--- a/doc-src/TutorialI/Rules/rules.tex Mon Nov 06 16:43:01 2000 +0100
+++ b/doc-src/TutorialI/Rules/rules.tex Mon Nov 06 18:28:22 2000 +0100
@@ -1,4 +1,3 @@
-% ID: $Id$
\chapter{The Rules of the Game}
\label{chap:rules}
@@ -898,7 +897,7 @@
the universal introduction rule, the textbook version imposes a proviso on the
quantified variable, which Isabelle expresses using its meta-logic. Note that it is
enough to have a universal quantifier in the meta-logic; we do not need an existential
-quantifier to be built in as well.\remark{EX example needed?}
+quantifier to be built in as well.\REMARK{EX example needed?}
Isabelle/HOL also provides Hilbert's
$\epsilon$-operator. The term $\epsilon x. P(x)$ denotes some $x$ such that $P(x)$ is
@@ -910,7 +909,7 @@
uniquely. For instance, we can define the cardinality of a finite set~$A$ to be that
$n$ such that $A$ is in one-to-one correspondence with $\{1,\ldots,n\}$. We can then
prove that the cardinality of the empty set is zero (since $n=0$ satisfies the
-description) and proceed to prove other facts.\remark{SOME theorems
+description) and proceed to prove other facts.\REMARK{SOME theorems
and example}
\begin{exercise}
@@ -1160,7 +1159,7 @@
\end{isabelle}
%
This fact about multiplication is also appropriate for
-the {\isa{iff}} attribute:\remark{the ?s are ugly here but we need
+the {\isa{iff}} attribute:\REMARK{the ?s are ugly here but we need
them again when talking about \isa{of}; we need a consistent style}
\begin{isabelle}
(\mbox{?m}\ \isacharasterisk\ \mbox{?n}\ =\ 0)\ =\ (\mbox{?m}\ =\ 0\ \isasymor\ \mbox{?n}\ =\ 0)
@@ -1412,7 +1411,7 @@
The {\isa{force}} method applies the classical reasoner and simplifier
to one goal.
-\remark{example needed? most
+\REMARK{example needed? most
things done by blast, simp or auto can also be done by force, so why add a new
one?}
Unless it can prove the goal, it fails. Contrast
@@ -1574,7 +1573,7 @@
?n)\ =\ k%
\end{isabelle}
\isa{THEN~sym} gives the current theorem to the rule \isa{sym} and returns the
-resulting conclusion.\remark{figure necessary?} The effect is to exchange the
+resulting conclusion.\REMARK{figure necessary?} The effect is to exchange the
two operands of the equality. Typically {\isa{THEN}} is used with destruction
rules. Above we have used
\isa{THEN~conjunct1} to extract the first part of the theorem
@@ -1765,7 +1764,7 @@
complete the proof.
\medskip
-Here is another proof using \isa{insert}. \remark{Effect with unknowns?}
+Here is another proof using \isa{insert}. \REMARK{Effect with unknowns?}
Division and remainder obey a well-known law:
\begin{isabelle}
(?m\ div\ ?n)\ \isacharasterisk\
--- a/doc-src/TutorialI/Sets/sets.tex Mon Nov 06 16:43:01 2000 +0100
+++ b/doc-src/TutorialI/Sets/sets.tex Mon Nov 06 18:28:22 2000 +0100
@@ -841,7 +841,7 @@
\end{isabelle}
Note one detail. The {\isa{auto}} method can prove this but
-{\isa{blast}} cannot. \remark{move to a later section?}
+{\isa{blast}} cannot. \REMARK{move to a later section?}
This is because the
lemmas we have proved only apply to ordered pairs. {\isa{Auto}} can
convert a bound variable of a product type into a pair of bound variables,
--- a/doc-src/TutorialI/tutorial.tex Mon Nov 06 16:43:01 2000 +0100
+++ b/doc-src/TutorialI/tutorial.tex Mon Nov 06 18:28:22 2000 +0100
@@ -1,8 +1,8 @@
% pr(latex xsymbols symbols)
-\documentclass[11pt,a4paper]{report}
+\documentclass{article}
\newif\ifremarks
\remarkstrue %TRUE causes remarks to be displayed (as marginal notes)
-\usepackage{isabelle,isabellesym}
+\usepackage{cl2emono-modified,isabelle,isabellesym}
\usepackage{latexsym,verbatim,graphicx,../iman,../extra,../ttbox,comment}
\usepackage{proof,amsmath}
\usepackage{../pdfsetup} %last package!
@@ -26,7 +26,7 @@
\renewenvironment{isamarkuptxt}{\begin{isamarkuptext}}{\end{isamarkuptext}}
%% lcp's macros
-\newcommand{\remark}[1]{\ifremarks\marginpar{\raggedright\footnotesize#1}\fi}
+\newcommand{\REMARK}[1]{\ifremarks\marginpar{\raggedright\footnotesize#1}\fi}
\newcommand{\rulename}[1]{\hfill$(\text{#1})$} %names of Isabelle rules
\let\bigisa=\isa
%% was previously