author | paulson |
Fri, 25 Aug 2006 18:45:57 +0200 | |
changeset 20415 | e3d2d7b01279 |
parent 20414 | 029c4f9dc6f4 |
child 20416 | f9cb300118ca |
--- a/src/HOL/Product_Type.thy Fri Aug 25 18:44:59 2006 +0200 +++ b/src/HOL/Product_Type.thy Fri Aug 25 18:45:57 2006 +0200 @@ -541,7 +541,8 @@ b) can lead to nontermination in the presence of split_def *) lemma split_comp_eq: -"(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))" + fixes f :: "'a => 'b => 'c" and g :: "'d => 'a" + shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))" by (rule ext) auto lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"