RS reals_Archimedean) 1);
+by (ftac ((rename_numerals real_inverse_gt_zero) RS reals_Archimedean) 1);
 by (Step_tac 1 THEN res_inst_tac [("x","n")] exI 1);
-by (forw_inst_tac [("y","rinv x")]
+by (forw_inst_tac [("y","inverse x")]
     (rename_numerals real_mult_less_mono1) 1);
 by (auto_tac (claset(),simpset() addsimps [real_not_refl2 RS not_sym]));
 by (dres_inst_tac [("n1","n"),("y","#1")] 
--- a/src/HOL/Real/RealAbs.ML	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RealAbs.ML	Wed Dec 06 12:34:12 2000 +0100
@@ -90,17 +90,17 @@
 	      simpset() addsimps [real_0_le_mult_iff]));
 qed "abs_mult";
 
-Goalw [abs_real_def] "x~= (#0::real) ==> abs(rinv(x)) = rinv(abs(x))";
+Goalw [abs_real_def] "x~= (#0::real) ==> abs(inverse(x)) = inverse(abs(x))";
 by (auto_tac (claset(), 
               simpset() addsimps [real_le_less] @ 
-	    (map rename_numerals [real_minus_rinv, real_rinv_gt_zero])));
-by (etac (rename_numerals (real_rinv_less_zero RSN (2,real_less_asym))) 1);
+	    (map rename_numerals [real_minus_inverse, real_inverse_gt_zero])));
+by (etac (rename_numerals (real_inverse_less_zero RSN (2,real_less_asym))) 1);
 by (arith_tac 1);
-qed "abs_rinv";
+qed "abs_inverse";
 
-Goal "y ~= #0 ==> abs(x*rinv(y)) = abs(x)*rinv(abs(y))";
-by (asm_simp_tac (simpset() addsimps [abs_mult, abs_rinv]) 1);
-qed "abs_mult_rinv";
+Goal "y ~= #0 ==> abs (x * inverse y) = (abs x) * inverse (abs (y::real))";
+by (asm_simp_tac (simpset() addsimps [abs_mult, abs_inverse]) 1);
+qed "abs_mult_inverse";
 
 Goalw [abs_real_def] "abs(x+y) <= abs x + abs (y::real)";
 by (Simp_tac 1);
--- a/src/HOL/Real/RealBin.ML	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RealBin.ML	Wed Dec 06 12:34:12 2000 +0100
@@ -134,7 +134,7 @@
 	   real_add_zero_left, real_add_zero_right, 
 	   real_diff_0, real_diff_0_right,
 	   real_mult_0_right, real_mult_0, real_mult_1_right, real_mult_1,
-	   real_mult_minus_1_right, real_mult_minus_1, real_rinv_1,
+	   real_mult_minus_1_right, real_mult_minus_1, real_inverse_1,
 	   real_minus_zero_less_iff]);
 
 AddIffs (map rename_numerals [real_mult_is_0, real_0_is_mult]);
--- a/src/HOL/Real/RealDef.ML	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RealDef.ML	Wed Dec 06 12:34:12 2000 +0100
@@ -493,27 +493,27 @@
 				      real_mult_inv_right_ex]) 1);
 qed "real_mult_inv_left_ex";
 
-Goalw [rinv_def] "x ~= 0 ==> rinv(x)*x = 1r";
+Goalw [real_inverse_def] "x ~= 0 ==> inverse(x)*x = 1r";
 by (ftac real_mult_inv_left_ex 1);
 by (Step_tac 1);
 by (rtac someI2 1);
 by Auto_tac;
 qed "real_mult_inv_left";
 
-Goal "x ~= 0 ==> x*rinv(x) = 1r";
+Goal "x ~= 0 ==> x*inverse(x) = 1r";
 by (auto_tac (claset() addIs [real_mult_commute RS subst],
               simpset() addsimps [real_mult_inv_left]));
 qed "real_mult_inv_right";
 
 Goal "(c::real) ~= 0 ==> (c*a=c*b) = (a=b)";
 by Auto_tac;
-by (dres_inst_tac [("f","%x. x*rinv c")] arg_cong 1);
+by (dres_inst_tac [("f","%x. x*inverse c")] arg_cong 1);
 by (asm_full_simp_tac (simpset() addsimps [real_mult_inv_right] @ real_mult_ac)  1);
 qed "real_mult_left_cancel";
     
 Goal "(c::real) ~= 0 ==> (a*c=b*c) = (a=b)";
 by (Step_tac 1);
-by (dres_inst_tac [("f","%x. x*rinv c")] arg_cong 1);
+by (dres_inst_tac [("f","%x. x*inverse c")] arg_cong 1);
 by (asm_full_simp_tac
     (simpset() addsimps [real_mult_inv_right] @ real_mult_ac)  1);
 qed "real_mult_right_cancel";
@@ -526,53 +526,53 @@
 by Auto_tac;
 qed "real_mult_right_cancel_ccontr";
 
-Goalw [rinv_def] "x ~= 0 ==> rinv(x) ~= 0";
+Goalw [real_inverse_def] "x ~= 0 ==> inverse(x::real) ~= 0";
 by (ftac real_mult_inv_left_ex 1);
 by (etac exE 1);
 by (rtac someI2 1);
 by (auto_tac (claset(),
 	      simpset() addsimps [real_mult_0,
     real_zero_not_eq_one]));
-qed "rinv_not_zero";
+qed "real_inverse_not_zero";
 
 Addsimps [real_mult_inv_left,real_mult_inv_right];
 
 Goal "[| x ~= 0; y ~= 0 |] ==> x * y ~= (0::real)";
 by (Step_tac 1);
-by (dres_inst_tac [("f","%z. rinv x*z")] arg_cong 1);
+by (dres_inst_tac [("f","%z. inverse x*z")] arg_cong 1);
 by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc RS sym]) 1);
 qed "real_mult_not_zero";
 
 bind_thm ("real_mult_not_zeroE",real_mult_not_zero RS notE);
 
-Goal "x ~= 0 ==> rinv(rinv x) = x";
-by (res_inst_tac [("c1","rinv x")] (real_mult_right_cancel RS iffD1) 1);
-by (etac rinv_not_zero 1);
-by (auto_tac (claset() addDs [rinv_not_zero],simpset()));
-qed "real_rinv_rinv";
+Goal "x ~= 0 ==> inverse(inverse (x::real)) = x";
+by (res_inst_tac [("c1","inverse x")] (real_mult_right_cancel RS iffD1) 1);
+by (etac real_inverse_not_zero 1);
+by (auto_tac (claset() addDs [real_inverse_not_zero],simpset()));
+qed "real_inverse_inverse";
 
-Goalw [rinv_def] "rinv(1r) = 1r";
+Goalw [real_inverse_def] "inverse(1r) = 1r";
 by (cut_facts_tac [real_zero_not_eq_one RS 
                    not_sym RS real_mult_inv_left_ex] 1);
 by (auto_tac (claset(),
 	      simpset() addsimps [real_zero_not_eq_one RS not_sym]));
-qed "real_rinv_1";
-Addsimps [real_rinv_1];
+qed "real_inverse_1";
+Addsimps [real_inverse_1];
 
-Goal "x ~= 0 ==> rinv(-x) = -rinv(x)";
+Goal "x ~= 0 ==> inverse(-x) = -inverse(x::real)";
 by (res_inst_tac [("c1","-x")] (real_mult_right_cancel RS iffD1) 1);
 by (stac real_mult_inv_left 2);
 by Auto_tac;
-qed "real_minus_rinv";
+qed "real_minus_inverse";
 
-Goal "[| x ~= 0; y ~= 0 |] ==> rinv(x*y) = rinv(x)*rinv(y)";
+Goal "[| x ~= 0; y ~= 0 |] ==> inverse(x*y) = inverse(x)*inverse(y::real)";
 by (forw_inst_tac [("y","y")] real_mult_not_zero 1 THEN assume_tac 1);
 by (res_inst_tac [("c1","x")] (real_mult_left_cancel RS iffD1) 1);
 by (auto_tac (claset(),simpset() addsimps [real_mult_assoc RS sym]));
 by (res_inst_tac [("c1","y")] (real_mult_left_cancel RS iffD1) 1);
 by (auto_tac (claset(),simpset() addsimps [real_mult_left_commute]));
 by (asm_simp_tac (simpset() addsimps [real_mult_assoc RS sym]) 1);
-qed "real_rinv_distrib";
+qed "real_inverse_distrib";
 
 (*---------------------------------------------------------
      Theorems for ordering
--- a/src/HOL/Real/RealDef.thy	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RealDef.thy	Wed Dec 06 12:34:12 2000 +0100
@@ -15,7 +15,7 @@
 
 
 instance
-   real  :: {ord, zero, plus, times, minus}
+   real  :: {ord, zero, plus, times, minus, inverse}
 
 consts 
 
@@ -24,17 +24,24 @@
 defs
 
   real_zero_def  
-     "0 == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p),
+  "0 == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p),
                                 preal_of_prat(prat_of_pnat 1p))})"
   real_one_def   
-     "1r == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p) + 
+  "1r == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p) + 
             preal_of_prat(prat_of_pnat 1p),preal_of_prat(prat_of_pnat 1p))})"
 
   real_minus_def
-    "- R ==  Abs_real(UN (x,y):Rep_real(R). realrel^^{(y,x)})"
+  "- R ==  Abs_real(UN (x,y):Rep_real(R). realrel^^{(y,x)})"
+
+  real_diff_def
+  "R - (S::real) == R + - S"
 
-  real_diff_def "x - y == x + (- y :: real)"
+  real_inverse_def
+  "inverse (R::real) == (@S. R ~= 0 & S*R = 1r)"
 
+  real_divide_def
+  "R / (S::real) == R * inverse S"
+  
 constdefs
 
   real_of_preal :: preal => real            
@@ -42,9 +49,6 @@
            Abs_real(realrel^^{(m+preal_of_prat(prat_of_pnat 1p),
                                preal_of_prat(prat_of_pnat 1p))})"
 
-  rinv       :: real => real
-  "rinv(R)   == (@S. R ~= 0 & S*R = 1r)"
-
   real_of_posnat :: nat => real             
   "real_of_posnat n == real_of_preal(preal_of_prat(prat_of_pnat(pnat_of_nat n)))"
 
--- a/src/HOL/Real/RealOrd.ML	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RealOrd.ML	Wed Dec 06 12:34:12 2000 +0100
@@ -53,7 +53,7 @@
   val minus_add_distrib	= real_minus_add_distrib
   val minus_minus	= real_minus_minus
   val minus_0		= real_minus_zero
-  val add_inverses	= [real_add_minus, real_add_minus_left];
+  val add_inverses	= [real_add_minus, real_add_minus_left]
   val cancel_simps	= [real_add_minus_cancel, real_minus_add_cancel]
 end;
 
@@ -388,45 +388,45 @@
 qed "real_of_posnat_less_one";
 Addsimps [real_of_posnat_less_one];
 
-Goal "rinv(real_of_posnat n) ~= 0";
+Goal "inverse (real_of_posnat n) ~= 0";
 by (rtac ((real_of_posnat_gt_zero RS 
-    real_not_refl2 RS not_sym) RS rinv_not_zero) 1);
-qed "real_of_posnat_rinv_not_zero";
-Addsimps [real_of_posnat_rinv_not_zero];
+    real_not_refl2 RS not_sym) RS real_inverse_not_zero) 1);
+qed "real_of_posnat_inverse_not_zero";
+Addsimps [real_of_posnat_inverse_not_zero];
 
-Goal "rinv(real_of_posnat x) = rinv(real_of_posnat y) ==> x = y";
+Goal "inverse (real_of_posnat x) = inverse (real_of_posnat y) ==> x = y";
 by (rtac (inj_real_of_posnat RS injD) 1);
 by (res_inst_tac [("n2","x")] 
-    (real_of_posnat_rinv_not_zero RS real_mult_left_cancel RS iffD1) 1);
+    (real_of_posnat_inverse_not_zero RS real_mult_left_cancel RS iffD1) 1);
 by (full_simp_tac (simpset() addsimps [(real_of_posnat_gt_zero RS 
     real_not_refl2 RS not_sym) RS real_mult_inv_left]) 1);
 by (asm_full_simp_tac (simpset() addsimps [(real_of_posnat_gt_zero RS 
     real_not_refl2 RS not_sym)]) 1);
-qed "real_of_posnat_rinv_inj";
+qed "real_of_posnat_inverse_inj";
 
-Goal "0 < x ==> 0 < rinv x";
+Goal "0 < x ==> 0 < inverse (x::real)";
 by (EVERY1[rtac ccontr, dtac real_leI]);
 by (forward_tac [real_minus_zero_less_iff2 RS iffD2] 1);
 by (forward_tac [real_not_refl2 RS not_sym] 1);
-by (dtac (real_not_refl2 RS not_sym RS rinv_not_zero) 1);
+by (dtac (real_not_refl2 RS not_sym RS real_inverse_not_zero) 1);
 by (EVERY1[dtac real_le_imp_less_or_eq, Step_tac]); 
 by (dtac real_mult_less_zero1 1 THEN assume_tac 1);
 by (auto_tac (claset() addIs [real_zero_less_one RS real_less_asym],
 	      simpset()));
-qed "real_rinv_gt_zero";
+qed "real_inverse_gt_zero";
 
-Goal "x < 0 ==> rinv x < 0";
+Goal "x < 0 ==> inverse (x::real) < 0";
 by (ftac real_not_refl2 1);
 by (dtac (real_minus_zero_less_iff RS iffD2) 1);
 by (rtac (real_minus_zero_less_iff RS iffD1) 1);
-by (dtac (real_minus_rinv RS sym) 1);
-by (auto_tac (claset() addIs [real_rinv_gt_zero], simpset()));
-qed "real_rinv_less_zero";
+by (dtac (real_minus_inverse RS sym) 1);
+by (auto_tac (claset() addIs [real_inverse_gt_zero], simpset()));
+qed "real_inverse_less_zero";
 
-Goal "0 < rinv(real_of_posnat n)";
-by (rtac (real_of_posnat_gt_zero RS real_rinv_gt_zero) 1);
-qed "real_of_posnat_rinv_gt_zero";
-Addsimps [real_of_posnat_rinv_gt_zero];
+Goal "0 < inverse (real_of_posnat n)";
+by (rtac (real_of_posnat_gt_zero RS real_inverse_gt_zero) 1);
+qed "real_of_posnat_inverse_gt_zero";
+Addsimps [real_of_posnat_inverse_gt_zero];
 
 Goal "real_of_preal (preal_of_prat (prat_of_pnat (pnat_of_nat N))) = \
 \     real_of_nat (Suc N)";
@@ -459,7 +459,7 @@
 
 Addsimps [real_two_not_zero];
 
-Goal "x*rinv(1r + 1r) + x*rinv(1r + 1r) = x";
+Goal "x * inverse (1r + 1r) + x * inverse(1r + 1r) = x";
 by (stac real_add_self 1);
 by (full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
 qed "real_sum_of_halves";
@@ -473,12 +473,12 @@
 					   real_mult_commute ]) 1);
 qed "real_mult_less_mono1";
 
-Goal "[| (0::real) < z; x < y |] ==> z*x < z*y";       
+Goal "[| (0::real) < z; x < y |] ==> z * x < z * y";       
 by (asm_simp_tac (simpset() addsimps [real_mult_commute,real_mult_less_mono1]) 1);
 qed "real_mult_less_mono2";
 
-Goal "[| (0::real) < z; x*z < y*z |] ==> x < y";
-by (forw_inst_tac [("x","x*z")] (real_rinv_gt_zero 
+Goal "[| (0::real) < z; x * z < y * z |] ==> x < y";
+by (forw_inst_tac [("x","x*z")] (real_inverse_gt_zero 
                        RS real_mult_less_mono1) 1);
 by (auto_tac (claset(),
 	      simpset() addsimps 
@@ -614,18 +614,18 @@
 	      simpset() addsimps [real_le_refl]));
 qed "real_mult_self_le2";
 
-Goal "x < y ==> x < (x + y)*rinv(1r + 1r)";
+Goal "x < y ==> x < (x + y) * inverse (1r + 1r)";
 by (dres_inst_tac [("C","x")] real_add_less_mono2 1);
 by (dtac (real_add_self RS subst) 1);
-by (dtac (real_zero_less_two RS real_rinv_gt_zero RS 
+by (dtac (real_zero_less_two RS real_inverse_gt_zero RS 
           real_mult_less_mono1) 1);
 by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
 qed "real_less_half_sum";
 
-Goal "x < y ==> (x + y)*rinv(1r + 1r) < y";
+Goal "x < y ==> (x + y) * inverse (1r + 1r) < y";
 by (dtac real_add_less_mono1 1);
 by (dtac (real_add_self RS subst) 1);
-by (dtac (real_zero_less_two RS real_rinv_gt_zero RS 
+by (dtac (real_zero_less_two RS real_inverse_gt_zero RS 
           real_mult_less_mono1) 1);
 by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc]) 1);
 qed "real_gt_half_sum";
@@ -634,36 +634,36 @@
 by (blast_tac (claset() addSIs [real_less_half_sum, real_gt_half_sum]) 1);
 qed "real_dense";
 
-Goal "(EX n. rinv(real_of_posnat n) < r) = (EX n. 1r < r * real_of_posnat n)";
+Goal "(EX n. inverse (real_of_posnat n) < r) = (EX n. 1r < r * real_of_posnat n)";
 by (Step_tac 1);
 by (dres_inst_tac [("n1","n")] (real_of_posnat_gt_zero 
 				RS real_mult_less_mono1) 1);
 by (dres_inst_tac [("n2","n")] (real_of_posnat_gt_zero RS 
-				real_rinv_gt_zero RS real_mult_less_mono1) 2);
+				real_inverse_gt_zero RS real_mult_less_mono1) 2);
 by (auto_tac (claset(),
 	      simpset() addsimps [(real_of_posnat_gt_zero RS 
 				   real_not_refl2 RS not_sym),
 				  real_mult_assoc]));
-qed "real_of_posnat_rinv_Ex_iff";
+qed "real_of_posnat_inverse_Ex_iff";
 
-Goal "(rinv(real_of_posnat n) < r) = (1r < r * real_of_posnat n)";
+Goal "(inverse(real_of_posnat n) < r) = (1r < r * real_of_posnat n)";
 by (Step_tac 1);
 by (dres_inst_tac [("n1","n")] (real_of_posnat_gt_zero 
                        RS real_mult_less_mono1) 1);
 by (dres_inst_tac [("n2","n")] (real_of_posnat_gt_zero RS 
-				real_rinv_gt_zero RS real_mult_less_mono1) 2);
+				real_inverse_gt_zero RS real_mult_less_mono1) 2);
 by (auto_tac (claset(), simpset() addsimps [real_mult_assoc]));
-qed "real_of_posnat_rinv_iff";
+qed "real_of_posnat_inverse_iff";
 
-Goal "(rinv(real_of_posnat n) <= r) = (1r <= r * real_of_posnat n)";
+Goal "(inverse (real_of_posnat n) <= r) = (1r <= r * real_of_posnat n)";
 by (Step_tac 1);
 by (dres_inst_tac [("n2","n")] (real_of_posnat_gt_zero RS 
     real_less_imp_le RS real_mult_le_le_mono1) 1);
 by (dres_inst_tac [("n3","n")] (real_of_posnat_gt_zero RS 
-        real_rinv_gt_zero RS real_less_imp_le RS 
+        real_inverse_gt_zero RS real_less_imp_le RS 
         real_mult_le_le_mono1) 2);
 by (auto_tac (claset(), simpset() addsimps real_mult_ac));
-qed "real_of_posnat_rinv_le_iff";
+qed "real_of_posnat_inverse_le_iff";
 
 Goalw [real_of_posnat_def] "(real_of_posnat n < real_of_posnat m) = (n < m)";
 by Auto_tac;
@@ -671,11 +671,11 @@
 
 Addsimps [real_of_posnat_less_iff];
 
-Goal "0 < u  ==> (u < rinv (real_of_posnat n)) = (real_of_posnat n < rinv(u))";
+Goal "0 < u  ==> (u < inverse (real_of_posnat n)) = (real_of_posnat n < inverse u)";
 by (Step_tac 1);
 by (res_inst_tac [("n2","n")] (real_of_posnat_gt_zero RS 
-    real_rinv_gt_zero RS real_mult_less_cancel1) 1);
-by (res_inst_tac [("x1","u")] ( real_rinv_gt_zero
+    real_inverse_gt_zero RS real_mult_less_cancel1) 1);
+by (res_inst_tac [("x1","u")] ( real_inverse_gt_zero
    RS real_mult_less_cancel1) 2);
 by (auto_tac (claset(),
 	      simpset() addsimps [real_of_posnat_gt_zero, 
@@ -686,65 +686,65 @@
 by (auto_tac (claset(),
 	      simpset() addsimps [real_of_posnat_gt_zero, 
     real_not_refl2 RS not_sym,real_mult_assoc RS sym]));
-qed "real_of_posnat_less_rinv_iff";
+qed "real_of_posnat_less_inverse_iff";
 
-Goal "0 < u ==> (u = rinv(real_of_posnat n)) = (real_of_posnat n = rinv u)";
+Goal "0 < u ==> (u = inverse (real_of_posnat n)) = (real_of_posnat n = inverse u)";
 by (auto_tac (claset(),
-	      simpset() addsimps [real_rinv_rinv, real_of_posnat_gt_zero, 
+	      simpset() addsimps [real_inverse_inverse, real_of_posnat_gt_zero, 
 				  real_not_refl2 RS not_sym]));
-qed "real_of_posnat_rinv_eq_iff";
+qed "real_of_posnat_inverse_eq_iff";
 
-Goal "[| 0 < r; r < x |] ==> rinv x < rinv r";
+Goal "[| 0 < r; r < x |] ==> inverse x < inverse (r::real)";
 by (ftac real_less_trans 1 THEN assume_tac 1);
-by (ftac real_rinv_gt_zero 1);
-by (forw_inst_tac [("x","x")] real_rinv_gt_zero 1);
-by (forw_inst_tac [("x","r"),("z","rinv r")] real_mult_less_mono1 1);
+by (ftac real_inverse_gt_zero 1);
+by (forw_inst_tac [("x","x")] real_inverse_gt_zero 1);
+by (forw_inst_tac [("x","r"),("z","inverse r")] real_mult_less_mono1 1);
 by (assume_tac 1);
 by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS 
 					   not_sym RS real_mult_inv_right]) 1);
-by (ftac real_rinv_gt_zero 1);
-by (forw_inst_tac [("x","1r"),("z","rinv x")] real_mult_less_mono2 1);
+by (ftac real_inverse_gt_zero 1);
+by (forw_inst_tac [("x","1r"),("z","inverse x")] real_mult_less_mono2 1);
 by (assume_tac 1);
 by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS 
          not_sym RS real_mult_inv_left,real_mult_assoc RS sym]) 1);
-qed "real_rinv_less_swap";
+qed "real_inverse_less_swap";
 
-Goal "[| 0 < r; 0 < x|] ==> (r < x) = (rinv x < rinv r)";
-by (auto_tac (claset() addIs [real_rinv_less_swap],simpset()));
-by (res_inst_tac [("t","r")] (real_rinv_rinv RS subst) 1);
+Goal "[| 0 < r; 0 < x|] ==> (r < x) = (inverse x < inverse (r::real))";
+by (auto_tac (claset() addIs [real_inverse_less_swap],simpset()));
+by (res_inst_tac [("t","r")] (real_inverse_inverse RS subst) 1);
 by (etac (real_not_refl2 RS not_sym) 1);
-by (res_inst_tac [("t","x")] (real_rinv_rinv RS subst) 1);
+by (res_inst_tac [("t","x")] (real_inverse_inverse RS subst) 1);
 by (etac (real_not_refl2 RS not_sym) 1);
-by (auto_tac (claset() addIs [real_rinv_less_swap],
-	      simpset() addsimps [real_rinv_gt_zero]));
-qed "real_rinv_less_iff";
+by (auto_tac (claset() addIs [real_inverse_less_swap],
+	      simpset() addsimps [real_inverse_gt_zero]));
+qed "real_inverse_less_iff";
 
-Goal "r < r + rinv(real_of_posnat n)";
+Goal "r < r + inverse (real_of_posnat n)";
 by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
 by (full_simp_tac (simpset() addsimps [real_add_assoc RS sym]) 1);
-qed "real_add_rinv_real_of_posnat_less";
-Addsimps [real_add_rinv_real_of_posnat_less];
+qed "real_add_inverse_real_of_posnat_less";
+Addsimps [real_add_inverse_real_of_posnat_less];
 
-Goal "r <= r + rinv(real_of_posnat n)";
+Goal "r <= r + inverse (real_of_posnat n)";
 by (rtac real_less_imp_le 1);
 by (Simp_tac 1);
-qed "real_add_rinv_real_of_posnat_le";
-Addsimps [real_add_rinv_real_of_posnat_le];
+qed "real_add_inverse_real_of_posnat_le";
+Addsimps [real_add_inverse_real_of_posnat_le];
 
-Goal "r + (-rinv(real_of_posnat n)) < r";
+Goal "r + (-inverse (real_of_posnat n)) < r";
 by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
 by (full_simp_tac (simpset() addsimps [real_add_assoc RS sym,
 				       real_minus_zero_less_iff2]) 1);
-qed "real_add_minus_rinv_real_of_posnat_less";
-Addsimps [real_add_minus_rinv_real_of_posnat_less];
+qed "real_add_minus_inverse_real_of_posnat_less";
+Addsimps [real_add_minus_inverse_real_of_posnat_less];
 
-Goal "r + (-rinv(real_of_posnat n)) <= r";
+Goal "r + (-inverse (real_of_posnat n)) <= r";
 by (rtac real_less_imp_le 1);
 by (Simp_tac 1);
-qed "real_add_minus_rinv_real_of_posnat_le";
-Addsimps [real_add_minus_rinv_real_of_posnat_le];
+qed "real_add_minus_inverse_real_of_posnat_le";
+Addsimps [real_add_minus_inverse_real_of_posnat_le];
 
-Goal "0 < r ==> r*(1r + (-rinv(real_of_posnat n))) < r";
+Goal "0 < r ==> r*(1r + (-inverse (real_of_posnat n))) < r";
 by (simp_tac (simpset() addsimps [real_add_mult_distrib2]) 1);
 by (res_inst_tac [("C","-r")] real_less_add_left_cancel 1);
 by (auto_tac (claset() addIs [real_mult_order],
@@ -752,14 +752,14 @@
 				  real_minus_zero_less_iff2]));
 qed "real_mult_less_self";
 
-Goal "0 <= 1r + (-rinv(real_of_posnat n))";
-by (res_inst_tac [("C","rinv(real_of_posnat n)")] real_le_add_right_cancel 1);
+Goal "0 <= 1r + (-inverse (real_of_posnat n))";
+by (res_inst_tac [("C","inverse (real_of_posnat n)")] real_le_add_right_cancel 1);
 by (simp_tac (simpset() addsimps [real_add_assoc,
-				  real_of_posnat_rinv_le_iff]) 1);
-qed "real_add_one_minus_rinv_ge_zero";
+				  real_of_posnat_inverse_le_iff]) 1);
+qed "real_add_one_minus_inverse_ge_zero";
 
-Goal "0 < r ==> 0 <= r*(1r + (-rinv(real_of_posnat n)))";
-by (dtac (real_add_one_minus_rinv_ge_zero RS real_mult_le_less_mono1) 1);
+Goal "0 < r ==> 0 <= r*(1r + (-inverse (real_of_posnat n)))";
+by (dtac (real_add_one_minus_inverse_ge_zero RS real_mult_le_less_mono1) 1);
 by Auto_tac;
 qed "real_mult_add_one_minus_ge_zero";
 
@@ -788,22 +788,22 @@
 qed "real_mult_eq_self_zero2";
 Addsimps [real_mult_eq_self_zero2];
 
-Goal "[| 0 <= x*y; 0 < x |] ==> (0::real) <= y";
-by (ftac real_rinv_gt_zero 1);
-by (dres_inst_tac [("x","rinv x")] real_less_le_mult_order 1);
+Goal "[| 0 <= x * y; 0 < x |] ==> (0::real) <= y";
+by (ftac real_inverse_gt_zero 1);
+by (dres_inst_tac [("x","inverse x")] real_less_le_mult_order 1);
 by (dtac (real_not_refl2 RS not_sym RS real_mult_inv_left) 2);
 by (auto_tac (claset(),
 	      simpset() addsimps [real_mult_assoc RS sym]));
 qed "real_mult_ge_zero_cancel";
 
-Goal "[|x ~= 0; y ~= 0 |] ==> rinv(x) + rinv(y) = (x + y)*rinv(x*y)";
+Goal "[|x ~= 0; y ~= 0 |] ==> inverse x + inverse y = (x + y) * inverse (x * (y::real))";
 by (asm_full_simp_tac (simpset() addsimps 
-		       [real_rinv_distrib,real_add_mult_distrib,
+		       [real_inverse_distrib,real_add_mult_distrib,
 			real_mult_assoc RS sym]) 1);
 by (stac real_mult_assoc 1);
 by (rtac (real_mult_left_commute RS subst) 1);
 by (asm_full_simp_tac (simpset() addsimps [real_add_commute]) 1);
-qed "real_rinv_add";
+qed "real_inverse_add";
 
 (* 05/00 *)
 Goal "(0 <= -R) = (R <= (0::real))";
--- a/src/HOL/Real/RealPow.ML	Wed Dec 06 12:28:52 2000 +0100
+++ b/src/HOL/Real/RealPow.ML	Wed Dec 06 12:34:12 2000 +0100
@@ -20,13 +20,13 @@
 by (auto_tac (claset() addDs [realpow_not_zero], simpset()));
 qed "realpow_zero_zero";
 
-Goal "r ~= #0 --> rinv(r ^ n) = (rinv r) ^ n";
+Goal "(r::real) ~= #0 --> inverse (r ^ n) = (inverse r) ^ n";
 by (induct_tac "n" 1);
 by (Auto_tac);
 by (forw_inst_tac [("n","n")] realpow_not_zero 1);
-by (auto_tac (claset() addDs [rename_numerals real_rinv_distrib],
+by (auto_tac (claset() addDs [rename_numerals real_inverse_distrib],
 	      simpset()));
-qed_spec_mp "realpow_rinv";
+qed_spec_mp "realpow_inverse";
 
 Goal "abs (r::real) ^ n = abs (r ^ n)";
 by (induct_tac "n" 1);
@@ -360,11 +360,11 @@
 qed_spec_mp "realpow_minus_mult";
 Addsimps [realpow_minus_mult];
 
-Goal "r ~= #0 ==> r * rinv(r) ^ 2 = rinv r";
+Goal "r ~= #0 ==> r * inverse r ^ 2 = inverse (r::real)";
 by (asm_simp_tac (simpset() addsimps [realpow_two,
                   real_mult_assoc RS sym]) 1);
-qed "realpow_two_mult_rinv";
-Addsimps [realpow_two_mult_rinv];
+qed "realpow_two_mult_inverse";
+Addsimps [realpow_two_mult_inverse];
 
 (* 05/00 *)
 Goal "(-x) ^ 2 = (x::real) ^ 2";
@@ -393,7 +393,7 @@
 qed "realpow_two_disj";
 
 (* used in Transc *)
-Goal  "[|x ~= #0; m <= n |] ==> x ^ (n - m) = x ^ n * rinv(x ^ m)";
+Goal  "[|(x::real) ~= #0; m <= n |] ==> x ^ (n - m) = x ^ n * inverse (x ^ m)";
 by (auto_tac (claset(),
               simpset() addsimps [le_eq_less_or_eq,
                                   less_iff_Suc_add,realpow_add,
@@ -414,11 +414,11 @@
 Addsimps [realpow_real_of_nat_two_pos];
 
 
-(***	REALORD.ML, AFTER real_rinv_less_iff ***)
-Goal "[| 0 < r; 0 < x|] ==> (rinv x <= rinv r) = (r <= x)";
+(***	REALORD.ML, AFTER real_inverse_less_iff ***)
+Goal "[| 0 < r; 0 < x|] ==> (inverse x <= inverse r) = (r <= (x::real))";
 by (asm_simp_tac (simpset() addsimps [linorder_not_less RS sym, 
-                                      real_rinv_less_iff]) 1); 
-qed "real_rinv_le_iff";
+                                      real_inverse_less_iff]) 1); 
+qed "real_inverse_le_iff";
 
 Goal "(#0::real) <= x --> #0 <= y --> x ^ Suc n <= y ^ Suc n --> x <= y";
 by (induct_tac "n" 1);
@@ -427,12 +427,12 @@
 by (auto_tac (claset(), 
               simpset() addsimps [inst "x" "#0" order_le_less,
                                   real_mult_le_0_iff])); 
-by (subgoal_tac "rinv x * (x * (x * x ^ n)) <= rinv y * (y * (y * y ^ n))" 1);
+by (subgoal_tac "inverse x * (x * (x * x ^ n)) <= inverse y * (y * (y * y ^ n))" 1);
 by (rtac real_mult_le_mono 2);
 by (asm_full_simp_tac (simpset() addsimps [realpow_ge_zero, real_0_le_mult_iff]) 4); 
-by (asm_full_simp_tac (simpset() addsimps [real_rinv_le_iff]) 3);
+by (asm_full_simp_tac (simpset() addsimps [real_inverse_le_iff]) 3);
 by (asm_full_simp_tac (simpset() addsimps [real_mult_assoc RS sym]) 1);
-by (rtac real_rinv_gt_zero 1);  
+by (rtac real_inverse_gt_zero 1);  
 by Auto_tac; 
 qed_spec_mp "realpow_increasing";