--- a/src/HOL/Tools/Sledgehammer/MaSh/src/server.py Fri May 30 12:27:51 2014 +0200
+++ b/src/HOL/Tools/Sledgehammer/MaSh/src/server.py Fri May 30 12:27:51 2014 +0200
@@ -159,10 +159,10 @@
# Output
predictionNames = [str(self.server.dicts.idNameDict[p]) for p in self.server.predictions[:numberOfPredictions]]
- #predictionValues = [str(x) for x in predictionValues[:numberOfPredictions]]
- #predictionsStringList = ['%s=%s' % (predictionNames[i],predictionValues[i]) for i in range(len(predictionNames))]
- #predictionsString = string.join(predictionsStringList,' ')
- predictionsString = string.join(predictionNames,' ')
+ predictionValues = [str(x) for x in predictionValues[:numberOfPredictions]]
+ predictionsStringList = ['%s=%s' % (predictionNames[i],predictionValues[i]) for i in range(len(predictionNames))]
+ predictionsString = string.join(predictionsStringList,' ')
+ #predictionsString = string.join(predictionNames,' ')
outString = '%s: %s' % (name,predictionsString)
self.request.sendall(outString)
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_mash.ML Fri May 30 12:27:51 2014 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_mash.ML Fri May 30 12:27:51 2014 +0200
@@ -53,6 +53,10 @@
structure MaSh_SML :
sig
+ val k_nearest_neighbors : int -> int -> (int -> int list) -> (int -> (int * real) list) ->
+ int -> (int * real) list -> (int * real) list
+ val naive_bayes : int -> int -> (int -> int list) -> (int -> Inttab.key list) -> int -> int ->
+ (Inttab.key * real) list -> (int * real) list
val query : Proof.context -> mash_engine -> string list -> int ->
(string * (string * real) list * string list) list * string list * (string * real) list ->
string list
@@ -450,9 +454,6 @@
ret [] (Integer.max 0 (num_visible_facts - max_suggs))
end
-val nb_tau = 0.02 (* FUDGE *)
-val nb_pos_weight = 2.0 (* FUDGE *)
-val nb_def_val = ~15.0 (* FUDGE *)
val nb_def_prior_weight = 20 (* FUDGE *)
(* TODO: Either use IDF or don't use it. See commented out code portions below. *)
@@ -487,6 +488,12 @@
for 0; (Array.vector tfreq, Array.vector sfreq (*, Array.vector dffreq *))
end
+val nb_kuehlwein_style = false
+
+val nb_tau = if nb_kuehlwein_style then 0.05 else 0.02 (* FUDGE *)
+val nb_pos_weight = if nb_kuehlwein_style then 20.0 else 2.0 (* FUDGE *)
+val nb_def_val = ~15.0 (* FUDGE *)
+
fun naive_bayes_query _ (* num_facts *) num_visible_facts max_suggs feats (tfreq, sfreq (*, dffreq*)) =
let
(*
@@ -508,8 +515,12 @@
val (res, sfh) = fold fold_feats feats (Math.ln tfreq, Vector.sub (sfreq, i))
- fun fold_sfh (f, sf) sow =
- sow + tfidf f * (Math.ln (1.0 + (1.0 - Real.fromInt sf) / tfreq))
+ val fold_sfh =
+ if nb_kuehlwein_style then
+ (fn (f, sf) => fn sow => sow - tfidf f * (tfreq / Math.ln (Real.fromInt sf)))
+ else
+ (fn (f, sf) => fn sow =>
+ sow + tfidf f * Math.ln (1.0 + (1.0 - Real.fromInt sf) / tfreq))
val sum_of_weights = Inttab.fold fold_sfh sfh 0.0
in