add HOLCF/Library/Defl_Bifinite.thy, which proves instance defl :: bifinite
authorhuffman
Mon, 11 Oct 2010 09:54:04 -0700
changeset 39999 e3948547b541
parent 39989 ad60d7311f43
child 40000 9c6ad000dc89
add HOLCF/Library/Defl_Bifinite.thy, which proves instance defl :: bifinite
src/HOLCF/IsaMakefile
src/HOLCF/Library/Defl_Bifinite.thy
src/HOLCF/Library/HOLCF_Library.thy
--- a/src/HOLCF/IsaMakefile	Mon Oct 11 08:32:09 2010 -0700
+++ b/src/HOLCF/IsaMakefile	Mon Oct 11 09:54:04 2010 -0700
@@ -102,6 +102,7 @@
 HOLCF-Library: HOLCF $(LOG)/HOLCF-Library.gz
 
 $(LOG)/HOLCF-Library.gz: $(OUT)/HOLCF \
+  Library/Defl_Bifinite.thy \
   Library/List_Cpo.thy \
   Library/Stream.thy \
   Library/Strict_Fun.thy \
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Library/Defl_Bifinite.thy	Mon Oct 11 09:54:04 2010 -0700
@@ -0,0 +1,650 @@
+(*  Title:      HOLCF/Library/Defl_Bifinite.thy
+    Author:     Brian Huffman
+*)
+
+header {* Algebraic deflations are a bifinite domain *}
+
+theory Defl_Bifinite
+imports HOLCF Infinite_Set
+begin
+
+subsection {* Lemmas about MOST *}
+
+default_sort type
+
+lemma MOST_INFM:
+  assumes inf: "infinite (UNIV::'a set)"
+  shows "MOST x::'a. P x \<Longrightarrow> INFM x::'a. P x"
+  unfolding Alm_all_def Inf_many_def
+  apply (auto simp add: Collect_neg_eq)
+  apply (drule (1) finite_UnI)
+  apply (simp add: Compl_partition2 inf)
+  done
+
+lemma MOST_SucI: "MOST n. P n \<Longrightarrow> MOST n. P (Suc n)"
+by (rule MOST_inj [OF _ inj_Suc])
+
+lemma MOST_SucD: "MOST n. P (Suc n) \<Longrightarrow> MOST n. P n"
+unfolding MOST_nat
+apply (clarify, rule_tac x="Suc m" in exI, clarify)
+apply (erule Suc_lessE, simp)
+done
+
+lemma MOST_Suc_iff: "(MOST n. P (Suc n)) \<longleftrightarrow> (MOST n. P n)"
+by (rule iffI [OF MOST_SucD MOST_SucI])
+
+lemma INFM_finite_Bex_distrib:
+  "finite A \<Longrightarrow> (INFM y. \<exists>x\<in>A. P x y) \<longleftrightarrow> (\<exists>x\<in>A. INFM y. P x y)"
+by (induct set: finite, simp, simp add: INFM_disj_distrib)
+
+lemma MOST_finite_Ball_distrib:
+  "finite A \<Longrightarrow> (MOST y. \<forall>x\<in>A. P x y) \<longleftrightarrow> (\<forall>x\<in>A. MOST y. P x y)"
+by (induct set: finite, simp, simp add: MOST_conj_distrib)
+
+lemma MOST_ge_nat: "MOST n::nat. m \<le> n"
+unfolding MOST_nat_le by fast
+
+subsection {* Eventually constant sequences *}
+
+definition
+  eventually_constant :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool"
+where
+  "eventually_constant S = (\<exists>x. MOST i. S i = x)"
+
+lemma eventually_constant_MOST_MOST:
+  "eventually_constant S \<longleftrightarrow> (MOST m. MOST n. S n = S m)"
+unfolding eventually_constant_def MOST_nat
+apply safe
+apply (rule_tac x=m in exI, clarify)
+apply (rule_tac x=m in exI, clarify)
+apply simp
+apply fast
+done
+
+lemma eventually_constantI: "MOST i. S i = x \<Longrightarrow> eventually_constant S"
+unfolding eventually_constant_def by fast
+
+lemma eventually_constant_comp:
+  "eventually_constant (\<lambda>i. S i) \<Longrightarrow> eventually_constant (\<lambda>i. f (S i))"
+unfolding eventually_constant_def
+apply (erule exE, rule_tac x="f x" in exI)
+apply (erule MOST_mono, simp)
+done
+
+lemma eventually_constant_Suc_iff:
+  "eventually_constant (\<lambda>i. S (Suc i)) \<longleftrightarrow> eventually_constant (\<lambda>i. S i)"
+unfolding eventually_constant_def
+by (subst MOST_Suc_iff, rule refl)
+
+lemma eventually_constant_SucD:
+  "eventually_constant (\<lambda>i. S (Suc i)) \<Longrightarrow> eventually_constant (\<lambda>i. S i)"
+by (rule eventually_constant_Suc_iff [THEN iffD1])
+
+subsection {* Limits of eventually constant sequences *}
+
+definition
+  eventual :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  "eventual S = (THE x. MOST i. S i = x)"
+
+lemma eventual_eqI: "MOST i. S i = x \<Longrightarrow> eventual S = x"
+unfolding eventual_def
+apply (rule the_equality, assumption)
+apply (rename_tac y)
+apply (subgoal_tac "MOST i::nat. y = x", simp)
+apply (erule MOST_rev_mp)
+apply (erule MOST_rev_mp)
+apply simp
+done
+
+lemma MOST_eq_eventual:
+  "eventually_constant S \<Longrightarrow> MOST i. S i = eventual S"
+unfolding eventually_constant_def
+by (erule exE, simp add: eventual_eqI)
+
+lemma eventual_mem_range:
+  "eventually_constant S \<Longrightarrow> eventual S \<in> range S"
+apply (drule MOST_eq_eventual)
+apply (simp only: MOST_nat_le, clarify)
+apply (drule spec, drule mp, rule order_refl)
+apply (erule range_eqI [OF sym])
+done
+
+lemma eventually_constant_MOST_iff:
+  assumes S: "eventually_constant S"
+  shows "(MOST n. P (S n)) \<longleftrightarrow> P (eventual S)"
+apply (subgoal_tac "(MOST n. P (S n)) \<longleftrightarrow> (MOST n::nat. P (eventual S))")
+apply simp
+apply (rule iffI)
+apply (rule MOST_rev_mp [OF MOST_eq_eventual [OF S]])
+apply (erule MOST_mono, force)
+apply (rule MOST_rev_mp [OF MOST_eq_eventual [OF S]])
+apply (erule MOST_mono, simp)
+done
+
+lemma MOST_eventual:
+  "\<lbrakk>eventually_constant S; MOST n. P (S n)\<rbrakk> \<Longrightarrow> P (eventual S)"
+proof -
+  assume "eventually_constant S"
+  hence "MOST n. S n = eventual S"
+    by (rule MOST_eq_eventual)
+  moreover assume "MOST n. P (S n)"
+  ultimately have "MOST n. S n = eventual S \<and> P (S n)"
+    by (rule MOST_conj_distrib [THEN iffD2, OF conjI])
+  hence "MOST n::nat. P (eventual S)"
+    by (rule MOST_mono) auto
+  thus ?thesis by simp
+qed
+
+lemma eventually_constant_MOST_Suc_eq:
+  "eventually_constant S \<Longrightarrow> MOST n. S (Suc n) = S n"
+apply (drule MOST_eq_eventual)
+apply (frule MOST_Suc_iff [THEN iffD2])
+apply (erule MOST_rev_mp)
+apply (erule MOST_rev_mp)
+apply simp
+done
+
+lemma eventual_comp:
+  "eventually_constant S \<Longrightarrow> eventual (\<lambda>i. f (S i)) = f (eventual (\<lambda>i. S i))"
+apply (rule eventual_eqI)
+apply (rule MOST_mono)
+apply (erule MOST_eq_eventual)
+apply simp
+done
+
+subsection {* Constructing finite deflations by iteration *}
+
+default_sort cpo
+
+lemma le_Suc_induct:
+  assumes le: "i \<le> j"
+  assumes step: "\<And>i. P i (Suc i)"
+  assumes refl: "\<And>i. P i i"
+  assumes trans: "\<And>i j k. \<lbrakk>P i j; P j k\<rbrakk> \<Longrightarrow> P i k"
+  shows "P i j"
+proof (cases "i = j")
+  assume "i = j"
+  thus "P i j" by (simp add: refl)
+next
+  assume "i \<noteq> j"
+  with le have "i < j" by simp
+  thus "P i j" using step trans by (rule less_Suc_induct)
+qed
+
+definition
+  eventual_iterate :: "('a \<rightarrow> 'a::cpo) \<Rightarrow> ('a \<rightarrow> 'a)"
+where
+  "eventual_iterate f = eventual (\<lambda>n. iterate n\<cdot>f)"
+
+text {* A pre-deflation is like a deflation, but not idempotent. *}
+
+locale pre_deflation =
+  fixes f :: "'a \<rightarrow> 'a::cpo"
+  assumes below: "\<And>x. f\<cdot>x \<sqsubseteq> x"
+  assumes finite_range: "finite (range (\<lambda>x. f\<cdot>x))"
+begin
+
+lemma iterate_below: "iterate i\<cdot>f\<cdot>x \<sqsubseteq> x"
+by (induct i, simp_all add: below_trans [OF below])
+
+lemma iterate_fixed: "f\<cdot>x = x \<Longrightarrow> iterate i\<cdot>f\<cdot>x = x"
+by (induct i, simp_all)
+
+lemma antichain_iterate_app: "i \<le> j \<Longrightarrow> iterate j\<cdot>f\<cdot>x \<sqsubseteq> iterate i\<cdot>f\<cdot>x"
+apply (erule le_Suc_induct)
+apply (simp add: below)
+apply (rule below_refl)
+apply (erule (1) below_trans)
+done
+
+lemma finite_range_iterate_app: "finite (range (\<lambda>i. iterate i\<cdot>f\<cdot>x))"
+proof (rule finite_subset)
+  show "range (\<lambda>i. iterate i\<cdot>f\<cdot>x) \<subseteq> insert x (range (\<lambda>x. f\<cdot>x))"
+    by (clarify, case_tac i, simp_all)
+  show "finite (insert x (range (\<lambda>x. f\<cdot>x)))"
+    by (simp add: finite_range)
+qed
+
+lemma eventually_constant_iterate_app:
+  "eventually_constant (\<lambda>i. iterate i\<cdot>f\<cdot>x)"
+unfolding eventually_constant_def MOST_nat_le
+proof -
+  let ?Y = "\<lambda>i. iterate i\<cdot>f\<cdot>x"
+  have "\<exists>j. \<forall>k. ?Y j \<sqsubseteq> ?Y k"
+    apply (rule finite_range_has_max)
+    apply (erule antichain_iterate_app)
+    apply (rule finite_range_iterate_app)
+    done
+  then obtain j where j: "\<And>k. ?Y j \<sqsubseteq> ?Y k" by fast
+  show "\<exists>z m. \<forall>n\<ge>m. ?Y n = z"
+  proof (intro exI allI impI)
+    fix k
+    assume "j \<le> k"
+    hence "?Y k \<sqsubseteq> ?Y j" by (rule antichain_iterate_app)
+    also have "?Y j \<sqsubseteq> ?Y k" by (rule j)
+    finally show "?Y k = ?Y j" .
+  qed
+qed
+
+lemma eventually_constant_iterate:
+  "eventually_constant (\<lambda>n. iterate n\<cdot>f)"
+proof -
+  have "\<forall>y\<in>range (\<lambda>x. f\<cdot>x). eventually_constant (\<lambda>i. iterate i\<cdot>f\<cdot>y)"
+    by (simp add: eventually_constant_iterate_app)
+  hence "\<forall>y\<in>range (\<lambda>x. f\<cdot>x). MOST i. MOST j. iterate j\<cdot>f\<cdot>y = iterate i\<cdot>f\<cdot>y"
+    unfolding eventually_constant_MOST_MOST .
+  hence "MOST i. MOST j. \<forall>y\<in>range (\<lambda>x. f\<cdot>x). iterate j\<cdot>f\<cdot>y = iterate i\<cdot>f\<cdot>y"
+    by (simp only: MOST_finite_Ball_distrib [OF finite_range])
+  hence "MOST i. MOST j. \<forall>x. iterate j\<cdot>f\<cdot>(f\<cdot>x) = iterate i\<cdot>f\<cdot>(f\<cdot>x)"
+    by simp
+  hence "MOST i. MOST j. \<forall>x. iterate (Suc j)\<cdot>f\<cdot>x = iterate (Suc i)\<cdot>f\<cdot>x"
+    by (simp only: iterate_Suc2)
+  hence "MOST i. MOST j. iterate (Suc j)\<cdot>f = iterate (Suc i)\<cdot>f"
+    by (simp only: expand_cfun_eq)
+  hence "eventually_constant (\<lambda>i. iterate (Suc i)\<cdot>f)"
+    unfolding eventually_constant_MOST_MOST .
+  thus "eventually_constant (\<lambda>i. iterate i\<cdot>f)"
+    by (rule eventually_constant_SucD)
+qed
+
+abbreviation
+  d :: "'a \<rightarrow> 'a"
+where
+  "d \<equiv> eventual_iterate f"
+
+lemma MOST_d: "MOST n. P (iterate n\<cdot>f) \<Longrightarrow> P d"
+unfolding eventual_iterate_def
+using eventually_constant_iterate by (rule MOST_eventual)
+
+lemma f_d: "f\<cdot>(d\<cdot>x) = d\<cdot>x"
+apply (rule MOST_d)
+apply (subst iterate_Suc [symmetric])
+apply (rule eventually_constant_MOST_Suc_eq)
+apply (rule eventually_constant_iterate_app)
+done
+
+lemma d_fixed_iff: "d\<cdot>x = x \<longleftrightarrow> f\<cdot>x = x"
+proof
+  assume "d\<cdot>x = x"
+  with f_d [where x=x]
+  show "f\<cdot>x = x" by simp
+next
+  assume f: "f\<cdot>x = x"
+  have "\<forall>n. iterate n\<cdot>f\<cdot>x = x"
+    by (rule allI, rule nat.induct, simp, simp add: f)
+  hence "MOST n. iterate n\<cdot>f\<cdot>x = x"
+    by (rule ALL_MOST)
+  thus "d\<cdot>x = x"
+    by (rule MOST_d)
+qed
+
+lemma finite_deflation_d: "finite_deflation d"
+proof
+  fix x :: 'a
+  have "d \<in> range (\<lambda>n. iterate n\<cdot>f)"
+    unfolding eventual_iterate_def
+    using eventually_constant_iterate
+    by (rule eventual_mem_range)
+  then obtain n where n: "d = iterate n\<cdot>f" ..
+  have "iterate n\<cdot>f\<cdot>(d\<cdot>x) = d\<cdot>x"
+    using f_d by (rule iterate_fixed)
+  thus "d\<cdot>(d\<cdot>x) = d\<cdot>x"
+    by (simp add: n)
+next
+  fix x :: 'a
+  show "d\<cdot>x \<sqsubseteq> x"
+    by (rule MOST_d, simp add: iterate_below)
+next
+  from finite_range
+  have "finite {x. f\<cdot>x = x}"
+    by (rule finite_range_imp_finite_fixes)
+  thus "finite {x. d\<cdot>x = x}"
+    by (simp add: d_fixed_iff)
+qed
+
+lemma deflation_d: "deflation d"
+using finite_deflation_d
+by (rule finite_deflation_imp_deflation)
+
+end
+
+lemma finite_deflation_eventual_iterate:
+  "pre_deflation d \<Longrightarrow> finite_deflation (eventual_iterate d)"
+by (rule pre_deflation.finite_deflation_d)
+
+lemma pre_deflation_oo:
+  assumes "finite_deflation d"
+  assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x"
+  shows "pre_deflation (d oo f)"
+proof
+  interpret d: finite_deflation d by fact
+  fix x
+  show "\<And>x. (d oo f)\<cdot>x \<sqsubseteq> x"
+    by (simp, rule below_trans [OF d.below f])
+  show "finite (range (\<lambda>x. (d oo f)\<cdot>x))"
+    by (rule finite_subset [OF _ d.finite_range], auto)
+qed
+
+lemma eventual_iterate_oo_fixed_iff:
+  assumes "finite_deflation d"
+  assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x"
+  shows "eventual_iterate (d oo f)\<cdot>x = x \<longleftrightarrow> d\<cdot>x = x \<and> f\<cdot>x = x"
+proof -
+  interpret d: finite_deflation d by fact
+  let ?e = "d oo f"
+  interpret e: pre_deflation "d oo f"
+    using `finite_deflation d` f
+    by (rule pre_deflation_oo)
+  let ?g = "eventual (\<lambda>n. iterate n\<cdot>?e)"
+  show ?thesis
+    apply (subst e.d_fixed_iff)
+    apply simp
+    apply safe
+    apply (erule subst)
+    apply (rule d.idem)
+    apply (rule below_antisym)
+    apply (rule f)
+    apply (erule subst, rule d.below)
+    apply simp
+    done
+qed
+
+lemma eventual_mono:
+  assumes A: "eventually_constant A"
+  assumes B: "eventually_constant B"
+  assumes below: "\<And>n. A n \<sqsubseteq> B n"
+  shows "eventual A \<sqsubseteq> eventual B"
+proof -
+  from A have "MOST n. A n = eventual A"
+    by (rule MOST_eq_eventual)
+  then have "MOST n. eventual A \<sqsubseteq> B n"
+    by (rule MOST_mono) (erule subst, rule below)
+  with B show "eventual A \<sqsubseteq> eventual B"
+    by (rule MOST_eventual)
+qed
+
+lemma eventual_iterate_mono:
+  assumes f: "pre_deflation f" and g: "pre_deflation g" and "f \<sqsubseteq> g"
+  shows "eventual_iterate f \<sqsubseteq> eventual_iterate g"
+unfolding eventual_iterate_def
+apply (rule eventual_mono)
+apply (rule pre_deflation.eventually_constant_iterate [OF f])
+apply (rule pre_deflation.eventually_constant_iterate [OF g])
+apply (rule monofun_cfun_arg [OF `f \<sqsubseteq> g`])
+done
+
+lemma cont2cont_eventual_iterate_oo:
+  assumes d: "finite_deflation d"
+  assumes cont: "cont f" and below: "\<And>x y. f x\<cdot>y \<sqsubseteq> y"
+  shows "cont (\<lambda>x. eventual_iterate (d oo f x))"
+    (is "cont ?e")
+proof (rule contI2)
+  show "monofun ?e"
+    apply (rule monofunI)
+    apply (rule eventual_iterate_mono)
+    apply (rule pre_deflation_oo [OF d below])
+    apply (rule pre_deflation_oo [OF d below])
+    apply (rule monofun_cfun_arg)
+    apply (erule cont2monofunE [OF cont])
+    done
+next
+  fix Y :: "nat \<Rightarrow> 'b"
+  assume Y: "chain Y"
+  with cont have fY: "chain (\<lambda>i. f (Y i))"
+    by (rule ch2ch_cont)
+  assume eY: "chain (\<lambda>i. ?e (Y i))"
+  have lub_below: "\<And>x. f (\<Squnion>i. Y i)\<cdot>x \<sqsubseteq> x"
+    by (rule admD [OF _ Y], simp add: cont, rule below)
+  have "deflation (?e (\<Squnion>i. Y i))"
+    apply (rule pre_deflation.deflation_d)
+    apply (rule pre_deflation_oo [OF d lub_below])
+    done
+  then show "?e (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. ?e (Y i))"
+  proof (rule deflation.belowI)
+    fix x :: 'a
+    assume "?e (\<Squnion>i. Y i)\<cdot>x = x"
+    hence "d\<cdot>x = x" and "f (\<Squnion>i. Y i)\<cdot>x = x"
+      by (simp_all add: eventual_iterate_oo_fixed_iff [OF d lub_below])
+    hence "(\<Squnion>i. f (Y i)\<cdot>x) = x"
+      apply (simp only: cont2contlubE [OF cont Y])
+      apply (simp only: contlub_cfun_fun [OF fY])
+      done
+    have "compact (d\<cdot>x)"
+      using d by (rule finite_deflation.compact)
+    then have "compact x"
+      using `d\<cdot>x = x` by simp
+    then have "compact (\<Squnion>i. f (Y i)\<cdot>x)"
+      using `(\<Squnion>i. f (Y i)\<cdot>x) = x` by simp
+    then have "\<exists>n. max_in_chain n (\<lambda>i. f (Y i)\<cdot>x)"
+      by - (rule compact_imp_max_in_chain, simp add: fY, assumption)
+    then obtain n where n: "max_in_chain n (\<lambda>i. f (Y i)\<cdot>x)" ..
+    then have "f (Y n)\<cdot>x = x"
+      using `(\<Squnion>i. f (Y i)\<cdot>x) = x` fY by (simp add: maxinch_is_thelub)
+    with `d\<cdot>x = x` have "?e (Y n)\<cdot>x = x"
+      by (simp add: eventual_iterate_oo_fixed_iff [OF d below])
+    moreover have "?e (Y n)\<cdot>x \<sqsubseteq> (\<Squnion>i. ?e (Y i)\<cdot>x)"
+      by (rule is_ub_thelub, simp add: eY)
+    ultimately have "x \<sqsubseteq> (\<Squnion>i. ?e (Y i))\<cdot>x"
+      by (simp add: contlub_cfun_fun eY)
+    also have "(\<Squnion>i. ?e (Y i))\<cdot>x \<sqsubseteq> x"
+      apply (rule deflation.below)
+      apply (rule admD [OF adm_deflation eY])
+      apply (rule pre_deflation.deflation_d)
+      apply (rule pre_deflation_oo [OF d below])
+      done
+    finally show "(\<Squnion>i. ?e (Y i))\<cdot>x = x" ..
+  qed
+qed
+
+subsection {* Take function for finite deflations *}
+
+definition
+  defl_take :: "nat \<Rightarrow> (udom \<rightarrow> udom) \<Rightarrow> (udom \<rightarrow> udom)"
+where
+  "defl_take i d = eventual_iterate (udom_approx i oo d)"
+
+lemma finite_deflation_defl_take:
+  "deflation d \<Longrightarrow> finite_deflation (defl_take i d)"
+unfolding defl_take_def
+apply (rule pre_deflation.finite_deflation_d)
+apply (rule pre_deflation_oo)
+apply (rule finite_deflation_udom_approx)
+apply (erule deflation.below)
+done
+
+lemma deflation_defl_take:
+  "deflation d \<Longrightarrow> deflation (defl_take i d)"
+apply (rule finite_deflation_imp_deflation)
+apply (erule finite_deflation_defl_take)
+done
+
+lemma defl_take_fixed_iff:
+  "deflation d \<Longrightarrow> defl_take i d\<cdot>x = x \<longleftrightarrow> udom_approx i\<cdot>x = x \<and> d\<cdot>x = x"
+unfolding defl_take_def
+apply (rule eventual_iterate_oo_fixed_iff)
+apply (rule finite_deflation_udom_approx)
+apply (erule deflation.below)
+done
+
+lemma defl_take_below:
+  "\<lbrakk>a \<sqsubseteq> b; deflation a; deflation b\<rbrakk> \<Longrightarrow> defl_take i a \<sqsubseteq> defl_take i b"
+apply (rule deflation.belowI)
+apply (erule deflation_defl_take)
+apply (simp add: defl_take_fixed_iff)
+apply (erule (1) deflation.belowD)
+apply (erule conjunct2)
+done
+
+lemma cont2cont_defl_take:
+  assumes cont: "cont f" and below: "\<And>x y. f x\<cdot>y \<sqsubseteq> y"
+  shows "cont (\<lambda>x. defl_take i (f x))"
+unfolding defl_take_def
+using finite_deflation_udom_approx assms
+by (rule cont2cont_eventual_iterate_oo)
+
+definition
+  fd_take :: "nat \<Rightarrow> fin_defl \<Rightarrow> fin_defl"
+where
+  "fd_take i d = Abs_fin_defl (defl_take i (Rep_fin_defl d))"
+
+lemma Rep_fin_defl_fd_take:
+  "Rep_fin_defl (fd_take i d) = defl_take i (Rep_fin_defl d)"
+unfolding fd_take_def
+apply (rule Abs_fin_defl_inverse [unfolded mem_Collect_eq])
+apply (rule finite_deflation_defl_take)
+apply (rule deflation_Rep_fin_defl)
+done
+
+lemma fd_take_fixed_iff:
+  "Rep_fin_defl (fd_take i d)\<cdot>x = x \<longleftrightarrow>
+    udom_approx i\<cdot>x = x \<and> Rep_fin_defl d\<cdot>x = x"
+unfolding Rep_fin_defl_fd_take
+apply (rule defl_take_fixed_iff)
+apply (rule deflation_Rep_fin_defl)
+done
+
+lemma fd_take_below: "fd_take n d \<sqsubseteq> d"
+apply (rule fin_defl_belowI)
+apply (simp add: fd_take_fixed_iff)
+done
+
+lemma fd_take_idem: "fd_take n (fd_take n d) = fd_take n d"
+apply (rule fin_defl_eqI)
+apply (simp add: fd_take_fixed_iff)
+done
+
+lemma fd_take_mono: "a \<sqsubseteq> b \<Longrightarrow> fd_take n a \<sqsubseteq> fd_take n b"
+apply (rule fin_defl_belowI)
+apply (simp add: fd_take_fixed_iff)
+apply (simp add: fin_defl_belowD)
+done
+
+lemma approx_fixed_le_lemma: "\<lbrakk>i \<le> j; udom_approx i\<cdot>x = x\<rbrakk> \<Longrightarrow> udom_approx j\<cdot>x = x"
+apply (rule deflation.belowD)
+apply (rule finite_deflation_imp_deflation)
+apply (rule finite_deflation_udom_approx)
+apply (erule chain_mono [OF chain_udom_approx])
+apply assumption
+done
+
+lemma fd_take_chain: "m \<le> n \<Longrightarrow> fd_take m a \<sqsubseteq> fd_take n a"
+apply (rule fin_defl_belowI)
+apply (simp add: fd_take_fixed_iff)
+apply (simp add: approx_fixed_le_lemma)
+done
+
+lemma finite_range_fd_take: "finite (range (fd_take n))"
+apply (rule finite_imageD [where f="\<lambda>a. {x. Rep_fin_defl a\<cdot>x = x}"])
+apply (rule finite_subset [where B="Pow {x. udom_approx n\<cdot>x = x}"])
+apply (clarify, simp add: fd_take_fixed_iff)
+apply (simp add: finite_deflation.finite_fixes [OF finite_deflation_udom_approx])
+apply (rule inj_onI, clarify)
+apply (simp add: set_eq_iff fin_defl_eqI)
+done
+
+lemma fd_take_covers: "\<exists>n. fd_take n a = a"
+apply (rule_tac x=
+  "Max ((\<lambda>x. LEAST n. udom_approx n\<cdot>x = x) ` {x. Rep_fin_defl a\<cdot>x = x})" in exI)
+apply (rule below_antisym)
+apply (rule fd_take_below)
+apply (rule fin_defl_belowI)
+apply (simp add: fd_take_fixed_iff)
+apply (rule approx_fixed_le_lemma)
+apply (rule Max_ge)
+apply (rule finite_imageI)
+apply (rule Rep_fin_defl.finite_fixes)
+apply (rule imageI)
+apply (erule CollectI)
+apply (rule LeastI_ex)
+apply (rule approx_chain.compact_eq_approx [OF udom_approx])
+apply (erule subst)
+apply (rule Rep_fin_defl.compact)
+done
+
+subsection {* Chain of approx functions on algebraic deflations *}
+
+definition
+  defl_approx :: "nat \<Rightarrow> defl \<rightarrow> defl"
+where
+  "defl_approx = (\<lambda>i. defl.basis_fun (\<lambda>d. defl_principal (fd_take i d)))"
+
+lemma defl_approx_principal:
+  "defl_approx i\<cdot>(defl_principal d) = defl_principal (fd_take i d)"
+unfolding defl_approx_def
+by (simp add: defl.basis_fun_principal fd_take_mono)
+
+lemma defl_approx: "approx_chain defl_approx"
+proof
+  show chain: "chain defl_approx"
+    unfolding defl_approx_def
+    by (simp add: chainI defl.basis_fun_mono fd_take_mono fd_take_chain)
+  show idem: "\<And>i x. defl_approx i\<cdot>(defl_approx i\<cdot>x) = defl_approx i\<cdot>x"
+    apply (induct_tac x rule: defl.principal_induct, simp)
+    apply (simp add: defl_approx_principal fd_take_idem)
+    done
+  show below: "\<And>i x. defl_approx i\<cdot>x \<sqsubseteq> x"
+    apply (induct_tac x rule: defl.principal_induct, simp)
+    apply (simp add: defl_approx_principal fd_take_below)
+    done
+  show lub: "(\<Squnion>i. defl_approx i) = ID"
+    apply (rule ext_cfun, rule below_antisym)
+    apply (simp add: contlub_cfun_fun chain lub_below_iff chain below)
+    apply (induct_tac x rule: defl.principal_induct, simp)
+    apply (simp add: contlub_cfun_fun chain)
+    apply (simp add: compact_below_lub_iff defl.compact_principal chain)
+    apply (simp add: defl_approx_principal)
+    apply (subgoal_tac "\<exists>i. fd_take i a = a", metis below_refl)
+    apply (rule fd_take_covers)
+    done
+  show "\<And>i. finite {x. defl_approx i\<cdot>x = x}"
+    apply (rule finite_range_imp_finite_fixes)
+    apply (rule_tac B="defl_principal ` range (fd_take i)" in rev_finite_subset)
+    apply (simp add: finite_range_fd_take)
+    apply (clarsimp, rename_tac x)
+    apply (induct_tac x rule: defl.principal_induct)
+    apply (simp add: adm_mem_finite finite_range_fd_take)
+    apply (simp add: defl_approx_principal)
+    done
+qed
+
+subsection {* Algebraic deflations are a bifinite domain *}
+
+instantiation defl :: bifinite
+begin
+
+definition
+  "emb = udom_emb defl_approx"
+
+definition
+  "prj = udom_prj defl_approx"
+
+definition
+  "defl (t::defl itself) =
+    (\<Squnion>i. defl_principal (Abs_fin_defl (emb oo defl_approx i oo prj)))"
+
+instance proof
+  show ep: "ep_pair emb (prj :: udom \<rightarrow> defl)"
+    unfolding emb_defl_def prj_defl_def
+    by (rule ep_pair_udom [OF defl_approx])
+  show "cast\<cdot>DEFL(defl) = emb oo (prj :: udom \<rightarrow> defl)"
+    unfolding defl_defl_def
+    apply (subst contlub_cfun_arg)
+    apply (rule chainI)
+    apply (rule defl.principal_mono)
+    apply (simp add: below_fin_defl_def)
+    apply (simp add: Abs_fin_defl_inverse approx_chain.finite_deflation_approx [OF defl_approx]
+                     ep_pair.finite_deflation_e_d_p [OF ep])
+    apply (intro monofun_cfun below_refl)
+    apply (rule chainE)
+    apply (rule approx_chain.chain_approx [OF defl_approx])
+    apply (subst cast_defl_principal)
+    apply (simp add: Abs_fin_defl_inverse approx_chain.finite_deflation_approx [OF defl_approx]
+                     ep_pair.finite_deflation_e_d_p [OF ep])
+    apply (simp add: lub_distribs approx_chain.chain_approx [OF defl_approx]
+                     approx_chain.lub_approx [OF defl_approx])
+    done
+qed
+
+end
+
+end
--- a/src/HOLCF/Library/HOLCF_Library.thy	Mon Oct 11 08:32:09 2010 -0700
+++ b/src/HOLCF/Library/HOLCF_Library.thy	Mon Oct 11 09:54:04 2010 -0700
@@ -1,5 +1,6 @@
 theory HOLCF_Library
 imports
+  Defl_Bifinite
   List_Cpo
   Stream
   Strict_Fun