merged
authorpaulson
Tue, 18 Aug 2020 14:45:09 +0100
changeset 72167 e5765cfd4338
parent 72163 f5722290a4d0 (current diff)
parent 72166 bb37571139bf (diff)
child 72168 721a05da8fe7
merged
--- a/src/HOL/Fun_Def.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/Fun_Def.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -208,7 +208,7 @@
   by (auto simp: pair_less_def)
 
 lemma total_pair_less [iff]: "total_on A pair_less" and trans_pair_less [iff]: "trans pair_less"
-  by (auto simp: total_on_def pair_less_def)
+  by (auto simp: total_on_def pair_less_def antisym_def)
 
 text \<open>Introduction rules for \<open>pair_less\<close>/\<open>pair_leq\<close>\<close>
 lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
--- a/src/HOL/Library/List_Lenlexorder.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/Library/List_Lenlexorder.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -25,17 +25,20 @@
 proof
   have tr: "trans {(u, v::'a). u < v}"
     using trans_def by fastforce
+  have ant: "antisym {(u, v::'a). u < v}"
+    using antisym_def order.asym by auto
   have \<section>: False
     if "(xs,ys) \<in> lenlex {(u, v). u < v}" "(ys,xs) \<in> lenlex {(u, v). u < v}" for xs ys :: "'a list"
   proof -
     have "(xs,xs) \<in> lenlex {(u, v). u < v}"
-      using that transD [OF lenlex_transI [OF tr]] by blast
+      using that ant transD [OF lenlex_transI [OF tr]] by blast
     then show False
       by (meson case_prodD lenlex_irreflexive less_irrefl mem_Collect_eq)
   qed
   show "xs \<le> xs" for xs :: "'a list" by (simp add: list_le_def)
   show "xs \<le> zs" if "xs \<le> ys" and "ys \<le> zs" for xs ys zs :: "'a list"
-    using that transD [OF lenlex_transI [OF tr]] by (auto simp add: list_le_def list_less_def)
+    using that ant transD [OF lenlex_transI [OF tr]]
+    by (auto simp add: list_le_def list_less_def)
   show "xs = ys" if "xs \<le> ys" "ys \<le> xs" for xs ys :: "'a list"
     using \<section> that list_le_def list_less_def by blast
   show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs" for xs ys :: "'a list"
@@ -69,19 +72,12 @@
 lemma Nil_less_Cons [simp]: "[] < a # x"
   by (simp add: list_less_def)
 
-lemma Cons_less_Cons: "a # x < b # y \<longleftrightarrow> length x < length y \<or> length x = length y \<and> (a < b \<or> a = b \<and> x < y)"
-  using lenlex_length
-  by (fastforce simp: list_less_def Cons_lenlex_iff)
-
 lemma le_Nil [simp]: "x \<le> [] \<longleftrightarrow> x = []"
   unfolding list_le_def by (cases x) auto
 
 lemma Nil_le_Cons [simp]: "[] \<le> x"
   unfolding list_le_def by (cases x) auto
 
-lemma Cons_le_Cons: "a # x \<le> b # y \<longleftrightarrow> length x < length y \<or> length x = length y \<and> (a < b \<or> a = b \<and> x \<le> y)"
-  by (auto simp: list_le_def Cons_less_Cons)
-
 instantiation list :: (order) order_bot
 begin
 
@@ -92,4 +88,15 @@
 
 end
 
+lemma Cons_less_Cons: 
+  fixes a :: "'a::order"
+  shows "a # xs < b # ys \<longleftrightarrow> length xs < length ys \<or> length xs = length ys \<and> (a < b \<or> a = b \<and> xs < ys)"
+  using lenlex_length
+  by (fastforce simp: list_less_def Cons_lenlex_iff)
+
+lemma Cons_le_Cons:
+  fixes a :: "'a::order"
+  shows "a # xs \<le> b # ys \<longleftrightarrow> length xs < length ys \<or> length xs = length ys \<and> (a < b \<or> a = b \<and> xs \<le> ys)"
+  by (auto simp: list_le_def Cons_less_Cons)
+
 end
--- a/src/HOL/Library/List_Lexorder.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/Library/List_Lexorder.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -26,17 +26,20 @@
   let ?r = "{(u, v::'a). u < v}"
   have tr: "trans ?r"
     using trans_def by fastforce
+  have *: "antisym {(u, v::'a). u < v}"
+    using antisym_def by fastforce
   have \<section>: False
     if "(xs,ys) \<in> lexord ?r" "(ys,xs) \<in> lexord ?r" for xs ys :: "'a list"
   proof -
     have "(xs,xs) \<in> lexord ?r"
-      using that transD [OF lexord_transI [OF tr]] by blast
+      using lexord_trans that tr * by blast
     then show False
       by (meson case_prodD lexord_irreflexive less_irrefl mem_Collect_eq)
   qed
   show "xs \<le> xs" for xs :: "'a list" by (simp add: list_le_def)
   show "xs \<le> zs" if "xs \<le> ys" and "ys \<le> zs" for xs ys zs :: "'a list"
-    using that transD [OF lexord_transI [OF tr]] by (auto simp add: list_le_def list_less_def)
+    using that transD [OF lexord_transI [OF tr]] *
+    by (auto simp add: list_le_def list_less_def)
   show "xs = ys" if "xs \<le> ys" "ys \<le> xs" for xs ys :: "'a list"
     using \<section> that list_le_def list_less_def by blast
   show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs" for xs ys :: "'a list"
@@ -70,7 +73,7 @@
 lemma Nil_less_Cons [simp]: "[] < a # x"
   by (simp add: list_less_def)
 
-lemma Cons_less_Cons [simp]: "a # x < b # y \<longleftrightarrow> a < b \<or> a = b \<and> x < y"
+lemma Cons_less_Cons [simp]: "a # x < b # y \<longleftrightarrow> (if a = b then x < y else a < b)"
   by (simp add: list_less_def)
 
 lemma le_Nil [simp]: "x \<le> [] \<longleftrightarrow> x = []"
--- a/src/HOL/List.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/List.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -6348,11 +6348,11 @@
 lemma lexn_conv:
   "lexn r n =
     {(xs,ys). length xs = n \<and> length ys = n \<and>
-    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y) \<in> r)}"
+    (\<exists>xys x y xs' ys'. xs = xys @ x#xs' \<and> ys = xys @ y # ys' \<and> x\<noteq>y \<and> (x,y) \<in> r)}"
 proof (induction n)
   case (Suc n)
-  then show ?case
-    apply (simp add: image_Collect lex_prod_def, safe, blast)
+  show ?case
+    apply (simp add: Suc image_Collect lex_prod_def, safe, blast)
      apply (rule_tac x = "ab # xys" in exI, simp)
     apply (case_tac xys; force)
     done
@@ -6360,7 +6360,7 @@
 
 text\<open>By Mathias Fleury:\<close>
 proposition lexn_transI:
-  assumes "trans r" shows "trans (lexn r n)"
+  assumes "trans r" "antisym r" shows "trans (lexn r n)"
 unfolding trans_def
 proof (intro allI impI)
   fix as bs cs
@@ -6369,13 +6369,13 @@
     n: "length as = n" and "length bs = n" and
     as: "as = abs @ a # as'" and
     bs: "bs = abs @ b # bs'" and
-    abr: "(a, b) \<in> r"
+    abr: "(a, b) \<in> r" "a\<noteq>b"
     using asbs unfolding lexn_conv by blast
   obtain bcs b' c' cs' bs' where
     n': "length cs = n" and "length bs = n" and
     bs': "bs = bcs @ b' # bs'" and
     cs: "cs = bcs @ c' # cs'" and
-    b'c'r: "(b', c') \<in> r"
+    b'c'r: "(b', c') \<in> r" "b'\<noteq>c'"
     using bscs unfolding lexn_conv by blast
   consider (le) "length bcs < length abs"
     | (eq) "length bcs = length abs"
@@ -6385,7 +6385,7 @@
     let ?k = "length bcs"
     case le
     hence "as ! ?k = bs ! ?k" unfolding as bs by (simp add: nth_append)
-    hence "(as ! ?k, cs ! ?k) \<in> r" using b'c'r unfolding bs' cs by auto
+    hence "(as ! ?k, cs ! ?k) \<in> r" "as ! ?k \<noteq> cs ! ?k" using b'c'r unfolding bs' cs by auto
     moreover
     have "length bcs < length as" using le unfolding as by simp
     from id_take_nth_drop[OF this]
@@ -6397,12 +6397,12 @@
     moreover have "take ?k as = take ?k cs"
       using le arg_cong[OF bs, of "take (length bcs)"]
       unfolding cs as bs' by auto
-    ultimately show ?thesis using n n' unfolding lexn_conv by auto
+    ultimately show ?thesis using n n' \<open>b'\<noteq>c'\<close> unfolding lexn_conv by auto
   next
     let ?k = "length abs"
     case ge
     hence "bs ! ?k = cs ! ?k" unfolding bs' cs by (simp add: nth_append)
-    hence "(as ! ?k, cs ! ?k) \<in> r" using abr unfolding as bs by auto
+    hence "(as ! ?k, cs ! ?k) \<in> r" "as ! ?k \<noteq> cs ! ?k" using abr unfolding as bs by auto
     moreover
     have "length abs < length as" using ge unfolding as by simp
     from id_take_nth_drop[OF this]
@@ -6418,21 +6418,23 @@
     let ?k = "length abs"
     case eq
     hence *: "abs = bcs" "b = b'" using bs bs' by auto
-    hence "(a, c') \<in> r"
-      using abr b'c'r assms unfolding trans_def by blast
-    with * show ?thesis using n n' unfolding lexn_conv as bs cs by auto
+    then have "a\<noteq>c'"
+      using abr(1) antisymD assms(2) b'c'r(1) b'c'r(2) by fastforce
+    have "(a, c') \<in> r"
+      using * abr b'c'r assms unfolding trans_def by blast
+    with * \<open>a\<noteq>c'\<close> show ?thesis using n n' unfolding lexn_conv as bs cs by auto
   qed
 qed
 
 corollary lex_transI:
-    assumes "trans r" shows "trans (lex r)"
+    assumes "trans r" "antisym r" shows "trans (lex r)"
   using lexn_transI [OF assms]
   by (clarsimp simp add: lex_def trans_def) (metis lexn_length)
 
 lemma lex_conv:
   "lex r =
     {(xs,ys). length xs = length ys \<and>
-    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y) \<in> r)}"
+    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> x\<noteq>y \<and> (x,y) \<in> r)}"
 by (force simp add: lex_def lexn_conv)
 
 lemma wf_lenlex [intro!]: "wf r \<Longrightarrow> wf (lenlex r)"
@@ -6441,7 +6443,7 @@
 lemma lenlex_conv:
     "lenlex r = {(xs,ys). length xs < length ys \<or>
                  length xs = length ys \<and> (xs, ys) \<in> lex r}"
-by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def)
+  by (auto simp add: lenlex_def Id_on_def lex_prod_def inv_image_def)
 
 lemma total_lenlex:
   assumes "total r"
@@ -6455,15 +6457,15 @@
     then consider "(x,y) \<in> r" | "(y,x) \<in> r"
       by (meson UNIV_I assms total_on_def)
     then show ?thesis
-    by cases (use len in \<open>(force simp add: lexn_conv xs ys)+\<close>)
+    by cases (use len \<open>x\<noteq>y\<close> in \<open>(force simp add: lexn_conv xs ys)+\<close>)
 qed
   then show ?thesis
     by (fastforce simp: lenlex_def total_on_def lex_def)
 qed
 
-lemma lenlex_transI [intro]: "trans r \<Longrightarrow> trans (lenlex r)"
+lemma lenlex_transI [intro]: "\<lbrakk>trans r; antisym r\<rbrakk> \<Longrightarrow> trans (lenlex r)"
   unfolding lenlex_def
-  by (meson lex_transI trans_inv_image trans_less_than trans_lex_prod)
+  by (simp add: antisym_def lex_transI trans_inv_image)
 
 lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
   by (simp add: lex_conv)
@@ -6472,8 +6474,8 @@
   by (simp add:lex_conv)
 
 lemma Cons_in_lex [simp]:
-  "(x # xs, y # ys) \<in> lex r \<longleftrightarrow> (x, y) \<in> r \<and> length xs = length ys \<or> x = y \<and> (xs, ys) \<in> lex r"
- (is "?lhs = ?rhs")
+  "(x # xs, y # ys) \<in> lex r \<longleftrightarrow> x\<noteq>y \<and> (x,y) \<in> r \<and> length xs = length ys \<or> x = y \<and> (xs, ys) \<in> lex r"
+  (is "?lhs = ?rhs")
 proof
   assume ?lhs then show ?rhs
     by (simp add: lex_conv) (metis hd_append list.sel(1) list.sel(3) tl_append2)
@@ -6489,7 +6491,7 @@
 lemma Cons_lenlex_iff: 
   "((m # ms, n # ns) \<in> lenlex r) \<longleftrightarrow> 
     length ms < length ns 
-  \<or> length ms = length ns \<and> (m,n) \<in> r 
+  \<or> length ms = length ns \<and> m\<noteq>n \<and> (m,n) \<in> r 
   \<or> (m = n \<and> (ms,ns) \<in> lenlex r)"
   by (auto simp: lenlex_def)
 
@@ -6497,7 +6499,7 @@
   by (induction xs) (auto simp add: Cons_lenlex_iff)
 
 lemma lenlex_trans:
-    "\<lbrakk>(x,y) \<in> lenlex r; (y,z) \<in> lenlex r; trans r\<rbrakk> \<Longrightarrow> (x,z) \<in> lenlex r"
+    "\<lbrakk>(x,y) \<in> lenlex r; (y,z) \<in> lenlex r; trans r; antisym r\<rbrakk> \<Longrightarrow> (x,z) \<in> lenlex r"
   by (meson lenlex_transI transD)
 
 lemma lenlex_length: "(ms, ns) \<in> lenlex r \<Longrightarrow> length ms \<le> length ns"
@@ -6545,23 +6547,30 @@
 
 definition lexord :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 "lexord r = {(x,y). \<exists> a v. y = x @ a # v \<or>
-            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
+            (\<exists> u a b v w. (a,b) \<in> r \<and> a\<noteq>b \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
+
 
 lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
-by (unfold lexord_def, induct_tac y, auto)
+  by (unfold lexord_def, induct_tac y, auto)
 
 lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
-by (unfold lexord_def, induct_tac x, auto)
+  by (unfold lexord_def, induct_tac x, auto)
 
 lemma lexord_cons_cons[simp]:
-  "(a # x, b # y) \<in> lexord r \<longleftrightarrow> (a,b)\<in> r \<or> (a = b \<and> (x,y)\<in> lexord r)"  (is "?lhs = ?rhs")
+  "(a # x, b # y) \<in> lexord r \<longleftrightarrow> (if a=b then (x,y)\<in> lexord r else (a,b)\<in> r)"  (is "?lhs = ?rhs")
 proof
   assume ?lhs
   then show ?rhs
     apply (simp add: lexord_def)
     apply (metis hd_append list.sel(1) list.sel(3) tl_append2)
     done
-qed (auto simp add: lexord_def; (blast | meson Cons_eq_appendI))
+next
+  assume ?rhs
+  then show ?lhs
+    apply (simp add: lexord_def split: if_split_asm)
+    apply (meson Cons_eq_appendI)
+    by blast
+qed 
 
 lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
 
@@ -6569,7 +6578,7 @@
   by (induct_tac x, auto)
 
 lemma lexord_append_left_rightI:
-  "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
+  "\<lbrakk>(a,b) \<in> r; a\<noteq>b\<rbrakk> \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
   by (induct_tac u, auto)
 
 lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
@@ -6582,13 +6591,13 @@
 lemma lexord_take_index_conv:
    "((x,y) \<in> lexord r) =
     ((length x < length y \<and> take (length x) y = x) \<or>
-     (\<exists>i. i < min(length x)(length y) \<and> take i x = take i y \<and> (x!i,y!i) \<in> r))"
+     (\<exists>i. i < min(length x)(length y) \<and> take i x = take i y \<and> (x!i,y!i) \<in> r \<and> x!i \<noteq> y!i))"
 proof -
   have "(\<exists>a v. y = x @ a # v) = (length x < length y \<and> take (length x) y = x)"
     by (metis Cons_nth_drop_Suc append_eq_conv_conj drop_all list.simps(3) not_le)
   moreover
-  have "(\<exists>u a b. (a, b) \<in> r \<and> (\<exists>v. x = u @ a # v) \<and> (\<exists>w. y = u @ b # w)) =
-        (\<exists>i<length x. i < length y \<and> take i x = take i y \<and> (x ! i, y ! i) \<in> r)"
+  have "(\<exists>u a b. (a,b) \<in> r \<and> a\<noteq>b \<and> (\<exists>v. x = u @ a # v) \<and> (\<exists>w. y = u @ b # w)) =
+        (\<exists>i<length x. i < length y \<and> take i x = take i y \<and> (x ! i, y ! i) \<in> r \<and> x!i \<noteq> y!i)"
     apply safe
     using less_iff_Suc_add apply auto[1]
     by (metis id_take_nth_drop)
@@ -6604,10 +6613,12 @@
 qed auto
 
 lemma lexord_irreflexive: "\<forall>x. (x,x) \<notin> r \<Longrightarrow> (xs,xs) \<notin> lexord r"
-by (induct xs) auto
+  by (induct xs) auto
 
 text\<open>By Ren\'e Thiemann:\<close>
 lemma lexord_partial_trans:
+  assumes "antisym r"
+  shows
   "(\<And>x y z. x \<in> set xs \<Longrightarrow> (x,y) \<in> r \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> (x,z) \<in> r)
    \<Longrightarrow>  (xs,ys) \<in> lexord r  \<Longrightarrow>  (ys,zs) \<in> lexord r \<Longrightarrow>  (xs,zs) \<in> lexord r"
 proof (induct xs arbitrary: ys zs)
@@ -6618,11 +6629,13 @@
   from Cons(3) obtain y ys where yys: "yys = y # ys" unfolding lexord_def
     by (cases yys, auto)
   note Cons = Cons[unfolded yys]
-  from Cons(3) have one: "(x,y) \<in> r \<or> x = y \<and> (xs,ys) \<in> lexord r" by auto
+  from Cons(3) have one: "x\<noteq>y \<and> (x,y) \<in> r \<or> x = y \<and> (xs,ys) \<in> lexord r"
+    by (auto split: if_split_asm)
   from Cons(4) obtain z zs where zzs: "zzs = z # zs" unfolding lexord_def
     by (cases zzs, auto)
   note Cons = Cons[unfolded zzs]
-  from Cons(4) have two: "(y,z) \<in> r \<or> y = z \<and> (ys,zs) \<in> lexord r" by auto
+  from Cons(4) have two: "y \<noteq> z \<and> (y,z) \<in> r \<or> y = z \<and> (ys,zs) \<in> lexord r" 
+    by (auto split: if_split_asm)
   {
     assume "(xs,ys) \<in> lexord r" and "(ys,zs) \<in> lexord r"
     from Cons(1)[OF _ this] Cons(2)
@@ -6633,15 +6646,16 @@
     from Cons(2)[OF _ this] have "(x,z) \<in> r" by auto
   } note ind2 = this
   from one two ind1 ind2
-  have "(x,z) \<in> r \<or> x = z \<and> (xs,zs) \<in> lexord r" by blast
-  thus ?case unfolding zzs by auto
+  have "x\<noteq>z \<and> (x,z) \<in> r \<or> x = z \<and> (xs,zs) \<in> lexord r"
+    using assms by (auto simp: antisym_def)
+  thus ?case unfolding zzs by (auto split: if_split_asm)
 qed
 
 lemma lexord_trans:
-  "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
-  by(auto simp: trans_def intro:lexord_partial_trans)
-
-lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
+  "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r; antisym r\<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
+  by(auto simp: trans_def intro: lexord_partial_trans)
+
+lemma lexord_transI:  "\<lbrakk>trans r; antisym r\<rbrakk> \<Longrightarrow> trans (lexord r)"
   by (meson lexord_trans transI)
 
 lemma total_lexord: "total r \<Longrightarrow> total (lexord r)"
@@ -6659,7 +6673,7 @@
       by (metis lexord_Nil_left list.exhaust)
   next
     case (Cons a x y) then show ?case
-      by (cases y) (force+)
+      by (metis eq_Nil_appendI lexord_append_rightI lexord_cons_cons list.exhaust)
   qed
 qed
 
@@ -6734,7 +6748,7 @@
   Author: Andreas Lochbihler
 \<close>
 
-context ord
+context order
 begin
 
 context
@@ -6798,11 +6812,8 @@
 
 end
 
-declare ord.lexordp_simps [simp, code]
-declare ord.lexordp_eq_simps [code, simp]
-
-lemma lexord_code [code, code_unfold]: "lexordp = ord.lexordp less"
-unfolding lexordp_def ord.lexordp_def ..
+declare order.lexordp_simps [simp, code]
+declare order.lexordp_eq_simps [code, simp]
 
 context order
 begin
@@ -6810,7 +6821,7 @@
 lemma lexordp_antisym:
   assumes "lexordp xs ys" "lexordp ys xs"
   shows False
-using assms by induct auto
+  using assms by induct auto
 
 lemma lexordp_irreflexive': "\<not> lexordp xs xs"
 by(rule lexordp_irreflexive) simp
@@ -6849,7 +6860,7 @@
 
 lemma lexordp_conv_lexord:
   "lexordp xs ys \<longleftrightarrow> (xs, ys) \<in> lexord {(x, y). x < y}"
-by(simp add: lexordp_iff lexord_def)
+  by (simp add: lexordp_iff lexord_def; blast)
 
 lemma lexordp_eq_antisym:
   assumes "lexordp_eq xs ys" "lexordp_eq ys xs"
@@ -7404,8 +7415,8 @@
 lemma [code]:
   "lexordp r xs [] = False"
   "lexordp r [] (y#ys) = True"
-  "lexordp r (x # xs) (y # ys) = (r x y \<or> (x = y \<and> lexordp r xs ys))"
-unfolding lexordp_def by auto
+  "lexordp r (x # xs) (y # ys) = (if x = y then lexordp r xs ys else r x y)"
+  unfolding lexordp_def by auto
 
 text \<open>Bounded quantification and summation over nats.\<close>
 
--- a/src/HOL/Nominal/Examples/Class3.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/Nominal/Examples/Class3.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -1,5 +1,5 @@
 theory Class3
-imports Class2
+  imports Class2
 begin
 
 text \<open>3rd Main Lemma\<close>
@@ -10,3068 +10,3076 @@
          (\<exists>N'. R = Cut <a>.M (x).N' \<and> N \<longrightarrow>\<^sub>a N') \<or>
          (Cut <a>.M (x).N \<longrightarrow>\<^sub>c R) \<or>
          (Cut <a>.M (x).N \<longrightarrow>\<^sub>l R)"
-using a
-apply(erule_tac a_redu.cases)
-apply(simp_all)
-apply(simp_all add: trm.inject)
-apply(rule disjI1)
-apply(auto simp add: alpha)[1]
-apply(rule_tac x="[(a,aa)]\<bullet>M'" in exI)
-apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
-apply(rule_tac x="[(a,aa)]\<bullet>M'" in exI)
-apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
-apply(rule disjI2)
-apply(rule disjI1)
-apply(auto simp add: alpha)[1]
-apply(rule_tac x="[(x,xa)]\<bullet>N'" in exI)
-apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
-apply(rule_tac x="[(x,xa)]\<bullet>N'" in exI)
-apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
-done
+  using a
+  apply(erule_tac a_redu.cases)
+                  apply(simp_all)
+   apply(simp_all add: trm.inject)
+   apply(rule disjI1)
+   apply(auto simp add: alpha)[1]
+    apply(rule_tac x="[(a,aa)]\<bullet>M'" in exI)
+    apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
+   apply(rule_tac x="[(a,aa)]\<bullet>M'" in exI)
+   apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
+  apply(rule disjI2)
+  apply(rule disjI1)
+  apply(auto simp add: alpha)[1]
+   apply(rule_tac x="[(x,xa)]\<bullet>N'" in exI)
+   apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
+  apply(rule_tac x="[(x,xa)]\<bullet>N'" in exI)
+  apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
+  done
 
 lemma Cut_c_redu_elim:
   assumes a: "Cut <a>.M (x).N \<longrightarrow>\<^sub>c R"
   shows "(R = M{a:=(x).N} \<and> \<not>fic M a) \<or>
          (R = N{x:=<a>.M} \<and> \<not>fin N x)"
-using a
-apply(erule_tac c_redu.cases)
-apply(simp_all)
-apply(simp_all add: trm.inject)
-apply(rule disjI1)
-apply(auto simp add: alpha)[1]
-apply(simp add: subst_rename fresh_atm)
-apply(simp add: subst_rename fresh_atm)
-apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
-apply(perm_simp)
-apply(simp add: subst_rename fresh_atm fresh_prod)
-apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
-apply(perm_simp)
-apply(rule disjI2)
-apply(auto simp add: alpha)[1]
-apply(simp add: subst_rename fresh_atm)
-apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
-apply(perm_simp)
-apply(simp add: subst_rename fresh_atm fresh_prod)
-apply(simp add: subst_rename fresh_atm fresh_prod)
-apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
-apply(perm_simp)
-done
+  using a
+  apply(erule_tac c_redu.cases)
+   apply(simp_all)
+   apply(simp_all add: trm.inject)
+   apply(rule disjI1)
+   apply(auto simp add: alpha)[1]
+       apply(simp add: subst_rename fresh_atm)
+      apply(simp add: subst_rename fresh_atm)
+     apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+     apply(perm_simp)
+    apply(simp add: subst_rename fresh_atm fresh_prod)
+   apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
+   apply(perm_simp)
+  apply(rule disjI2)
+  apply(auto simp add: alpha)[1]
+      apply(simp add: subst_rename fresh_atm)
+     apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+     apply(perm_simp)
+    apply(simp add: subst_rename fresh_atm fresh_prod)
+   apply(simp add: subst_rename fresh_atm fresh_prod)
+  apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
+  apply(perm_simp)
+  done
 
 lemma not_fic_crename_aux:
   assumes a: "fic M c" "c\<sharp>(a,b)"
   shows "fic (M[a\<turnstile>c>b]) c" 
-using a
-apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
-apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
-done
+  using a
+  apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
+             apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
+  done
 
 lemma not_fic_crename:
   assumes a: "\<not>(fic (M[a\<turnstile>c>b]) c)" "c\<sharp>(a,b)"
   shows "\<not>(fic M c)" 
-using a
-apply(auto dest:  not_fic_crename_aux)
-done
+  using a
+  apply(auto dest:  not_fic_crename_aux)
+  done
 
 lemma not_fin_crename_aux:
   assumes a: "fin M y"
   shows "fin (M[a\<turnstile>c>b]) y" 
-using a
-apply(nominal_induct M avoiding: a b rule: trm.strong_induct)
-apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
-done
+  using a
+  apply(nominal_induct M avoiding: a b rule: trm.strong_induct)
+             apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
+  done
 
 lemma not_fin_crename:
   assumes a: "\<not>(fin (M[a\<turnstile>c>b]) y)" 
   shows "\<not>(fin M y)" 
-using a
-apply(auto dest:  not_fin_crename_aux)
-done
+  using a
+  apply(auto dest:  not_fin_crename_aux)
+  done
 
 lemma crename_fresh_interesting1:
   fixes c::"coname"
   assumes a: "c\<sharp>(M[a\<turnstile>c>b])" "c\<sharp>(a,b)"
   shows "c\<sharp>M"
-using a
-apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
-apply(auto split: if_splits simp add: abs_fresh)
-done
+  using a
+  apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: abs_fresh)
+  done
 
 lemma crename_fresh_interesting2:
   fixes x::"name"
   assumes a: "x\<sharp>(M[a\<turnstile>c>b])" 
   shows "x\<sharp>M"
-using a
-apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
-apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
-done
+  using a
+  apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
+  done
 
 
 lemma fic_crename:
   assumes a: "fic (M[a\<turnstile>c>b]) c" "c\<sharp>(a,b)"
   shows "fic M c" 
-using a
-apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
-apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
-           split: if_splits)
-apply(auto dest: crename_fresh_interesting1 simp add: fresh_prod fresh_atm)
-done
+  using a
+  apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
+             apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
+      split: if_splits)
+       apply(auto dest: crename_fresh_interesting1 simp add: fresh_prod fresh_atm)
+  done
 
 lemma fin_crename:
   assumes a: "fin (M[a\<turnstile>c>b]) x"
   shows "fin M x" 
-using a
-apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
-apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
-           split: if_splits)
-apply(auto dest: crename_fresh_interesting2 simp add: fresh_prod fresh_atm)
-done
+  using a
+  apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
+             apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
+      split: if_splits)
+        apply(auto dest: crename_fresh_interesting2 simp add: fresh_prod fresh_atm)
+  done
 
 lemma crename_Cut:
   assumes a: "R[a\<turnstile>c>b] = Cut <c>.M (x).N" "c\<sharp>(a,b,N,R)" "x\<sharp>(M,R)"
   shows "\<exists>M' N'. R = Cut <c>.M' (x).N' \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> x\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: a b c x M N rule: trm.strong_induct)
-apply(auto split: if_splits)
-apply(simp add: trm.inject)
-apply(auto simp add: alpha)
-apply(rule_tac x="[(name,x)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(auto simp add: fresh_atm)[1]
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name,x)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(auto simp add: fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c x M N rule: trm.strong_induct)
+             apply(auto split: if_splits)
+  apply(simp add: trm.inject)
+  apply(auto simp add: alpha)
+    apply(rule_tac x="[(name,x)]\<bullet>trm2" in exI)
+    apply(perm_simp)
+    apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+    apply(drule sym)
+    apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+    apply(simp add: eqvts calc_atm)
+   apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+   apply(auto simp add: fresh_atm)[1]
+  apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule_tac x="[(name,x)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  apply(auto simp add: fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_NotR:
   assumes a: "R[a\<turnstile>c>b] = NotR (x).N c" "x\<sharp>R" "c\<sharp>(a,b)"
   shows "\<exists>N'. (R = NotR (x).N' c) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_NotR':
   assumes a: "R[a\<turnstile>c>b] = NotR (x).N c" "x\<sharp>R" "c\<sharp>a"
   shows "(\<exists>N'. (R = NotR (x).N' c) \<and> N'[a\<turnstile>c>b] = N) \<or> (\<exists>N'. (R = NotR (x).N' a) \<and> b=c \<and> N'[a\<turnstile>c>b] = N)"
-using a
-apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
-apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
+   apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_NotR_aux:
   assumes a: "R[a\<turnstile>c>b] = NotR (x).N c" 
   shows "(a=c \<and> a=b) \<or> (a\<noteq>c)" 
-using a
-apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma crename_NotL:
   assumes a: "R[a\<turnstile>c>b] = NotL <c>.N y" "c\<sharp>(R,a,b)"
   shows "\<exists>N'. (R = NotL <c>.N' y) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b c y N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c y N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_AndL1:
   assumes a: "R[a\<turnstile>c>b] = AndL1 (x).N y" "x\<sharp>R"
   shows "\<exists>N'. (R = AndL1 (x).N' y) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name1,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(name1,x)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_AndL2:
   assumes a: "R[a\<turnstile>c>b] = AndL2 (x).N y" "x\<sharp>R"
   shows "\<exists>N'. (R = AndL2 (x).N' y) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name1,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(name1,x)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_AndR_aux:
   assumes a: "R[a\<turnstile>c>b] = AndR <c>.M <d>.N e" 
   shows "(a=e \<and> a=b) \<or> (a\<noteq>e)" 
-using a
-apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma crename_AndR:
   assumes a: "R[a\<turnstile>c>b] = AndR <c>.M <d>.N e" "c\<sharp>(a,b,d,e,N,R)" "d\<sharp>(a,b,c,e,M,R)" "e\<sharp>(a,b)"
   shows "\<exists>M' N'. R = AndR <c>.M' <d>.N' e \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> d\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha)
-apply(simp add: fresh_atm fresh_prod)
-apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha)
+        apply(simp add: fresh_atm fresh_prod)
+       apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
+       apply(perm_simp)
+       apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+      apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+      apply(perm_simp)
+      apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+     apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+     apply(perm_simp)
+     apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+    apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
+    apply(perm_simp)
+    apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_AndR':
   assumes a: "R[a\<turnstile>c>b] = AndR <c>.M <d>.N e" "c\<sharp>(a,b,d,e,N,R)" "d\<sharp>(a,b,c,e,M,R)" "e\<sharp>a"
   shows "(\<exists>M' N'. R = AndR <c>.M' <d>.N' e \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> d\<sharp>M') \<or>
          (\<exists>M' N'. R = AndR <c>.M' <d>.N' a \<and> b=e \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> d\<sharp>M')"
-using a [[simproc del: defined_all]]
-apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha)[1]
-apply(auto split: if_splits simp add: trm.inject alpha)[1]
-apply(auto split: if_splits simp add: trm.inject alpha)[1]
-apply(auto split: if_splits simp add: trm.inject alpha)[1]
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha)[1]
-apply(case_tac "coname3=a")
-apply(simp)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[a\<turnstile>c>e]" in  sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(simp)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a [[simproc del: defined_all]]
+  apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha)[1]
+            apply(auto split: if_splits simp add: trm.inject alpha)[1]
+           apply(auto split: if_splits simp add: trm.inject alpha)[1]
+          apply(auto split: if_splits simp add: trm.inject alpha)[1]
+         apply(simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha)[1]
+         apply(case_tac "coname3=a")
+          apply(simp)
+          apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+          apply(perm_simp)
+          apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+          apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
+          apply(perm_simp)
+          apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
+           apply(drule sym)
+           apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+           apply(simp add: eqvts calc_atm)
+          apply(drule_tac s="trm2[a\<turnstile>c>e]" in  sym)
+          apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+          apply(simp add: eqvts calc_atm)
+         apply(simp)
+         apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+         apply(perm_simp)
+         apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+         apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
+         apply(perm_simp)
+         apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
+          apply(drule sym)
+          apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+          apply(simp add: eqvts calc_atm)
+         apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
+         apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+         apply(simp add: eqvts calc_atm)
+        apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma crename_OrR1_aux:
   assumes a: "R[a\<turnstile>c>b] = OrR1 <c>.M e" 
   shows "(a=e \<and> a=b) \<or> (a\<noteq>e)" 
-using a
-apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma crename_OrR1:
   assumes a: "R[a\<turnstile>c>b] = OrR1 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>(a,b)"
   shows "\<exists>N'. (R = OrR1 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_OrR1':
   assumes a: "R[a\<turnstile>c>b] = OrR1 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>a"
   shows "(\<exists>N'. (R = OrR1 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N) \<or>
          (\<exists>N'. (R = OrR1 <c>.N' a) \<and> b=d \<and> N'[a\<turnstile>c>b] = N)" 
-using a
-apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+   apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_OrR2_aux:
   assumes a: "R[a\<turnstile>c>b] = OrR2 <c>.M e" 
   shows "(a=e \<and> a=b) \<or> (a\<noteq>e)" 
-using a
-apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma crename_OrR2:
   assumes a: "R[a\<turnstile>c>b] = OrR2 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>(a,b)"
   shows "\<exists>N'. (R = OrR2 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_OrR2':
   assumes a: "R[a\<turnstile>c>b] = OrR2 <c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>a"
   shows "(\<exists>N'. (R = OrR2 <c>.N' d) \<and> N'[a\<turnstile>c>b] = N) \<or>
          (\<exists>N'. (R = OrR2 <c>.N' a) \<and> b=d \<and> N'[a\<turnstile>c>b] = N)" 
-using a
-apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+   apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_OrL:
   assumes a: "R[a\<turnstile>c>b] = OrL (x).M (y).N z" "x\<sharp>(y,z,N,R)" "y\<sharp>(x,z,M,R)"
   shows "\<exists>M' N'. R = OrL (x).M' (y).N' z \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> x\<sharp>N' \<and> y\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: a b x y z M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha)
-apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b x y z M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha)
+    apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
+    apply(perm_simp)
+    apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_ImpL:
   assumes a: "R[a\<turnstile>c>b] = ImpL <c>.M (y).N z" "c\<sharp>(a,b,N,R)" "y\<sharp>(z,M,R)"
   shows "\<exists>M' N'. R = ImpL <c>.M' (y).N' z \<and> M'[a\<turnstile>c>b] = M \<and> N'[a\<turnstile>c>b] = N \<and> c\<sharp>N' \<and> y\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: a b c y z M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha)
-apply(rule_tac x="[(name1,y)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(name1,y)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b c y z M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha)
+    apply(rule_tac x="[(name1,y)]\<bullet>trm2" in exI)
+    apply(perm_simp)
+    apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(name1,y)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[a\<turnstile>c>b]" in  sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_ImpR_aux:
   assumes a: "R[a\<turnstile>c>b] = ImpR (x).<c>.M e" 
   shows "(a=e \<and> a=b) \<or> (a\<noteq>e)" 
-using a
-apply(nominal_induct R avoiding: x a b c e M rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: x a b c e M rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma crename_ImpR:
   assumes a: "R[a\<turnstile>c>b] = ImpR (x).<c>.N d" "c\<sharp>(R,a,b)" "d\<sharp>(a,b)" "x\<sharp>R" 
   shows "\<exists>N'. (R = ImpR (x).<c>.N' d) \<and> N'[a\<turnstile>c>b] = N" 
-using a
-apply(nominal_induct R avoiding: a b x c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name,x)]\<bullet>[(coname1, c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: a b x c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
+   apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
+   apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule_tac x="[(name,x)]\<bullet>[(coname1, c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_ImpR':
   assumes a: "R[a\<turnstile>c>b] = ImpR (x).<c>.N d" "c\<sharp>(R,a,b)" "x\<sharp>R" "d\<sharp>a"
   shows "(\<exists>N'. (R = ImpR (x).<c>.N' d) \<and> N'[a\<turnstile>c>b] = N) \<or>
          (\<exists>N'. (R = ImpR (x).<c>.N' a) \<and> b=d \<and> N'[a\<turnstile>c>b] = N)" 
-using a
-apply(nominal_induct R avoiding: x a b c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject abs_perm calc_atm)
-apply(rule_tac x="[(name,x)]\<bullet>[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(name,x)]\<bullet>[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: x a b c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject abs_perm calc_atm)
+   apply(rule_tac x="[(name,x)]\<bullet>[(coname1,c)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(name,x)]\<bullet>[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma crename_ax2:
   assumes a: "N[a\<turnstile>c>b] = Ax x c"
   shows "\<exists>d. N = Ax x d"
-using a
-apply(nominal_induct N avoiding: a b rule: trm.strong_induct)
-apply(auto split: if_splits)
-apply(simp add: trm.inject)
-done
+  using a
+  apply(nominal_induct N avoiding: a b rule: trm.strong_induct)
+             apply(auto split: if_splits)
+  apply(simp add: trm.inject)
+  done
 
 lemma crename_interesting1:
   assumes a: "distinct [a,b,c]"
   shows "M[a\<turnstile>c>c][c\<turnstile>c>b] = M[c\<turnstile>c>b][a\<turnstile>c>b]"
-using a
-apply(nominal_induct M avoiding: a c b rule: trm.strong_induct)
-apply(auto simp add: rename_fresh simp add: trm.inject alpha)
-apply(blast)
-apply(rotate_tac 12)
-apply(drule_tac x="a" in meta_spec)
-apply(rotate_tac 15)
-apply(drule_tac x="c" in meta_spec)
-apply(rotate_tac 15)
-apply(drule_tac x="b" in meta_spec)
-apply(blast)
-apply(blast)
-apply(blast)
-done
+  using a
+  apply(nominal_induct M avoiding: a c b rule: trm.strong_induct)
+             apply(auto simp add: rename_fresh simp add: trm.inject alpha)
+     apply(blast)
+    apply(rotate_tac 12)
+    apply(drule_tac x="a" in meta_spec)
+    apply(rotate_tac 15)
+    apply(drule_tac x="c" in meta_spec)
+    apply(rotate_tac 15)
+    apply(drule_tac x="b" in meta_spec)
+    apply(blast)
+   apply(blast)
+  apply(blast)
+  done
 
 lemma crename_interesting2:
   assumes a: "a\<noteq>c" "a\<noteq>d" "a\<noteq>b" "c\<noteq>d" "b\<noteq>c"
   shows "M[a\<turnstile>c>b][c\<turnstile>c>d] = M[c\<turnstile>c>d][a\<turnstile>c>b]"
-using a
-apply(nominal_induct M avoiding: a c b d rule: trm.strong_induct)
-apply(auto simp add: rename_fresh simp add: trm.inject alpha)
-done
+  using a
+  apply(nominal_induct M avoiding: a c b d rule: trm.strong_induct)
+             apply(auto simp add: rename_fresh simp add: trm.inject alpha)
+  done
 
 lemma crename_interesting3:
   shows "M[a\<turnstile>c>c][x\<turnstile>n>y] = M[x\<turnstile>n>y][a\<turnstile>c>c]"
-apply(nominal_induct M avoiding: a c x y rule: trm.strong_induct)
-apply(auto simp add: rename_fresh simp add: trm.inject alpha)
-done
+  apply(nominal_induct M avoiding: a c x y rule: trm.strong_induct)
+             apply(auto simp add: rename_fresh simp add: trm.inject alpha)
+  done
 
 lemma crename_credu:
   assumes a: "(M[a\<turnstile>c>b]) \<longrightarrow>\<^sub>c M'"
   shows "\<exists>M0. M0[a\<turnstile>c>b]=M' \<and> M \<longrightarrow>\<^sub>c M0"
-using a
-apply(nominal_induct M\<equiv>"M[a\<turnstile>c>b]" M' avoiding: M a b rule: c_redu.strong_induct)
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)
-apply(rule_tac x="M'{a:=(x).N'}" in exI)
-apply(rule conjI)
-apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
-apply(rule c_redu.intros)
-apply(auto dest: not_fic_crename)[1]
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)
-apply(rule_tac x="N'{x:=<a>.M'}" in exI)
-apply(rule conjI)
-apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
-apply(rule c_redu.intros)
-apply(auto dest: not_fin_crename)[1]
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-done
+  using a
+  apply(nominal_induct M\<equiv>"M[a\<turnstile>c>b]" M' avoiding: M a b rule: c_redu.strong_induct)
+   apply(drule sym)
+   apply(drule crename_Cut)
+     apply(simp)
+    apply(simp)
+   apply(auto)
+   apply(rule_tac x="M'{a:=(x).N'}" in exI)
+   apply(rule conjI)
+    apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
+   apply(rule c_redu.intros)
+     apply(auto dest: not_fic_crename)[1]
+    apply(simp add: abs_fresh)
+   apply(simp add: abs_fresh)
+  apply(drule sym)
+  apply(drule crename_Cut)
+    apply(simp)
+   apply(simp)
+  apply(auto)
+  apply(rule_tac x="N'{x:=<a>.M'}" in exI)
+  apply(rule conjI)
+   apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
+  apply(rule c_redu.intros)
+    apply(auto dest: not_fin_crename)[1]
+   apply(simp add: abs_fresh)
+  apply(simp add: abs_fresh)
+  done
 
 lemma crename_lredu:
   assumes a: "(M[a\<turnstile>c>b]) \<longrightarrow>\<^sub>l M'"
   shows "\<exists>M0. M0[a\<turnstile>c>b]=M' \<and> M \<longrightarrow>\<^sub>l M0"
-using a
-apply(nominal_induct M\<equiv>"M[a\<turnstile>c>b]" M' avoiding: M a b rule: l_redu.strong_induct)
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(case_tac "aa=ba")
-apply(simp add: crename_id)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(assumption)
-apply(frule crename_ax2)
-apply(auto)[1]
-apply(case_tac "d=aa")
-apply(simp add: trm.inject)
-apply(rule_tac x="M'[a\<turnstile>c>aa]" in exI)
-apply(rule conjI)
-apply(rule crename_interesting1)
-apply(simp)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
-apply(simp add: trm.inject)
-apply(rule_tac x="M'[a\<turnstile>c>b]" in exI)
-apply(rule conjI)
-apply(rule crename_interesting2)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_prod fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(case_tac "aa=b")
-apply(simp add: crename_id)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(assumption)
-apply(frule crename_ax2)
-apply(auto)[1]
-apply(case_tac "d=aa")
-apply(simp add: trm.inject)
-apply(simp add: trm.inject)
-apply(rule_tac x="N'[x\<turnstile>n>y]" in exI)
-apply(rule conjI)
-apply(rule sym)
-apply(rule crename_interesting3)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-(* LNot *)
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_NotR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_NotL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
-apply(simp add: fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* LAnd1 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule crename_AndR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_AndL1)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a1>.M'a (x).N'a" in exI)
-apply(simp add: fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* LAnd2 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule crename_AndR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_AndL2)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a2>.N'b (x).N'a" in exI)
-apply(simp add: fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* LOr1 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule crename_OrL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_OrR1)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(auto)
-apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
-apply(rule conjI)
-apply(simp add: abs_fresh fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* LOr2 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule crename_OrL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_OrR2)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(auto)
-apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
-apply(rule conjI)
-apply(simp add: abs_fresh fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* ImpL *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
-apply(auto)[1]
-apply(drule crename_ImpL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule crename_ImpR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
-apply(rule conjI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
-done
+  using a
+  apply(nominal_induct M\<equiv>"M[a\<turnstile>c>b]" M' avoiding: M a b rule: l_redu.strong_induct)
+         apply(drule sym)
+         apply(drule crename_Cut)
+           apply(simp add: fresh_prod fresh_atm)
+          apply(simp)
+         apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+         apply(case_tac "aa=ba")
+          apply(simp add: crename_id)
+          apply(rule l_redu.intros)
+            apply(simp)
+           apply(simp add: fresh_atm)
+          apply(assumption)
+         apply(frule crename_ax2)
+         apply(auto)[1]
+         apply(case_tac "d=aa")
+          apply(simp add: trm.inject)
+          apply(rule_tac x="M'[a\<turnstile>c>aa]" in exI)
+          apply(rule conjI)
+           apply(rule crename_interesting1)
+           apply(simp)
+          apply(rule l_redu.intros)
+            apply(simp)
+           apply(simp add: fresh_atm)
+          apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
+         apply(simp add: trm.inject)
+         apply(rule_tac x="M'[a\<turnstile>c>b]" in exI)
+         apply(rule conjI)
+          apply(rule crename_interesting2)
+              apply(simp)
+             apply(simp)
+            apply(simp)
+           apply(simp)
+          apply(simp)
+         apply(rule l_redu.intros)
+           apply(simp)
+          apply(simp add: fresh_atm)
+         apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
+        apply(drule sym)
+        apply(drule crename_Cut)
+          apply(simp add: fresh_prod fresh_atm)
+         apply(simp add: fresh_prod fresh_atm)
+        apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+        apply(case_tac "aa=b")
+         apply(simp add: crename_id)
+         apply(rule l_redu.intros)
+           apply(simp)
+          apply(simp add: fresh_atm)
+         apply(assumption)
+        apply(frule crename_ax2)
+        apply(auto)[1]
+        apply(case_tac "d=aa")
+         apply(simp add: trm.inject)
+        apply(simp add: trm.inject)
+        apply(rule_tac x="N'[x\<turnstile>n>y]" in exI)
+        apply(rule conjI)
+         apply(rule sym)
+         apply(rule crename_interesting3)
+        apply(rule l_redu.intros)
+          apply(simp)
+         apply(simp add: fresh_atm)
+        apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+    (* LNot *)
+       apply(drule sym)
+       apply(drule crename_Cut)
+         apply(simp add: fresh_prod abs_fresh fresh_atm)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+       apply(drule crename_NotR)
+         apply(simp add: fresh_prod abs_fresh fresh_atm)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+       apply(drule crename_NotL)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+       apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
+       apply(simp add: fresh_atm)[1]
+       apply(rule l_redu.intros)
+            apply(auto simp add: fresh_prod intro: crename_fresh_interesting2)[1]
+           apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
+          apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+         apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+        apply(simp add: fresh_atm)
+       apply(simp add: fresh_atm)
+    (* LAnd1 *)
+      apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+      apply(drule sym)
+      apply(drule crename_Cut)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(auto)[1]
+      apply(drule crename_AndR)
+         apply(simp add: fresh_prod abs_fresh fresh_atm)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+      apply(drule crename_AndL1)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+      apply(rule_tac x="Cut <a1>.M'a (x).N'a" in exI)
+      apply(simp add: fresh_atm)[1]
+      apply(rule l_redu.intros)
+           apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
+          apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
+         apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+        apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+       apply(simp add: fresh_atm)
+      apply(simp add: fresh_atm)
+    (* LAnd2 *)
+     apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+     apply(drule sym)
+     apply(drule crename_Cut)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(auto)[1]
+     apply(drule crename_AndR)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+     apply(drule crename_AndL2)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+     apply(rule_tac x="Cut <a2>.N'b (x).N'a" in exI)
+     apply(simp add: fresh_atm)[1]
+     apply(rule l_redu.intros)
+          apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
+         apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
+        apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+       apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+      apply(simp add: fresh_atm)
+     apply(simp add: fresh_atm)
+    (* LOr1 *)
+    apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+    apply(drule sym)
+    apply(drule crename_Cut)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(auto)[1]
+    apply(drule crename_OrL)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+    apply(drule crename_OrR1)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+    apply(auto)
+    apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
+    apply(rule conjI)
+     apply(simp add: abs_fresh fresh_atm)[1]
+    apply(rule l_redu.intros)
+         apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
+        apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
+       apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+      apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+     apply(simp add: fresh_atm)
+    apply(simp add: fresh_atm)
+    (* LOr2 *)
+   apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule crename_Cut)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(auto)[1]
+   apply(drule crename_OrL)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+   apply(drule crename_OrR2)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+   apply(auto)
+   apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
+   apply(rule conjI)
+    apply(simp add: abs_fresh fresh_atm)[1]
+   apply(rule l_redu.intros)
+        apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
+       apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
+      apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+     apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
+    apply(simp add: fresh_atm)
+   apply(simp add: fresh_atm)
+    (* ImpL *)
+  apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+  apply(drule sym)
+  apply(drule crename_Cut)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
+  apply(auto)[1]
+  apply(drule crename_ImpL)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(simp add: fresh_prod abs_fresh fresh_atm)
+  apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+  apply(drule crename_ImpR)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(simp)
+  apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+  apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
+  apply(rule conjI)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+  apply(rule l_redu.intros)
+       apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
+      apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
+     apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
+    apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
+   apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
+  apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
+  done
 
 lemma crename_aredu:
   assumes a: "(M[a\<turnstile>c>b]) \<longrightarrow>\<^sub>a M'" "a\<noteq>b"
   shows "\<exists>M0. M0[a\<turnstile>c>b]=M' \<and> M \<longrightarrow>\<^sub>a M0"
-using a
-apply(nominal_induct "M[a\<turnstile>c>b]" M' avoiding: M a b rule: a_redu.strong_induct)
-apply(drule  crename_lredu)
-apply(blast)
-apply(drule  crename_credu)
-apply(blast)
-(* Cut *)
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(rule conjI)
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(drule crename_fresh_interesting2)
-apply(simp add: fresh_a_redu)
-apply(simp)
-apply(auto)[1]
-apply(drule sym)
-apply(drule crename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(rule conjI)
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(drule crename_fresh_interesting1)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_a_redu)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-(* NotL *)
-apply(drule sym)
-apply(drule crename_NotL)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="NotL <a>.M0 x" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* NotR *)
-apply(drule sym)
-apply(frule crename_NotR_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule crename_NotR')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="NotR (x).M0 a" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="a" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="NotR (x).M0 aa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* AndR *)
-apply(drule sym)
-apply(frule crename_AndR_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule crename_AndR')
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="ba" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="c" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndR <a>.M0 <b>.N' aa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(drule sym)
-apply(frule crename_AndR_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule crename_AndR')
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="ba" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="c" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndR <a>.M' <b>.M0 aa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-(* AndL1 *)
-apply(drule sym)
-apply(drule crename_AndL1)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="a" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndL1 (x).M0 y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* AndL2 *)
-apply(drule sym)
-apply(drule crename_AndL2)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="a" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndL2 (x).M0 y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* OrL *)
-apply(drule sym)
-apply(drule crename_OrL)
-apply(simp)
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="a" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-apply(drule sym)
-apply(drule crename_OrL)
-apply(simp)
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="a" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-apply(simp)
-(* OrR1 *)
-apply(drule sym)
-apply(frule crename_OrR1_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule crename_OrR1')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="ba" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrR1 <a>.M0 b" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrR1 <a>.M0 aa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* OrR2 *)
-apply(drule sym)
-apply(frule crename_OrR2_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule crename_OrR2')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="ba" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrR2 <a>.M0 b" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrR2 <a>.M0 aa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* ImpL *)
-apply(drule sym)
-apply(drule crename_ImpL)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(drule sym)
-apply(drule crename_ImpL)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule crename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-(* ImpR *)
-apply(drule sym)
-apply(frule crename_ImpR_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule crename_ImpR')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="ba" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="aa" in meta_spec)
-apply(drule_tac x="b" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpR (x).<a>.M0 aa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-done
+  using a
+  apply(nominal_induct "M[a\<turnstile>c>b]" M' avoiding: M a b rule: a_redu.strong_induct)
+                  apply(drule  crename_lredu)
+                  apply(blast)
+                 apply(drule  crename_credu)
+                 apply(blast)
+    (* Cut *)
+                apply(drule sym)
+                apply(drule crename_Cut)
+                  apply(simp)
+                 apply(simp)
+                apply(auto)[1]
+                apply(drule_tac x="M'a" in meta_spec)
+                apply(drule_tac x="aa" in meta_spec)
+                apply(drule_tac x="b" in meta_spec)
+                apply(auto)[1]
+                apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
+                apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+                apply(rule conjI)
+                 apply(rule trans)
+                  apply(rule crename.simps)
+                   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+                  apply(drule crename_fresh_interesting2)
+                  apply(simp add: fresh_a_redu)
+                 apply(simp)
+                apply(auto)[1]
+               apply(drule sym)
+               apply(drule crename_Cut)
+                 apply(simp)
+                apply(simp)
+               apply(auto)[1]
+               apply(drule_tac x="N'a" in meta_spec)
+               apply(drule_tac x="aa" in meta_spec)
+               apply(drule_tac x="b" in meta_spec)
+               apply(auto)[1]
+               apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
+               apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+               apply(rule conjI)
+                apply(rule trans)
+                 apply(rule crename.simps)
+                  apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+                  apply(drule crename_fresh_interesting1)
+                   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+                  apply(simp add: fresh_a_redu)
+                 apply(simp)
+                apply(simp)
+               apply(auto)[1]
+    (* NotL *)
+              apply(drule sym)
+              apply(drule crename_NotL)
+               apply(simp)
+              apply(auto)[1]
+              apply(drule_tac x="N'" in meta_spec)
+              apply(drule_tac x="aa" in meta_spec)
+              apply(drule_tac x="b" in meta_spec)
+              apply(auto)[1]
+              apply(rule_tac x="NotL <a>.M0 x" in exI)
+              apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+              apply(auto)[1]
+    (* NotR *)
+             apply(drule sym)
+             apply(frule crename_NotR_aux)
+             apply(erule disjE)
+              apply(auto)[1]
+             apply(drule crename_NotR')
+               apply(simp)
+              apply(simp add: fresh_atm)
+             apply(erule disjE)
+              apply(auto)[1]
+              apply(drule_tac x="N'" in meta_spec)
+              apply(drule_tac x="aa" in meta_spec)
+              apply(drule_tac x="b" in meta_spec)
+              apply(auto)[1]
+              apply(rule_tac x="NotR (x).M0 a" in exI)
+              apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+              apply(auto)[1]
+             apply(auto)[1]
+             apply(drule_tac x="N'" in meta_spec)
+             apply(drule_tac x="aa" in meta_spec)
+             apply(drule_tac x="a" in meta_spec)
+             apply(auto)[1]
+             apply(rule_tac x="NotR (x).M0 aa" in exI)
+             apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+             apply(auto)[1]
+    (* AndR *)
+            apply(drule sym)
+            apply(frule crename_AndR_aux)
+            apply(erule disjE)
+             apply(auto)[1]
+            apply(drule crename_AndR')
+               apply(simp add: fresh_prod fresh_atm)
+              apply(simp add: fresh_atm)
+             apply(simp add: fresh_atm)
+            apply(erule disjE)
+             apply(auto)[1]
+             apply(drule_tac x="M'a" in meta_spec)
+             apply(drule_tac x="aa" in meta_spec)
+             apply(drule_tac x="ba" in meta_spec)
+             apply(auto)[1]
+             apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
+             apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+             apply(auto)[1]
+             apply(rule trans)
+              apply(rule crename.simps)
+                apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+               apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+               apply(auto intro: fresh_a_redu)[1]
+              apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+             apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(auto)[1]
+            apply(drule_tac x="M'a" in meta_spec)
+            apply(drule_tac x="aa" in meta_spec)
+            apply(drule_tac x="c" in meta_spec)
+            apply(auto)[1]
+            apply(rule_tac x="AndR <a>.M0 <b>.N' aa" in exI)
+            apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(auto)[1]
+            apply(rule trans)
+             apply(rule crename.simps)
+               apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+              apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+              apply(auto intro: fresh_a_redu)[1]
+             apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(drule sym)
+           apply(frule crename_AndR_aux)
+           apply(erule disjE)
+            apply(auto)[1]
+           apply(drule crename_AndR')
+              apply(simp add: fresh_prod fresh_atm)
+             apply(simp add: fresh_atm)
+            apply(simp add: fresh_atm)
+           apply(erule disjE)
+            apply(auto)[1]
+            apply(drule_tac x="N'a" in meta_spec)
+            apply(drule_tac x="aa" in meta_spec)
+            apply(drule_tac x="ba" in meta_spec)
+            apply(auto)[1]
+            apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
+            apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(auto)[1]
+            apply(rule trans)
+             apply(rule crename.simps)
+               apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+               apply(auto intro: fresh_a_redu)[1]
+              apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+             apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(auto)[1]
+           apply(drule_tac x="N'a" in meta_spec)
+           apply(drule_tac x="aa" in meta_spec)
+           apply(drule_tac x="c" in meta_spec)
+           apply(auto)[1]
+           apply(rule_tac x="AndR <a>.M' <b>.M0 aa" in exI)
+           apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(auto)[1]
+           apply(rule trans)
+            apply(rule crename.simps)
+              apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+              apply(auto intro: fresh_a_redu)[1]
+             apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(simp)
+    (* AndL1 *)
+          apply(drule sym)
+          apply(drule crename_AndL1)
+           apply(simp)
+          apply(auto)[1]
+          apply(drule_tac x="N'" in meta_spec)
+          apply(drule_tac x="a" in meta_spec)
+          apply(drule_tac x="b" in meta_spec)
+          apply(auto)[1]
+          apply(rule_tac x="AndL1 (x).M0 y" in exI)
+          apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+          apply(auto)[1]
+    (* AndL2 *)
+         apply(drule sym)
+         apply(drule crename_AndL2)
+          apply(simp)
+         apply(auto)[1]
+         apply(drule_tac x="N'" in meta_spec)
+         apply(drule_tac x="a" in meta_spec)
+         apply(drule_tac x="b" in meta_spec)
+         apply(auto)[1]
+         apply(rule_tac x="AndL2 (x).M0 y" in exI)
+         apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+         apply(auto)[1]
+    (* OrL *)
+        apply(drule sym)
+        apply(drule crename_OrL)
+          apply(simp)
+          apply(auto simp add: fresh_atm fresh_prod)[1]
+         apply(auto simp add: fresh_atm fresh_prod)[1]
+        apply(auto)[1]
+        apply(drule_tac x="M'a" in meta_spec)
+        apply(drule_tac x="a" in meta_spec)
+        apply(drule_tac x="b" in meta_spec)
+        apply(auto)[1]
+        apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
+        apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(auto)[1]
+        apply(rule trans)
+         apply(rule crename.simps)
+           apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+          apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+          apply(auto intro: fresh_a_redu)[1]
+         apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(simp)
+       apply(drule sym)
+       apply(drule crename_OrL)
+         apply(simp)
+         apply(auto simp add: fresh_atm fresh_prod)[1]
+        apply(auto simp add: fresh_atm fresh_prod)[1]
+       apply(auto)[1]
+       apply(drule_tac x="N'a" in meta_spec)
+       apply(drule_tac x="a" in meta_spec)
+       apply(drule_tac x="b" in meta_spec)
+       apply(auto)[1]
+       apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
+       apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+       apply(auto)[1]
+       apply(rule trans)
+        apply(rule crename.simps)
+          apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+          apply(auto intro: fresh_a_redu)[1]
+         apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(simp)
+       apply(simp)
+    (* OrR1 *)
+      apply(drule sym)
+      apply(frule crename_OrR1_aux)
+      apply(erule disjE)
+       apply(auto)[1]
+      apply(drule crename_OrR1')
+        apply(simp)
+       apply(simp add: fresh_atm)
+      apply(erule disjE)
+       apply(auto)[1]
+       apply(drule_tac x="N'" in meta_spec)
+       apply(drule_tac x="aa" in meta_spec)
+       apply(drule_tac x="ba" in meta_spec)
+       apply(auto)[1]
+       apply(rule_tac x="OrR1 <a>.M0 b" in exI)
+       apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+       apply(auto)[1]
+      apply(auto)[1]
+      apply(drule_tac x="N'" in meta_spec)
+      apply(drule_tac x="aa" in meta_spec)
+      apply(drule_tac x="b" in meta_spec)
+      apply(auto)[1]
+      apply(rule_tac x="OrR1 <a>.M0 aa" in exI)
+      apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+      apply(auto)[1]
+    (* OrR2 *)
+     apply(drule sym)
+     apply(frule crename_OrR2_aux)
+     apply(erule disjE)
+      apply(auto)[1]
+     apply(drule crename_OrR2')
+       apply(simp)
+      apply(simp add: fresh_atm)
+     apply(erule disjE)
+      apply(auto)[1]
+      apply(drule_tac x="N'" in meta_spec)
+      apply(drule_tac x="aa" in meta_spec)
+      apply(drule_tac x="ba" in meta_spec)
+      apply(auto)[1]
+      apply(rule_tac x="OrR2 <a>.M0 b" in exI)
+      apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+      apply(auto)[1]
+     apply(auto)[1]
+     apply(drule_tac x="N'" in meta_spec)
+     apply(drule_tac x="aa" in meta_spec)
+     apply(drule_tac x="b" in meta_spec)
+     apply(auto)[1]
+     apply(rule_tac x="OrR2 <a>.M0 aa" in exI)
+     apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+     apply(auto)[1]
+    (* ImpL *)
+    apply(drule sym)
+    apply(drule crename_ImpL)
+      apply(simp)
+     apply(simp)
+    apply(auto)[1]
+    apply(drule_tac x="M'a" in meta_spec)
+    apply(drule_tac x="aa" in meta_spec)
+    apply(drule_tac x="b" in meta_spec)
+    apply(auto)[1]
+    apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
+    apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+    apply(auto)[1]
+    apply(rule trans)
+     apply(rule crename.simps)
+      apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+     apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+     apply(auto intro: fresh_a_redu)[1]
+    apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(drule sym)
+   apply(drule crename_ImpL)
+     apply(simp)
+    apply(simp)
+   apply(auto)[1]
+   apply(drule_tac x="N'a" in meta_spec)
+   apply(drule_tac x="aa" in meta_spec)
+   apply(drule_tac x="b" in meta_spec)
+   apply(auto)[1]
+   apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(auto)[1]
+   apply(rule trans)
+    apply(rule crename.simps)
+     apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+     apply(auto intro: fresh_a_redu)[1]
+    apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(simp)
+    (* ImpR *)
+  apply(drule sym)
+  apply(frule crename_ImpR_aux)
+  apply(erule disjE)
+   apply(auto)[1]
+  apply(drule crename_ImpR')
+     apply(simp)
+    apply(simp add: fresh_atm)
+   apply(simp add: fresh_atm)
+  apply(erule disjE)
+   apply(auto)[1]
+   apply(drule_tac x="N'" in meta_spec)
+   apply(drule_tac x="aa" in meta_spec)
+   apply(drule_tac x="ba" in meta_spec)
+   apply(auto)[1]
+   apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(auto)[1]
+  apply(auto)[1]
+  apply(drule_tac x="N'" in meta_spec)
+  apply(drule_tac x="aa" in meta_spec)
+  apply(drule_tac x="b" in meta_spec)
+  apply(auto)[1]
+  apply(rule_tac x="ImpR (x).<a>.M0 aa" in exI)
+  apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+  apply(auto)[1]
+  done
 
 lemma SNa_preserved_renaming1:
   assumes a: "SNa M"
   shows "SNa (M[a\<turnstile>c>b])"
-using a
-apply(induct rule: SNa_induct)
-apply(case_tac "a=b")
-apply(simp add: crename_id)
-apply(rule SNaI)
-apply(drule crename_aredu)
-apply(blast)+
-done
+  using a
+  apply(induct rule: SNa_induct)
+  apply(case_tac "a=b")
+   apply(simp add: crename_id)
+  apply(rule SNaI)
+  apply(drule crename_aredu)
+   apply(blast)+
+  done
 
 lemma nrename_interesting1:
   assumes a: "distinct [x,y,z]"
   shows "M[x\<turnstile>n>z][z\<turnstile>n>y] = M[z\<turnstile>n>y][x\<turnstile>n>y]"
-using a
-apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
-apply(auto simp add: rename_fresh simp add: trm.inject alpha)
-apply(blast)
-apply(blast)
-apply(rotate_tac 12)
-apply(drule_tac x="x" in meta_spec)
-apply(rotate_tac 15)
-apply(drule_tac x="y" in meta_spec)
-apply(rotate_tac 15)
-apply(drule_tac x="z" in meta_spec)
-apply(blast)
-apply(rotate_tac 11)
-apply(drule_tac x="x" in meta_spec)
-apply(rotate_tac 14)
-apply(drule_tac x="y" in meta_spec)
-apply(rotate_tac 14)
-apply(drule_tac x="z" in meta_spec)
-apply(blast)
-done
+  using a
+  apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
+             apply(auto simp add: rename_fresh simp add: trm.inject alpha)
+     apply(blast)
+    apply(blast)
+   apply(rotate_tac 12)
+   apply(drule_tac x="x" in meta_spec)
+   apply(rotate_tac 15)
+   apply(drule_tac x="y" in meta_spec)
+   apply(rotate_tac 15)
+   apply(drule_tac x="z" in meta_spec)
+   apply(blast)
+  apply(rotate_tac 11)
+  apply(drule_tac x="x" in meta_spec)
+  apply(rotate_tac 14)
+  apply(drule_tac x="y" in meta_spec)
+  apply(rotate_tac 14)
+  apply(drule_tac x="z" in meta_spec)
+  apply(blast)
+  done
 
 lemma nrename_interesting2:
   assumes a: "x\<noteq>z" "x\<noteq>u" "x\<noteq>y" "z\<noteq>u" "y\<noteq>z"
   shows "M[x\<turnstile>n>y][z\<turnstile>n>u] = M[z\<turnstile>n>u][x\<turnstile>n>y]"
-using a
-apply(nominal_induct M avoiding: x y z u rule: trm.strong_induct)
-apply(auto simp add: rename_fresh simp add: trm.inject alpha)
-done
+  using a
+  apply(nominal_induct M avoiding: x y z u rule: trm.strong_induct)
+             apply(auto simp add: rename_fresh simp add: trm.inject alpha)
+  done
 
 lemma not_fic_nrename_aux:
   assumes a: "fic M c" 
   shows "fic (M[x\<turnstile>n>y]) c" 
-using a
-apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
-apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
-done
+  using a
+  apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
+             apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
+  done
 
 lemma not_fic_nrename:
   assumes a: "\<not>(fic (M[x\<turnstile>n>y]) c)" 
   shows "\<not>(fic M c)" 
-using a
-apply(auto dest:  not_fic_nrename_aux)
-done
+  using a
+  apply(auto dest:  not_fic_nrename_aux)
+  done
 
 lemma fin_nrename:
   assumes a: "fin M z" "z\<sharp>(x,y)"
   shows "fin (M[x\<turnstile>n>y]) z" 
-using a
-apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
-apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
-           split: if_splits)
-done
+  using a
+  apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
+             apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
+      split: if_splits)
+  done
 
 lemma nrename_fresh_interesting1:
   fixes z::"name"
   assumes a: "z\<sharp>(M[x\<turnstile>n>y])" "z\<sharp>(x,y)"
   shows "z\<sharp>M"
-using a
-apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
-apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp)
-done
+  using a
+  apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp)
+  done
 
 lemma nrename_fresh_interesting2:
   fixes c::"coname"
   assumes a: "c\<sharp>(M[x\<turnstile>n>y])" 
   shows "c\<sharp>M"
-using a
-apply(nominal_induct M avoiding: x y c rule: trm.strong_induct)
-apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
-done
+  using a
+  apply(nominal_induct M avoiding: x y c rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
+  done
 
 lemma fin_nrename2:
   assumes a: "fin (M[x\<turnstile>n>y]) z" "z\<sharp>(x,y)"
   shows "fin M z" 
-using a
-apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
-apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
-           split: if_splits)
-apply(auto dest: nrename_fresh_interesting1 simp add: fresh_atm fresh_prod)
-done
+  using a
+  apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
+             apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
+      split: if_splits)
+        apply(auto dest: nrename_fresh_interesting1 simp add: fresh_atm fresh_prod)
+  done
 
 lemma nrename_Cut:
   assumes a: "R[x\<turnstile>n>y] = Cut <c>.M (z).N" "c\<sharp>(N,R)" "z\<sharp>(x,y,M,R)"
   shows "\<exists>M' N'. R = Cut <c>.M' (z).N' \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N \<and> c\<sharp>N' \<and> z\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: c y x z M N rule: trm.strong_induct)
-apply(auto split: if_splits)
-apply(simp add: trm.inject)
-apply(auto simp add: alpha fresh_atm)
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name,z)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule conjI)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(auto simp add: fresh_atm)[1]
-apply(drule sym)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: c y x z M N rule: trm.strong_induct)
+             apply(auto split: if_splits)
+  apply(simp add: trm.inject)
+  apply(auto simp add: alpha fresh_atm)
+  apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule_tac x="[(name,z)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule conjI)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(auto simp add: fresh_atm)[1]
+  apply(drule sym)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_NotR:
   assumes a: "R[x\<turnstile>n>y] = NotR (z).N c" "z\<sharp>(R,x,y)" 
   shows "\<exists>N'. (R = NotR (z).N' c) \<and> N'[x\<turnstile>n>y] = N" 
-using a
-apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name,z)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(name,z)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_NotL:
   assumes a: "R[x\<turnstile>n>y] = NotL <c>.N z" "c\<sharp>R" "z\<sharp>(x,y)"
   shows "\<exists>N'. (R = NotL <c>.N' z) \<and> N'[x\<turnstile>n>y] = N" 
-using a
-apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_NotL':
   assumes a: "R[x\<turnstile>n>y] = NotL <c>.N u" "c\<sharp>R" "x\<noteq>y" 
   shows "(\<exists>N'. (R = NotL <c>.N' u) \<and> N'[x\<turnstile>n>y] = N) \<or> (\<exists>N'. (R = NotL <c>.N' x) \<and> y=u \<and> N'[x\<turnstile>n>y] = N)"
-using a
-apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
-apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
+   apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(coname,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_NotL_aux:
   assumes a: "R[x\<turnstile>n>y] = NotL <c>.N u" 
   shows "(x=u \<and> x=y) \<or> (x\<noteq>u)" 
-using a
-apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma nrename_AndL1:
   assumes a: "R[x\<turnstile>n>y] = AndL1 (z).N u" "z\<sharp>(R,x,y)" "u\<sharp>(x,y)"
   shows "\<exists>N'. (R = AndL1 (z).N' u) \<and> N'[x\<turnstile>n>y] = N" 
-using a
-apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name1,z)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(name1,z)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_AndL1':
   assumes a: "R[x\<turnstile>n>y] = AndL1 (v).N u" "v\<sharp>(R,u,x,y)" "x\<noteq>y" 
   shows "(\<exists>N'. (R = AndL1 (v).N' u) \<and> N'[x\<turnstile>n>y] = N) \<or> (\<exists>N'. (R = AndL1 (v).N' x) \<and> y=u \<and> N'[x\<turnstile>n>y] = N)"
-using a
-apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
-apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
+   apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_AndL1_aux:
   assumes a: "R[x\<turnstile>n>y] = AndL1 (v).N u" 
   shows "(x=u \<and> x=y) \<or> (x\<noteq>u)" 
-using a
-apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma nrename_AndL2:
   assumes a: "R[x\<turnstile>n>y] = AndL2 (z).N u" "z\<sharp>(R,x,y)" "u\<sharp>(x,y)"
   shows "\<exists>N'. (R = AndL2 (z).N' u) \<and> N'[x\<turnstile>n>y] = N" 
-using a
-apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name1,z)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(name1,z)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_AndL2':
   assumes a: "R[x\<turnstile>n>y] = AndL2 (v).N u" "v\<sharp>(R,u,x,y)" "x\<noteq>y" 
   shows "(\<exists>N'. (R = AndL2 (v).N' u) \<and> N'[x\<turnstile>n>y] = N) \<or> (\<exists>N'. (R = AndL2 (v).N' x) \<and> y=u \<and> N'[x\<turnstile>n>y] = N)"
-using a
-apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
-apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
+   apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(name1,v)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_AndL2_aux:
   assumes a: "R[x\<turnstile>n>y] = AndL2 (v).N u" 
   shows "(x=u \<and> x=y) \<or> (x\<noteq>u)" 
-using a
-apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma nrename_AndR:
   assumes a: "R[x\<turnstile>n>y] = AndR <c>.M <d>.N e" "c\<sharp>(d,e,N,R)" "d\<sharp>(c,e,M,R)" 
   shows "\<exists>M' N'. R = AndR <c>.M' <d>.N' e \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N \<and> c\<sharp>N' \<and> d\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: x y c d e M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha)
-apply(simp add: fresh_atm fresh_prod)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[x\<turnstile>n>y]" in  sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: x y c d e M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha)
+    apply(simp add: fresh_atm fresh_prod)
+   apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(coname2,d)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[x\<turnstile>n>y]" in  sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_OrR1:
   assumes a: "R[x\<turnstile>n>y] = OrR1 <c>.N d" "c\<sharp>(R,d)" 
   shows "\<exists>N'. (R = OrR1 <c>.N' d) \<and> N'[x\<turnstile>n>y] = N" 
-using a
-apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_OrR2:
   assumes a: "R[x\<turnstile>n>y] = OrR2 <c>.N d" "c\<sharp>(R,d)" 
   shows "\<exists>N'. (R = OrR2 <c>.N' d) \<and> N'[x\<turnstile>n>y] = N" 
-using a
-apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  apply(rule_tac x="[(coname1,c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_OrL:
   assumes a: "R[u\<turnstile>n>v] = OrL (x).M (y).N z" "x\<sharp>(y,z,u,v,N,R)" "y\<sharp>(x,z,u,v,M,R)" "z\<sharp>(u,v)"
   shows "\<exists>M' N'. R = OrL (x).M' (y).N' z \<and> M'[u\<turnstile>n>v] = M \<and> N'[u\<turnstile>n>v] = N \<and> x\<sharp>N' \<and> y\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: u v x y z M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
-apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[u\<turnstile>n>v]" in  sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: u v x y z M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
+  apply(rule_tac x="[(name1,x)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(name2,y)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[u\<turnstile>n>v]" in  sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_OrL':
   assumes a: "R[x\<turnstile>n>y] = OrL (v).M (w).N u" "v\<sharp>(R,N,u,x,y)" "w\<sharp>(R,M,u,x,y)" "x\<noteq>y" 
   shows "(\<exists>M' N'. (R = OrL (v).M' (w).N' u) \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N) \<or> 
          (\<exists>M' N'. (R = OrL (v).M' (w).N' x) \<and> y=u \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N)"
-using a [[simproc del: defined_all]]
-apply(nominal_induct R avoiding: y x u v w M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
-apply(rule_tac x="[(name1,v)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name2,w)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule conjI)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[x\<turnstile>n>u]" in sym)
-apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(name1,v)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name2,w)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule conjI)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
-apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a [[simproc del: defined_all]]
+  apply(nominal_induct R avoiding: y x u v w M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
+   apply(rule_tac x="[(name1,v)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(rule_tac x="[(name2,w)]\<bullet>trm2" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(rule conjI)
+    apply(drule sym)
+    apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+    apply(simp add: eqvts calc_atm)
+   apply(drule_tac s="trm2[x\<turnstile>n>u]" in sym)
+   apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(name1,v)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule_tac x="[(name2,w)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule conjI)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
+  apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_OrL_aux:
   assumes a: "R[x\<turnstile>n>y] = OrL (v).M (w).N u" 
   shows "(x=u \<and> x=y) \<or> (x\<noteq>u)" 
-using a
-apply(nominal_induct R avoiding: y x w u v M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: y x w u v M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma nrename_ImpL:
   assumes a: "R[x\<turnstile>n>y] = ImpL <c>.M (u).N z" "c\<sharp>(N,R)" "u\<sharp>(y,x,z,M,R)" "z\<sharp>(x,y)"
   shows "\<exists>M' N'. R = ImpL <c>.M' (u).N' z \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N \<and> c\<sharp>N' \<and> u\<sharp>M'"
-using a
-apply(nominal_induct R avoiding: u x c y z M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(rule_tac x="[(name1,u)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[x\<turnstile>n>y]" in  sym)
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm fresh_prod fresh_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: u x c y z M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
+  apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(rule_tac x="[(name1,u)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[x\<turnstile>n>y]" in  sym)
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm fresh_prod fresh_atm)
+  done
 
 lemma nrename_ImpL':
   assumes a: "R[x\<turnstile>n>y] = ImpL <c>.M (w).N u" "c\<sharp>(R,N)" "w\<sharp>(R,M,u,x,y)" "x\<noteq>y" 
   shows "(\<exists>M' N'. (R = ImpL <c>.M' (w).N' u) \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N) \<or> 
          (\<exists>M' N'. (R = ImpL <c>.M' (w).N' x) \<and> y=u \<and> M'[x\<turnstile>n>y] = M \<and> N'[x\<turnstile>n>y] = N)"
-using a [[simproc del: defined_all]]
-apply(nominal_induct R avoiding: y x u c w M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name1,w)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule conjI)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[x\<turnstile>n>u]" in sym)
-apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name1,w)]\<bullet>trm2" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule conjI)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(simp add: eqvts calc_atm)
-apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
-apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a [[simproc del: defined_all]]
+  apply(nominal_induct R avoiding: y x u c w M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
+   apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(rule_tac x="[(name1,w)]\<bullet>trm2" in exI)
+   apply(perm_simp)
+   apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+   apply(rule conjI)
+    apply(drule sym)
+    apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+    apply(simp add: eqvts calc_atm)
+   apply(drule_tac s="trm2[x\<turnstile>n>u]" in sym)
+   apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(rule_tac x="[(coname,c)]\<bullet>trm1" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule_tac x="[(name1,w)]\<bullet>trm2" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule conjI)
+   apply(drule sym)
+   apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+   apply(simp add: eqvts calc_atm)
+  apply(drule_tac s="trm2[x\<turnstile>n>y]" in sym)
+  apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_ImpL_aux:
   assumes a: "R[x\<turnstile>n>y] = ImpL <c>.M (w).N u" 
   shows "(x=u \<and> x=y) \<or> (x\<noteq>u)" 
-using a
-apply(nominal_induct R avoiding: y x w u c M N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
-done
+  using a
+  apply(nominal_induct R avoiding: y x w u c M N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
+  done
 
 lemma nrename_ImpR:
   assumes a: "R[u\<turnstile>n>v] = ImpR (x).<c>.N d" "c\<sharp>(R,d)" "x\<sharp>(R,u,v)" 
   shows "\<exists>N'. (R = ImpR (x).<c>.N' d) \<and> N'[u\<turnstile>n>v] = N" 
-using a
-apply(nominal_induct R avoiding: u v x c d N rule: trm.strong_induct)
-apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
-apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
-apply(rule_tac x="[(name,x)]\<bullet>[(coname1, c)]\<bullet>trm" in exI)
-apply(perm_simp)
-apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
-apply(drule sym)
-apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
-apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
-apply(simp add: eqvts calc_atm)
-done
+  using a
+  apply(nominal_induct R avoiding: u v x c d N rule: trm.strong_induct)
+             apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
+   apply(rule_tac x="[(name,x)]\<bullet>trm" in exI)
+   apply(perm_simp)
+  apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
+  apply(rule_tac x="[(name,x)]\<bullet>[(coname1, c)]\<bullet>trm" in exI)
+  apply(perm_simp)
+  apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
+  apply(drule sym)
+  apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
+  apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
+  apply(simp add: eqvts calc_atm)
+  done
 
 lemma nrename_credu:
   assumes a: "(M[x\<turnstile>n>y]) \<longrightarrow>\<^sub>c M'"
   shows "\<exists>M0. M0[x\<turnstile>n>y]=M' \<and> M \<longrightarrow>\<^sub>c M0"
-using a
-apply(nominal_induct M\<equiv>"M[x\<turnstile>n>y]" M' avoiding: M x y rule: c_redu.strong_induct)
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)
-apply(rule_tac x="M'{a:=(x).N'}" in exI)
-apply(rule conjI)
-apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
-apply(rule c_redu.intros)
-apply(auto dest: not_fic_nrename)[1]
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)
-apply(rule_tac x="N'{x:=<a>.M'}" in exI)
-apply(rule conjI)
-apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
-apply(rule c_redu.intros)
-apply(auto)
-apply(drule_tac x="xa" and y="y" in fin_nrename)
-apply(auto simp add: fresh_prod abs_fresh)
-done
+  using a
+  apply(nominal_induct M\<equiv>"M[x\<turnstile>n>y]" M' avoiding: M x y rule: c_redu.strong_induct)
+   apply(drule sym)
+   apply(drule nrename_Cut)
+     apply(simp)
+    apply(simp)
+   apply(auto)
+   apply(rule_tac x="M'{a:=(x).N'}" in exI)
+   apply(rule conjI)
+    apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
+   apply(rule c_redu.intros)
+     apply(auto dest: not_fic_nrename)[1]
+    apply(simp add: abs_fresh)
+   apply(simp add: abs_fresh)
+  apply(drule sym)
+  apply(drule nrename_Cut)
+    apply(simp)
+   apply(simp)
+  apply(auto)
+  apply(rule_tac x="N'{x:=<a>.M'}" in exI)
+  apply(rule conjI)
+   apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
+  apply(rule c_redu.intros)
+    apply(auto)
+  apply(drule_tac x="xa" and y="y" in fin_nrename)
+   apply(auto simp add: fresh_prod abs_fresh)
+  done
 
 lemma nrename_ax2:
   assumes a: "N[x\<turnstile>n>y] = Ax z c"
   shows "\<exists>z. N = Ax z c"
-using a
-apply(nominal_induct N avoiding: x y rule: trm.strong_induct)
-apply(auto split: if_splits)
-apply(simp add: trm.inject)
-done
+  using a
+  apply(nominal_induct N avoiding: x y rule: trm.strong_induct)
+             apply(auto split: if_splits)
+  apply(simp add: trm.inject)
+  done
 
 lemma fic_nrename:
   assumes a: "fic (M[x\<turnstile>n>y]) c" 
   shows "fic M c" 
-using a
-apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
-apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
-           split: if_splits)
-apply(auto dest: nrename_fresh_interesting2 simp add: fresh_prod fresh_atm)
-done
+  using a
+  apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
+             apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
+      split: if_splits)
+       apply(auto dest: nrename_fresh_interesting2 simp add: fresh_prod fresh_atm)
+  done
 
 lemma nrename_lredu:
   assumes a: "(M[x\<turnstile>n>y]) \<longrightarrow>\<^sub>l M'"
   shows "\<exists>M0. M0[x\<turnstile>n>y]=M' \<and> M \<longrightarrow>\<^sub>l M0"
-using a
-apply(nominal_induct M\<equiv>"M[x\<turnstile>n>y]" M' avoiding: M x y rule: l_redu.strong_induct)
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(case_tac "xa=y")
-apply(simp add: nrename_id)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(assumption)
-apply(frule nrename_ax2)
-apply(auto)[1]
-apply(case_tac "z=xa")
-apply(simp add: trm.inject)
-apply(simp)
-apply(rule_tac x="M'[a\<turnstile>c>b]" in exI)
-apply(rule conjI)
-apply(rule crename_interesting3)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(auto dest: fic_nrename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_prod fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(case_tac "xa=ya")
-apply(simp add: nrename_id)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(assumption)
-apply(frule nrename_ax2)
-apply(auto)[1]
-apply(case_tac "z=xa")
-apply(simp add: trm.inject)
-apply(rule_tac x="N'[x\<turnstile>n>xa]" in exI)
-apply(rule conjI)
-apply(rule nrename_interesting1)
-apply(auto)[1]
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
-apply(simp add: trm.inject)
-apply(rule_tac x="N'[x\<turnstile>n>y]" in exI)
-apply(rule conjI)
-apply(rule nrename_interesting2)
-apply(simp_all)
-apply(rule l_redu.intros)
-apply(simp)
-apply(simp add: fresh_atm)
-apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
-(* LNot *)
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_NotR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_NotL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
-apply(simp add: fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_prod fresh_atm intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* LAnd1 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule nrename_AndR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_AndL1)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a1>.M'a (x).N'b" in exI)
-apply(simp add: fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-(* LAnd2 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule nrename_AndR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_AndL2)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a2>.N'a (x).N'b" in exI)
-apply(simp add: fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-(* LOr1 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule nrename_OrL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_OrR1)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
-apply(rule conjI)
-apply(simp add: abs_fresh fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* LOr2 *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto)[1]
-apply(drule nrename_OrL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_OrR2)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
-apply(rule conjI)
-apply(simp add: abs_fresh fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-(* ImpL *)
-apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
-apply(drule sym) 
-apply(drule nrename_Cut)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
-apply(auto)[1]
-apply(drule nrename_ImpL)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(drule nrename_ImpR)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(simp add: fresh_prod abs_fresh fresh_atm)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
-apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
-apply(rule conjI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(rule l_redu.intros)
-apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
-apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
-done
+  using a
+  apply(nominal_induct M\<equiv>"M[x\<turnstile>n>y]" M' avoiding: M x y rule: l_redu.strong_induct)
+         apply(drule sym)
+         apply(drule nrename_Cut)
+           apply(simp add: fresh_prod fresh_atm)
+          apply(simp)
+         apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+         apply(case_tac "xa=y")
+          apply(simp add: nrename_id)
+          apply(rule l_redu.intros)
+            apply(simp)
+           apply(simp add: fresh_atm)
+          apply(assumption)
+         apply(frule nrename_ax2)
+         apply(auto)[1]
+         apply(case_tac "z=xa")
+          apply(simp add: trm.inject)
+         apply(simp)
+         apply(rule_tac x="M'[a\<turnstile>c>b]" in exI)
+         apply(rule conjI)
+          apply(rule crename_interesting3)
+         apply(rule l_redu.intros)
+           apply(simp)
+          apply(simp add: fresh_atm)
+         apply(auto dest: fic_nrename simp add: fresh_prod fresh_atm)[1]
+        apply(drule sym)
+        apply(drule nrename_Cut)
+          apply(simp add: fresh_prod fresh_atm)
+         apply(simp add: fresh_prod fresh_atm)
+        apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+        apply(case_tac "xa=ya")
+         apply(simp add: nrename_id)
+         apply(rule l_redu.intros)
+           apply(simp)
+          apply(simp add: fresh_atm)
+         apply(assumption)
+        apply(frule nrename_ax2)
+        apply(auto)[1]
+        apply(case_tac "z=xa")
+         apply(simp add: trm.inject)
+         apply(rule_tac x="N'[x\<turnstile>n>xa]" in exI)
+         apply(rule conjI)
+          apply(rule nrename_interesting1)
+          apply(auto)[1]
+         apply(rule l_redu.intros)
+           apply(simp)
+          apply(simp add: fresh_atm)
+         apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
+        apply(simp add: trm.inject)
+        apply(rule_tac x="N'[x\<turnstile>n>y]" in exI)
+        apply(rule conjI)
+         apply(rule nrename_interesting2)
+             apply(simp_all)
+        apply(rule l_redu.intros)
+          apply(simp)
+         apply(simp add: fresh_atm)
+        apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
+    (* LNot *)
+       apply(drule sym)
+       apply(drule nrename_Cut)
+         apply(simp add: fresh_prod abs_fresh fresh_atm)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+       apply(drule nrename_NotR)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+       apply(drule nrename_NotL)
+         apply(simp add: fresh_prod abs_fresh fresh_atm)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+       apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
+       apply(simp add: fresh_atm)[1]
+       apply(rule l_redu.intros)
+            apply(auto simp add: fresh_prod fresh_atm intro: nrename_fresh_interesting1)[1]
+           apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+          apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
+         apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
+        apply(simp add: fresh_atm)
+       apply(simp add: fresh_atm)
+    (* LAnd1 *)
+      apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+      apply(drule sym)
+      apply(drule nrename_Cut)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(auto)[1]
+      apply(drule nrename_AndR)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+      apply(drule nrename_AndL1)
+        apply(simp add: fresh_prod abs_fresh fresh_atm)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+      apply(rule_tac x="Cut <a1>.M'a (x).N'b" in exI)
+      apply(simp add: fresh_atm)[1]
+      apply(rule l_redu.intros)
+           apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
+          apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+         apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+        apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+       apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+      apply(simp add: fresh_atm)
+    (* LAnd2 *)
+     apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+     apply(drule sym)
+     apply(drule nrename_Cut)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(auto)[1]
+     apply(drule nrename_AndR)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+     apply(drule nrename_AndL2)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+     apply(rule_tac x="Cut <a2>.N'a (x).N'b" in exI)
+     apply(simp add: fresh_atm)[1]
+     apply(rule l_redu.intros)
+          apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
+         apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+        apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+       apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+      apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+     apply(simp add: fresh_atm)
+    (* LOr1 *)
+    apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+    apply(drule sym)
+    apply(drule nrename_Cut)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(auto)[1]
+    apply(drule nrename_OrL)
+       apply(simp add: fresh_prod abs_fresh fresh_atm)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(simp add: fresh_prod fresh_atm)
+    apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+    apply(drule nrename_OrR1)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+    apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
+    apply(rule conjI)
+     apply(simp add: abs_fresh fresh_atm)[1]
+    apply(rule l_redu.intros)
+         apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
+        apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+       apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+      apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+     apply(simp add: fresh_atm)
+    apply(simp add: fresh_atm)
+    (* LOr2 *)
+   apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+   apply(drule sym)
+   apply(drule nrename_Cut)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(auto)[1]
+   apply(drule nrename_OrL)
+      apply(simp add: fresh_prod abs_fresh fresh_atm)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(simp add: fresh_prod fresh_atm)
+   apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+   apply(drule nrename_OrR2)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+   apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
+   apply(rule conjI)
+    apply(simp add: abs_fresh fresh_atm)[1]
+   apply(rule l_redu.intros)
+        apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
+       apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+      apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+     apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
+    apply(simp add: fresh_atm)
+   apply(simp add: fresh_atm)
+    (* ImpL *)
+  apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
+  apply(drule sym) 
+  apply(drule nrename_Cut)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
+  apply(auto)[1]
+  apply(drule nrename_ImpL)
+     apply(simp add: fresh_prod abs_fresh fresh_atm)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(simp add: fresh_prod fresh_atm)
+  apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+  apply(drule nrename_ImpR)
+    apply(simp add: fresh_prod abs_fresh fresh_atm)
+   apply(simp add: fresh_prod abs_fresh fresh_atm)
+  apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
+  apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
+  apply(rule conjI)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+  apply(rule l_redu.intros)
+       apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
+      apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
+     apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
+    apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
+   apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
+  apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
+  done
 
 lemma nrename_aredu:
   assumes a: "(M[x\<turnstile>n>y]) \<longrightarrow>\<^sub>a M'" "x\<noteq>y"
   shows "\<exists>M0. M0[x\<turnstile>n>y]=M' \<and> M \<longrightarrow>\<^sub>a M0"
-using a
-apply(nominal_induct "M[x\<turnstile>n>y]" M' avoiding: M x y rule: a_redu.strong_induct)
-apply(drule  nrename_lredu)
-apply(blast)
-apply(drule  nrename_credu)
-apply(blast)
-(* Cut *)
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(rule conjI)
-apply(rule trans)
-apply(rule nrename.simps)
-apply(drule nrename_fresh_interesting2)
-apply(simp add: fresh_a_redu)
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(drule nrename_fresh_interesting1)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_a_redu)
-apply(simp)
-apply(auto)[1]
-apply(drule sym)
-apply(drule nrename_Cut)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(rule conjI)
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: fresh_a_redu)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(simp)
-apply(auto)[1]
-(* NotL *)
-apply(drule sym)
-apply(frule nrename_NotL_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_NotL')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="NotL <a>.M0 x" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="x" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="NotL <a>.M0 xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* NotR *)
-apply(drule sym)
-apply(drule nrename_NotR)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="NotR (x).M0 a" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* AndR *)
-apply(drule sym)
-apply(drule nrename_AndR)
-apply(simp)
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="x" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-apply(drule sym)
-apply(drule nrename_AndR)
-apply(simp)
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto simp add: fresh_atm fresh_prod)[1]
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="x" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-apply(simp)
-(* AndL1 *)
-apply(drule sym)
-apply(frule nrename_AndL1_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_AndL1')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="ya" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndL1 (x).M0 y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndL1 (x).M0 xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* AndL2 *)
-apply(drule sym)
-apply(frule nrename_AndL2_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_AndL2')
-apply(simp)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="ya" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndL2 (x).M0 y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="AndL2 (x).M0 xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* OrL *)
-apply(drule sym)
-apply(frule nrename_OrL_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_OrL')
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="ya" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="z" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrL (x).M0 (y).N' xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(drule sym)
-apply(frule nrename_OrL_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_OrL')
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="ya" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="z" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrL (x).M' (y).M0 xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp)
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-(* OrR1 *)
-apply(drule sym)
-apply(drule nrename_OrR1)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="x" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrR1 <a>.M0 b" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* OrR2 *)
-apply(drule sym)
-apply(drule nrename_OrR2)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="x" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="OrR2 <a>.M0 b" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-(* ImpL *)
-apply(drule sym)
-apply(frule nrename_ImpL_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_ImpL')
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="ya" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpL <a>.M0 (x).N' xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(drule sym)
-apply(frule nrename_ImpL_aux)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule nrename_ImpL')
-apply(simp add: fresh_prod fresh_atm)
-apply(simp add: fresh_atm)
-apply(simp add: fresh_atm)
-apply(erule disjE)
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="ya" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(drule_tac x="N'a" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpL <a>.M' (x).M0 xa" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-apply(rule trans)
-apply(rule nrename.simps)
-apply(auto intro: fresh_a_redu)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
-(* ImpR *)
-apply(drule sym)
-apply(drule nrename_ImpR)
-apply(simp)
-apply(simp)
-apply(auto)[1]
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="xa" in meta_spec)
-apply(drule_tac x="y" in meta_spec)
-apply(auto)[1]
-apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
-apply(auto)[1]
-done
+  using a
+  apply(nominal_induct "M[x\<turnstile>n>y]" M' avoiding: M x y rule: a_redu.strong_induct)
+                  apply(drule  nrename_lredu)
+                  apply(blast)
+                 apply(drule  nrename_credu)
+                 apply(blast)
+    (* Cut *)
+                apply(drule sym)
+                apply(drule nrename_Cut)
+                  apply(simp)
+                 apply(simp)
+                apply(auto)[1]
+                apply(drule_tac x="M'a" in meta_spec)
+                apply(drule_tac x="xa" in meta_spec)
+                apply(drule_tac x="y" in meta_spec)
+                apply(auto)[1]
+                apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
+                apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+                apply(rule conjI)
+                 apply(rule trans)
+                  apply(rule nrename.simps)
+                   apply(drule nrename_fresh_interesting2)
+                   apply(simp add: fresh_a_redu)
+                  apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+                  apply(drule nrename_fresh_interesting1)
+                   apply(simp add: fresh_prod fresh_atm)
+                  apply(simp add: fresh_a_redu)
+                 apply(simp)
+                apply(auto)[1]
+               apply(drule sym)
+               apply(drule nrename_Cut)
+                 apply(simp)
+                apply(simp)
+               apply(auto)[1]
+               apply(drule_tac x="N'a" in meta_spec)
+               apply(drule_tac x="xa" in meta_spec)
+               apply(drule_tac x="y" in meta_spec)
+               apply(auto)[1]
+               apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
+               apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+               apply(rule conjI)
+                apply(rule trans)
+                 apply(rule nrename.simps)
+                  apply(simp add: fresh_a_redu)
+                 apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+                apply(simp)
+               apply(auto)[1]
+    (* NotL *)
+              apply(drule sym)
+              apply(frule nrename_NotL_aux)
+              apply(erule disjE)
+               apply(auto)[1]
+              apply(drule nrename_NotL')
+                apply(simp)
+               apply(simp add: fresh_atm)
+              apply(erule disjE)
+               apply(auto)[1]
+               apply(drule_tac x="N'" in meta_spec)
+               apply(drule_tac x="xa" in meta_spec)
+               apply(drule_tac x="y" in meta_spec)
+               apply(auto)[1]
+               apply(rule_tac x="NotL <a>.M0 x" in exI)
+               apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+               apply(auto)[1]
+              apply(auto)[1]
+              apply(drule_tac x="N'" in meta_spec)
+              apply(drule_tac x="xa" in meta_spec)
+              apply(drule_tac x="x" in meta_spec)
+              apply(auto)[1]
+              apply(rule_tac x="NotL <a>.M0 xa" in exI)
+              apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+              apply(auto)[1]
+    (* NotR *)
+             apply(drule sym)
+             apply(drule nrename_NotR)
+              apply(simp)
+             apply(auto)[1]
+             apply(drule_tac x="N'" in meta_spec)
+             apply(drule_tac x="xa" in meta_spec)
+             apply(drule_tac x="y" in meta_spec)
+             apply(auto)[1]
+             apply(rule_tac x="NotR (x).M0 a" in exI)
+             apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+             apply(auto)[1]
+    (* AndR *)
+            apply(drule sym)
+            apply(drule nrename_AndR)
+              apply(simp)
+              apply(auto simp add: fresh_atm fresh_prod)[1]
+             apply(auto simp add: fresh_atm fresh_prod)[1]
+            apply(auto)[1]
+            apply(drule_tac x="M'a" in meta_spec)
+            apply(drule_tac x="x" in meta_spec)
+            apply(drule_tac x="y" in meta_spec)
+            apply(auto)[1]
+            apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
+            apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(auto)[1]
+            apply(rule trans)
+             apply(rule nrename.simps)
+               apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+              apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+              apply(auto intro: fresh_a_redu)[1]
+             apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(simp)
+           apply(drule sym)
+           apply(drule nrename_AndR)
+             apply(simp)
+             apply(auto simp add: fresh_atm fresh_prod)[1]
+            apply(auto simp add: fresh_atm fresh_prod)[1]
+           apply(auto)[1]
+           apply(drule_tac x="N'a" in meta_spec)
+           apply(drule_tac x="x" in meta_spec)
+           apply(drule_tac x="y" in meta_spec)
+           apply(auto)[1]
+           apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
+           apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(auto)[1]
+           apply(rule trans)
+            apply(rule nrename.simps)
+              apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+              apply(auto intro: fresh_a_redu)[1]
+             apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+            apply(simp)
+           apply(simp)
+    (* AndL1 *)
+          apply(drule sym)
+          apply(frule nrename_AndL1_aux)
+          apply(erule disjE)
+           apply(auto)[1]
+          apply(drule nrename_AndL1')
+            apply(simp)
+           apply(simp add: fresh_atm)
+          apply(erule disjE)
+           apply(auto)[1]
+           apply(drule_tac x="N'" in meta_spec)
+           apply(drule_tac x="xa" in meta_spec)
+           apply(drule_tac x="ya" in meta_spec)
+           apply(auto)[1]
+           apply(rule_tac x="AndL1 (x).M0 y" in exI)
+           apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(auto)[1]
+          apply(auto)[1]
+          apply(drule_tac x="N'" in meta_spec)
+          apply(drule_tac x="xa" in meta_spec)
+          apply(drule_tac x="y" in meta_spec)
+          apply(auto)[1]
+          apply(rule_tac x="AndL1 (x).M0 xa" in exI)
+          apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+          apply(auto)[1]
+    (* AndL2 *)
+         apply(drule sym)
+         apply(frule nrename_AndL2_aux)
+         apply(erule disjE)
+          apply(auto)[1]
+         apply(drule nrename_AndL2')
+           apply(simp)
+          apply(simp add: fresh_atm)
+         apply(erule disjE)
+          apply(auto)[1]
+          apply(drule_tac x="N'" in meta_spec)
+          apply(drule_tac x="xa" in meta_spec)
+          apply(drule_tac x="ya" in meta_spec)
+          apply(auto)[1]
+          apply(rule_tac x="AndL2 (x).M0 y" in exI)
+          apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+          apply(auto)[1]
+         apply(auto)[1]
+         apply(drule_tac x="N'" in meta_spec)
+         apply(drule_tac x="xa" in meta_spec)
+         apply(drule_tac x="y" in meta_spec)
+         apply(auto)[1]
+         apply(rule_tac x="AndL2 (x).M0 xa" in exI)
+         apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+         apply(auto)[1]
+    (* OrL *)
+        apply(drule sym)
+        apply(frule nrename_OrL_aux)
+        apply(erule disjE)
+         apply(auto)[1]
+        apply(drule nrename_OrL')
+           apply(simp add: fresh_prod fresh_atm)
+          apply(simp add: fresh_atm)
+         apply(simp add: fresh_atm)
+        apply(erule disjE)
+         apply(auto)[1]
+         apply(drule_tac x="M'a" in meta_spec)
+         apply(drule_tac x="xa" in meta_spec)
+         apply(drule_tac x="ya" in meta_spec)
+         apply(auto)[1]
+         apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
+         apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+         apply(auto)[1]
+         apply(rule trans)
+          apply(rule nrename.simps)
+            apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+           apply(auto intro: fresh_a_redu)[1]
+          apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+         apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(auto)[1]
+        apply(drule_tac x="M'a" in meta_spec)
+        apply(drule_tac x="xa" in meta_spec)
+        apply(drule_tac x="z" in meta_spec)
+        apply(auto)[1]
+        apply(rule_tac x="OrL (x).M0 (y).N' xa" in exI)
+        apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(auto)[1]
+        apply(rule trans)
+         apply(rule nrename.simps)
+           apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+          apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+          apply(auto intro: fresh_a_redu)[1]
+         apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+       apply(drule sym)
+       apply(frule nrename_OrL_aux)
+       apply(erule disjE)
+        apply(auto)[1]
+       apply(drule nrename_OrL')
+          apply(simp add: fresh_prod fresh_atm)
+         apply(simp add: fresh_atm)
+        apply(simp add: fresh_atm)
+       apply(erule disjE)
+        apply(auto)[1]
+        apply(drule_tac x="N'a" in meta_spec)
+        apply(drule_tac x="xa" in meta_spec)
+        apply(drule_tac x="ya" in meta_spec)
+        apply(auto)[1]
+        apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
+        apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(auto)[1]
+        apply(rule trans)
+         apply(rule nrename.simps)
+           apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+           apply(auto intro: fresh_a_redu)[1]
+          apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+         apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+       apply(auto)[1]
+       apply(drule_tac x="N'a" in meta_spec)
+       apply(drule_tac x="xa" in meta_spec)
+       apply(drule_tac x="z" in meta_spec)
+       apply(auto)[1]
+       apply(rule_tac x="OrL (x).M' (y).M0 xa" in exI)
+       apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+       apply(auto)[1]
+       apply(rule trans)
+        apply(rule nrename.simps)
+          apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
+          apply(auto intro: fresh_a_redu)[1]
+         apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+        apply(simp)
+       apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+    (* OrR1 *)
+      apply(drule sym)
+      apply(drule nrename_OrR1)
+       apply(simp)
+      apply(auto)[1]
+      apply(drule_tac x="N'" in meta_spec)
+      apply(drule_tac x="x" in meta_spec)
+      apply(drule_tac x="y" in meta_spec)
+      apply(auto)[1]
+      apply(rule_tac x="OrR1 <a>.M0 b" in exI)
+      apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+      apply(auto)[1]
+    (* OrR2 *)
+     apply(drule sym)
+     apply(drule nrename_OrR2)
+      apply(simp)
+     apply(auto)[1]
+     apply(drule_tac x="N'" in meta_spec)
+     apply(drule_tac x="x" in meta_spec)
+     apply(drule_tac x="y" in meta_spec)
+     apply(auto)[1]
+     apply(rule_tac x="OrR2 <a>.M0 b" in exI)
+     apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+     apply(auto)[1]
+    (* ImpL *)
+    apply(drule sym)
+    apply(frule nrename_ImpL_aux)
+    apply(erule disjE)
+     apply(auto)[1]
+    apply(drule nrename_ImpL')
+       apply(simp add: fresh_prod fresh_atm)
+      apply(simp add: fresh_atm)
+     apply(simp add: fresh_atm)
+    apply(erule disjE)
+     apply(auto)[1]
+     apply(drule_tac x="M'a" in meta_spec)
+     apply(drule_tac x="xa" in meta_spec)
+     apply(drule_tac x="ya" in meta_spec)
+     apply(auto)[1]
+     apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
+     apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+     apply(auto)[1]
+     apply(rule trans)
+      apply(rule nrename.simps)
+       apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+      apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+      apply(auto intro: fresh_a_redu)[1]
+     apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+    apply(auto)[1]
+    apply(drule_tac x="M'a" in meta_spec)
+    apply(drule_tac x="xa" in meta_spec)
+    apply(drule_tac x="y" in meta_spec)
+    apply(auto)[1]
+    apply(rule_tac x="ImpL <a>.M0 (x).N' xa" in exI)
+    apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+    apply(auto)[1]
+    apply(rule trans)
+     apply(rule nrename.simps)
+      apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+     apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+     apply(auto intro: fresh_a_redu)[1]
+    apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(drule sym)
+   apply(frule nrename_ImpL_aux)
+   apply(erule disjE)
+    apply(auto)[1]
+   apply(drule nrename_ImpL')
+      apply(simp add: fresh_prod fresh_atm)
+     apply(simp add: fresh_atm)
+    apply(simp add: fresh_atm)
+   apply(erule disjE)
+    apply(auto)[1]
+    apply(drule_tac x="N'a" in meta_spec)
+    apply(drule_tac x="xa" in meta_spec)
+    apply(drule_tac x="ya" in meta_spec)
+    apply(auto)[1]
+    apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
+    apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+    apply(auto)[1]
+    apply(rule trans)
+     apply(rule nrename.simps)
+      apply(auto intro: fresh_a_redu)[1]
+     apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+    apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(auto)[1]
+   apply(drule_tac x="N'a" in meta_spec)
+   apply(drule_tac x="xa" in meta_spec)
+   apply(drule_tac x="y" in meta_spec)
+   apply(auto)[1]
+   apply(rule_tac x="ImpL <a>.M' (x).M0 xa" in exI)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(auto)[1]
+   apply(rule trans)
+    apply(rule nrename.simps)
+     apply(auto intro: fresh_a_redu)[1]
+    apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+   apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
+    (* ImpR *)
+  apply(drule sym)
+  apply(drule nrename_ImpR)
+    apply(simp)
+   apply(simp)
+  apply(auto)[1]
+  apply(drule_tac x="N'" in meta_spec)
+  apply(drule_tac x="xa" in meta_spec)
+  apply(drule_tac x="y" in meta_spec)
+  apply(auto)[1]
+  apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
+  apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
+  apply(auto)[1]
+  done
 
 lemma SNa_preserved_renaming2:
   assumes a: "SNa N"
   shows "SNa (N[x\<turnstile>n>y])"
-using a
-apply(induct rule: SNa_induct)
-apply(case_tac "x=y")
-apply(simp add: nrename_id)
-apply(rule SNaI)
-apply(drule nrename_aredu)
-apply(blast)+
-done
+  using a
+  apply(induct rule: SNa_induct)
+  apply(case_tac "x=y")
+   apply(simp add: nrename_id)
+  apply(rule SNaI)
+  apply(drule nrename_aredu)
+   apply(blast)+
+  done
 
 text \<open>helper-stuff to set up the induction\<close>
 
 abbreviation
   SNa_set :: "trm set"
-where
-  "SNa_set \<equiv> {M. SNa M}"
+  where
+    "SNa_set \<equiv> {M. SNa M}"
 
 abbreviation
   A_Redu_set :: "(trm\<times>trm) set"
-where
- "A_Redu_set \<equiv> {(N,M)| M N. M \<longrightarrow>\<^sub>a N}"
+  where
+    "A_Redu_set \<equiv> {(N,M)| M N. M \<longrightarrow>\<^sub>a N}"
 
 lemma SNa_elim:
   assumes a: "SNa M"
   shows "(\<forall>M. (\<forall>N. M \<longrightarrow>\<^sub>a N \<longrightarrow> P N)\<longrightarrow> P M) \<longrightarrow> P M"
-using a
-by (induct rule: SNa.induct) (blast)
+  using a
+  by (induct rule: SNa.induct) (blast)
 
 lemma wf_SNa_restricted:
   shows "wf (A_Redu_set \<inter> (UNIV \<times> SNa_set))"
-apply(unfold wf_def)
-apply(intro strip)
-apply(case_tac "SNa x")
-apply(simp (no_asm_use))
-apply(drule_tac P="P" in SNa_elim)
-apply(erule mp)
-apply(blast)
-(* other case *)
-apply(drule_tac x="x" in spec)
-apply(erule mp)
-apply(fast)
-done
+  apply(unfold wf_def)
+  apply(intro strip)
+  apply(case_tac "SNa x")
+   apply(simp (no_asm_use))
+   apply(drule_tac P="P" in SNa_elim)
+   apply(erule mp)
+   apply(blast)
+    (* other case *)
+  apply(drule_tac x="x" in spec)
+  apply(erule mp)
+  apply(fast)
+  done
 
 definition SNa_Redu :: "(trm \<times> trm) set" where
   "SNa_Redu \<equiv> A_Redu_set \<inter> (UNIV \<times> SNa_set)"
 
 lemma wf_SNa_Redu:
   shows "wf SNa_Redu"
-apply(unfold SNa_Redu_def)
-apply(rule wf_SNa_restricted)
-done
+  apply(unfold SNa_Redu_def)
+  apply(rule wf_SNa_restricted)
+  done
 
 lemma wf_measure_triple:
-shows "wf ((measure size) <*lex*> SNa_Redu <*lex*> SNa_Redu)"
-by (auto intro: wf_SNa_Redu)
+  shows "wf ((measure size) <*lex*> SNa_Redu <*lex*> SNa_Redu)"
+  by (auto intro: wf_SNa_Redu)
 
 lemma my_wf_induct_triple: 
- assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"           
- and     b: "\<And>x. \<lbrakk>\<And>y. ((fst y,fst (snd y),snd (snd y)),(fst x,fst (snd x), snd (snd x))) 
+  assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"           
+    and     b: "\<And>x. \<lbrakk>\<And>y. ((fst y,fst (snd y),snd (snd y)),(fst x,fst (snd x), snd (snd x))) 
                                     \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P y\<rbrakk> \<Longrightarrow> P x"  
- shows "P x"
-using a
-apply(induct x rule: wf_induct_rule)
-apply(rule b)
-apply(simp)
-done
+  shows "P x"
+  using a
+  apply(induct x rule: wf_induct_rule)
+  apply(rule b)
+  apply(simp)
+  done
 
 lemma my_wf_induct_triple': 
- assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"           
- and    b: "\<And>x1 x2 x3. \<lbrakk>\<And>y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P (y1,y2,y3)\<rbrakk> 
+  assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"           
+    and    b: "\<And>x1 x2 x3. \<lbrakk>\<And>y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P (y1,y2,y3)\<rbrakk> 
              \<Longrightarrow> P (x1,x2,x3)"  
- shows "P (x1,x2,x3)"
-apply(rule_tac my_wf_induct_triple[OF a])
-apply(case_tac x rule: prod.exhaust)
-apply(simp)
-apply(rename_tac p a b)
-apply(case_tac b)
-apply(simp)
-apply(rule b)
-apply(blast)
-done
+  shows "P (x1,x2,x3)"
+  apply(rule_tac my_wf_induct_triple[OF a])
+  apply(case_tac x rule: prod.exhaust)
+  apply(simp)
+  apply(rename_tac p a b)
+  apply(case_tac b)
+  apply(simp)
+  apply(rule b)
+  apply(blast)
+  done
 
 lemma my_wf_induct_triple'': 
- assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"           
- and     b: "\<And>x1 x2 x3. \<lbrakk>\<And>y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P y1 y2 y3\<rbrakk>
+  assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"           
+    and     b: "\<And>x1 x2 x3. \<lbrakk>\<And>y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) \<in> (r1 <*lex*> r2 <*lex*> r3) \<longrightarrow> P y1 y2 y3\<rbrakk>
                \<Longrightarrow> P x1 x2 x3"  
- shows "P x1 x2 x3"
-apply(rule_tac my_wf_induct_triple'[where P="\<lambda>(x1,x2,x3). P x1 x2 x3", simplified])
-apply(rule a)
-apply(rule b)
-apply(auto)
-done
+  shows "P x1 x2 x3"
+  apply(rule_tac my_wf_induct_triple'[where P="\<lambda>(x1,x2,x3). P x1 x2 x3", simplified])
+   apply(rule a)
+  apply(rule b)
+  apply(auto)
+  done
 
 lemma excluded_m:
   assumes a: "<a>:M \<in> (\<parallel><B>\<parallel>)" "(x):N \<in> (\<parallel>(B)\<parallel>)"
   shows "(<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<or> (x):N \<in> BINDINGn B (\<parallel><B>\<parallel>))
       \<or>\<not>(<a>:M \<in> BINDINGc B (\<parallel>(B)\<parallel>) \<or> (x):N \<in> BINDINGn B (\<parallel><B>\<parallel>))"
-by (blast)
+  by (blast)
+
+text \<open>The following two simplification rules are necessary because of the 
+      new definition of lexicographic ordering\<close>
+lemma ne_and_SNa_Redu[simp]: "M \<noteq> x \<and> (M,x) \<in> SNa_Redu \<longleftrightarrow> (M,x) \<in> SNa_Redu"
+  using wf_SNa_Redu by auto
+
+lemma ne_and_less_size [simp]: "A \<noteq> B \<and> size A < size B \<longleftrightarrow> size A < size B"
+  by auto
 
 lemma tricky_subst:
   assumes a1: "b\<sharp>(c,N)"
-  and     a2: "z\<sharp>(x,P)"
-  and     a3: "M\<noteq>Ax z b"
+    and     a2: "z\<sharp>(x,P)"
+    and     a3: "M\<noteq>Ax z b"
   shows "(Cut <c>.N (z).M){b:=(x).P} = Cut <c>.N (z).(M{b:=(x).P})"
-using a1 a2 a3
-apply -
-apply(generate_fresh "coname")
-apply(subgoal_tac "Cut <c>.N (z).M = Cut <ca>.([(ca,c)]\<bullet>N) (z).M")
-apply(simp)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh)
-apply(simp)
-apply(subgoal_tac "b\<sharp>([(ca,c)]\<bullet>N)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
-apply(simp add: trm.inject)
-apply(rule sym)
-apply(simp add: alpha fresh_prod fresh_atm)
-done
+  using a1 a2 a3
+  apply -
+  apply(generate_fresh "coname")
+  apply(subgoal_tac "Cut <c>.N (z).M = Cut <ca>.([(ca,c)]\<bullet>N) (z).M")
+   apply(simp)
+   apply(rule trans)
+    apply(rule better_Cut_substc)
+     apply(simp)
+    apply(simp add: abs_fresh)
+   apply(simp)
+   apply(subgoal_tac "b\<sharp>([(ca,c)]\<bullet>N)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+   apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+  apply(simp add: trm.inject)
+  apply(rule sym)
+  apply(simp add: alpha fresh_prod fresh_atm)
+  done
 
 text \<open>3rd lemma\<close>
 
 lemma CUT_SNa_aux:
   assumes a1: "<a>:M \<in> (\<parallel><B>\<parallel>)"
-  and     a2: "SNa M"
-  and     a3: "(x):N \<in> (\<parallel>(B)\<parallel>)"
-  and     a4: "SNa N"
+    and     a2: "SNa M"
+    and     a3: "(x):N \<in> (\<parallel>(B)\<parallel>)"
+    and     a4: "SNa N"
   shows   "SNa (Cut <a>.M (x).N)"
-using a1 a2 a3 a4 [[simproc del: defined_all]]
-apply(induct B M N arbitrary: a x rule: my_wf_induct_triple''[OF wf_measure_triple])
-apply(rule SNaI)
-apply(drule Cut_a_redu_elim)
-apply(erule disjE)
-(* left-inner reduction *)
-apply(erule exE)
-apply(erule conjE)+
-apply(simp)
-apply(drule_tac x="x1" in meta_spec)
-apply(drule_tac x="M'a" in meta_spec)
-apply(drule_tac x="x3" in meta_spec)
-apply(drule conjunct2)
-apply(drule mp)
-apply(rule conjI)
-apply(simp)
-apply(rule disjI1)
-apply(simp add: SNa_Redu_def)
-apply(drule_tac x="a" in spec)
-apply(drule mp)
-apply(simp add: CANDs_preserved_single)
-apply(drule mp)
-apply(simp add: a_preserves_SNa)
-apply(drule_tac x="x" in spec)
-apply(simp)
-apply(erule disjE)
-(* right-inner reduction *)
-apply(erule exE)
-apply(erule conjE)+
-apply(simp)
-apply(drule_tac x="x1" in meta_spec)
-apply(drule_tac x="x2" in meta_spec)
-apply(drule_tac x="N'" in meta_spec)
-apply(drule conjunct2)
-apply(drule mp)
-apply(rule conjI)
-apply(simp)
-apply(rule disjI2)
-apply(simp add: SNa_Redu_def)
-apply(drule_tac x="a" in spec)
-apply(drule mp)
-apply(simp add: CANDs_preserved_single)
-apply(drule mp)
-apply(assumption)
-apply(drule_tac x="x" in spec)
-apply(drule mp)
-apply(simp add: CANDs_preserved_single)
-apply(drule mp)
-apply(simp add: a_preserves_SNa)
-apply(assumption)
-apply(erule disjE)
-(******** c-reduction *********)
-apply(drule Cut_c_redu_elim)
-(* c-left reduction*)
-apply(erule disjE)
-apply(erule conjE)
-apply(frule_tac B="x1" in fic_CANDS)
-apply(simp)
-apply(erule disjE)
-(* in AXIOMSc *)
-apply(simp add: AXIOMSc_def)
-apply(erule exE)+
-apply(simp add: ctrm.inject)
-apply(simp add: alpha)
-apply(erule disjE)
-apply(simp)
-apply(rule impI)
-apply(simp)
-apply(subgoal_tac "fic (Ax y b) b")(*A*)
-apply(simp)
-(*A*)
-apply(auto)[1]
-apply(simp)
-apply(rule impI)
-apply(simp)
-apply(subgoal_tac "fic (Ax ([(a,aa)]\<bullet>y) a) a")(*B*)
-apply(simp)
-(*B*)
-apply(auto)[1]
-(* in BINDINGc *)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(simp)
-(* c-right reduction*)
-apply(erule conjE)
-apply(frule_tac B="x1" in fin_CANDS)
-apply(simp)
-apply(erule disjE)
-(* in AXIOMSc *)
-apply(simp add: AXIOMSn_def)
-apply(erule exE)+
-apply(simp add: ntrm.inject)
-apply(simp add: alpha)
-apply(erule disjE)
-apply(simp)
-apply(rule impI)
-apply(simp)
-apply(subgoal_tac "fin (Ax xa b) xa")(*A*)
-apply(simp)
-(*A*)
-apply(auto)[1]
-apply(simp)
-apply(rule impI)
-apply(simp)
-apply(subgoal_tac "fin (Ax x ([(x,xa)]\<bullet>b)) x")(*B*)
-apply(simp)
-(*B*)
-apply(auto)[1]
-(* in BINDINGc *)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(simp)
-(*********** l-reductions ************)
-apply(drule Cut_l_redu_elim)
-apply(erule disjE)
-(* ax1 *)
-apply(erule exE)
-apply(simp)
-apply(simp add: SNa_preserved_renaming1)
-apply(erule disjE)
-(* ax2 *)
-apply(erule exE)
-apply(simp add: SNa_preserved_renaming2)
-apply(erule disjE)
-(* LNot *)
-apply(erule exE)+
-apply(auto)[1]
-apply(frule_tac excluded_m)
-apply(assumption)
-apply(erule disjE)
-(* one of them in BINDING *)
-apply(erule disjE)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(drule_tac x="x" in spec)
-apply(drule_tac x="NotL <b>.N' x" in spec)
-apply(simp)
-apply(simp add: better_NotR_substc)
-apply(generate_fresh "coname")
-apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.NotR (y).M'a a' (x).NotL <b>.N' x) 
+  using a1 a2 a3 a4 [[simproc del: defined_all]]
+  apply(induct B M N arbitrary: a x rule: my_wf_induct_triple''[OF wf_measure_triple])
+  apply(rule SNaI)
+  apply(drule Cut_a_redu_elim)
+  apply(erule disjE)
+    (* left-inner reduction *)
+   apply(erule exE)
+   apply(erule conjE)+
+   apply(simp)
+   apply(drule_tac x="x1" in meta_spec)
+   apply(drule_tac x="M'a" in meta_spec)
+   apply(drule_tac x="x3" in meta_spec)
+   apply(drule conjunct2)
+   apply(drule mp)
+    apply(rule conjI)
+     apply(simp)
+    apply(rule disjI1)
+    apply(simp add: SNa_Redu_def)
+   apply(drule_tac x="a" in spec)
+   apply(drule mp)
+    apply(simp add: CANDs_preserved_single)
+   apply(drule mp)
+    apply(simp add: a_preserves_SNa)
+   apply(drule_tac x="x" in spec)
+   apply(simp)
+  apply(erule disjE)
+    (* right-inner reduction *)
+   apply(erule exE)
+   apply(erule conjE)+
+   apply(simp)
+   apply(drule_tac x="x1" in meta_spec)
+   apply(drule_tac x="x2" in meta_spec)
+   apply(drule_tac x="N'" in meta_spec)
+   apply(drule conjunct2)
+   apply(drule mp)
+    apply(rule conjI)
+     apply(simp)
+    apply(rule disjI2)
+    apply(simp add: SNa_Redu_def)
+   apply(drule_tac x="a" in spec)
+   apply(drule mp)
+    apply(simp add: CANDs_preserved_single)
+   apply(drule mp)
+    apply(assumption)
+   apply(drule_tac x="x" in spec)
+   apply(drule mp)
+    apply(simp add: CANDs_preserved_single)
+   apply(drule mp)
+    apply(simp add: a_preserves_SNa)
+   apply(assumption)
+  apply(erule disjE)
+    (******** c-reduction *********)
+   apply(drule Cut_c_redu_elim)
+    (* c-left reduction*)
+   apply(erule disjE)
+    apply(erule conjE)
+    apply(frule_tac B="x1" in fic_CANDS)
+     apply(simp)
+    apply(erule disjE)
+    (* in AXIOMSc *)
+     apply(simp add: AXIOMSc_def)
+     apply(erule exE)+
+     apply(simp add: ctrm.inject)
+     apply(simp add: alpha)
+     apply(erule disjE)
+      apply(simp)
+      apply(rule impI)
+      apply(simp)
+      apply(subgoal_tac "fic (Ax y b) b")(*A*)
+       apply(simp)
+    (*A*)
+      apply(auto)[1]
+     apply(simp)
+     apply(rule impI)
+     apply(simp)
+     apply(subgoal_tac "fic (Ax ([(a,aa)]\<bullet>y) a) a")(*B*)
+      apply(simp)
+    (*B*)
+     apply(auto)[1]
+    (* in BINDINGc *)
+    apply(simp)
+    apply(drule BINDINGc_elim)
+    apply(simp)
+    (* c-right reduction*)
+   apply(erule conjE)
+   apply(frule_tac B="x1" in fin_CANDS)
+    apply(simp)
+   apply(erule disjE)
+    (* in AXIOMSc *)
+    apply(simp add: AXIOMSn_def)
+    apply(erule exE)+
+    apply(simp add: ntrm.inject)
+    apply(simp add: alpha)
+    apply(erule disjE)
+     apply(simp)
+     apply(rule impI)
+     apply(simp)
+     apply(subgoal_tac "fin (Ax xa b) xa")(*A*)
+      apply(simp)
+    (*A*)
+     apply(auto)[1]
+    apply(simp)
+    apply(rule impI)
+    apply(simp)
+    apply(subgoal_tac "fin (Ax x ([(x,xa)]\<bullet>b)) x")(*B*)
+     apply(simp)
+    (*B*)
+    apply(auto)[1]
+    (* in BINDINGc *)
+   apply(simp)
+   apply(drule BINDINGn_elim)
+   apply(simp)
+    (*********** l-reductions ************)
+  apply(drule Cut_l_redu_elim)
+  apply(erule disjE)
+    (* ax1 *)
+   apply(erule exE)
+   apply(simp)
+   apply(simp add: SNa_preserved_renaming1)
+  apply(erule disjE)
+    (* ax2 *)
+   apply(erule exE)
+   apply(simp add: SNa_preserved_renaming2)
+  apply(erule disjE)
+    (* LNot *)
+   apply(erule exE)+
+   apply(auto)[1]
+   apply(frule_tac excluded_m)
+    apply(assumption)
+   apply(erule disjE)
+    (* one of them in BINDING *)
+    apply(erule disjE)
+     apply(drule fin_elims)
+     apply(drule fic_elims)
+     apply(simp)
+     apply(drule BINDINGc_elim)
+     apply(drule_tac x="x" in spec)
+     apply(drule_tac x="NotL <b>.N' x" in spec)
+     apply(simp)
+     apply(simp add: better_NotR_substc)
+     apply(generate_fresh "coname")
+     apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.NotR (y).M'a a' (x).NotL <b>.N' x) 
                    =  Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x")
-apply(simp)
-apply(subgoal_tac "Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x \<longrightarrow>\<^sub>a Cut <b>.N' (y).M'a")
-apply(simp only: a_preserves_SNa)
-apply(rule al_redu)
-apply(rule better_LNot_intro)
-apply(simp)
-apply(simp)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* other case of in BINDING *)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(drule_tac x="a" in spec)
-apply(drule_tac x="NotR (y).M'a a" in spec)
-apply(simp)
-apply(simp add: better_NotL_substn)
-apply(generate_fresh "name")
-apply(subgoal_tac "fresh_fun (\<lambda>x'. Cut <a>.NotR (y).M'a a (x').NotL <b>.N' x') 
+      apply(simp)
+      apply(subgoal_tac "Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x \<longrightarrow>\<^sub>a Cut <b>.N' (y).M'a")
+       apply(simp only: a_preserves_SNa)
+      apply(rule al_redu)
+      apply(rule better_LNot_intro)
+       apply(simp)
+      apply(simp)
+     apply(fresh_fun_simp (no_asm))
+     apply(simp)
+    (* other case of in BINDING *)
+    apply(drule fin_elims)
+    apply(drule fic_elims)
+    apply(simp)
+    apply(drule BINDINGn_elim)
+    apply(drule_tac x="a" in spec)
+    apply(drule_tac x="NotR (y).M'a a" in spec)
+    apply(simp)
+    apply(simp add: better_NotL_substn)
+    apply(generate_fresh "name")
+    apply(subgoal_tac "fresh_fun (\<lambda>x'. Cut <a>.NotR (y).M'a a (x').NotL <b>.N' x') 
                    = Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c")
-apply(simp)
-apply(subgoal_tac "Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c \<longrightarrow>\<^sub>a Cut <b>.N' (y).M'a")
-apply(simp only: a_preserves_SNa)
-apply(rule al_redu)
-apply(rule better_LNot_intro)
-apply(simp)
-apply(simp)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* none of them in BINDING *)
-apply(simp)
-apply(erule conjE)
-apply(frule CAND_NotR_elim)
-apply(assumption)
-apply(erule exE)
-apply(frule CAND_NotL_elim)
-apply(assumption)
-apply(erule exE)
-apply(simp only: ty.inject)
-apply(drule_tac x="B'" in meta_spec)
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="M'a" in meta_spec)
-apply(erule conjE)+
-apply(drule mp)
-apply(simp)
-apply(drule_tac x="b" in spec)
-apply(rotate_tac 13)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 13)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(drule_tac x="y" in spec)
-apply(rotate_tac 13)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 13)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* LAnd1 case *)
-apply(erule disjE)
-apply(erule exE)+
-apply(auto)[1]
-apply(frule_tac excluded_m)
-apply(assumption)
-apply(erule disjE)
-(* one of them in BINDING *)
-apply(erule disjE)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(drule_tac x="x" in spec)
-apply(drule_tac x="AndL1 (y).N' x" in spec)
-apply(simp)
-apply(simp add: better_AndR_substc)
-apply(generate_fresh "coname")
-apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL1 (y).N' x) 
+     apply(simp)
+     apply(subgoal_tac "Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c \<longrightarrow>\<^sub>a Cut <b>.N' (y).M'a")
+      apply(simp only: a_preserves_SNa)
+     apply(rule al_redu)
+     apply(rule better_LNot_intro)
+      apply(simp)
+     apply(simp)
+    apply(fresh_fun_simp (no_asm))
+    apply(simp)
+    (* none of them in BINDING *)
+   apply(simp)
+   apply(erule conjE)
+   apply(frule CAND_NotR_elim)
+    apply(assumption)
+   apply(erule exE)
+   apply(frule CAND_NotL_elim)
+    apply(assumption)
+   apply(erule exE)
+   apply(simp only: ty.inject)
+   apply(drule_tac x="B'" in meta_spec)
+   apply(drule_tac x="N'" in meta_spec)
+   apply(drule_tac x="M'a" in meta_spec)
+   apply(erule conjE)+
+   apply(drule mp)
+    apply(simp)
+   apply(drule_tac x="b" in spec)
+   apply(rotate_tac 13)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 13)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(drule_tac x="y" in spec)
+   apply(rotate_tac 13)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 13)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* LAnd1 case *)
+  apply(erule disjE)
+   apply(erule exE)+
+   apply(auto)[1]
+   apply(frule_tac excluded_m)
+    apply(assumption)
+   apply(erule disjE)
+    (* one of them in BINDING *)
+    apply(erule disjE)
+     apply(drule fin_elims)
+     apply(drule fic_elims)
+     apply(simp)
+     apply(drule BINDINGc_elim)
+     apply(drule_tac x="x" in spec)
+     apply(drule_tac x="AndL1 (y).N' x" in spec)
+     apply(simp)
+     apply(simp add: better_AndR_substc)
+     apply(generate_fresh "coname")
+     apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL1 (y).N' x) 
                    = Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x")
-apply(simp)
-apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x \<longrightarrow>\<^sub>a Cut <b>.M1 (y).N'")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LAnd1_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(simp)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* other case of in BINDING *)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(drule_tac x="a" in spec)
-apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
-apply(simp)
-apply(simp add: better_AndL1_substn)
-apply(generate_fresh "name")
-apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL1 (y).N' z') 
+      apply(simp)
+      apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x \<longrightarrow>\<^sub>a Cut <b>.M1 (y).N'")
+       apply(auto intro: a_preserves_SNa)[1]
+      apply(rule al_redu)
+      apply(rule better_LAnd1_intro)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+      apply(simp)
+     apply(fresh_fun_simp (no_asm))
+     apply(simp)
+    (* other case of in BINDING *)
+    apply(drule fin_elims)
+    apply(drule fic_elims)
+    apply(simp)
+    apply(drule BINDINGn_elim)
+    apply(drule_tac x="a" in spec)
+    apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
+    apply(simp)
+    apply(simp add: better_AndL1_substn)
+    apply(generate_fresh "name")
+    apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL1 (y).N' z') 
                    = Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca")
-apply(simp)
-apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca \<longrightarrow>\<^sub>a Cut <b>.M1 (y).N'")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LAnd1_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm) 
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* none of them in BINDING *)
-apply(simp)
-apply(erule conjE)
-apply(frule CAND_AndR_elim)
-apply(assumption)
-apply(erule exE)
-apply(frule CAND_AndL1_elim)
-apply(assumption)
-apply(erule exE)+
-apply(simp only: ty.inject)
-apply(drule_tac x="B1" in meta_spec)
-apply(drule_tac x="M1" in meta_spec)
-apply(drule_tac x="N'" in meta_spec)
-apply(erule conjE)+
-apply(drule mp)
-apply(simp)
-apply(drule_tac x="b" in spec)
-apply(rotate_tac 14)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 14)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(drule_tac x="y" in spec)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* LAnd2 case *)
-apply(erule disjE)
-apply(erule exE)+
-apply(auto)[1]
-apply(frule_tac excluded_m)
-apply(assumption)
-apply(erule disjE)
-(* one of them in BINDING *)
-apply(erule disjE)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(drule_tac x="x" in spec)
-apply(drule_tac x="AndL2 (y).N' x" in spec)
-apply(simp)
-apply(simp add: better_AndR_substc)
-apply(generate_fresh "coname")
-apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL2 (y).N' x) 
+     apply(simp)
+     apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca \<longrightarrow>\<^sub>a Cut <b>.M1 (y).N'")
+      apply(auto intro: a_preserves_SNa)[1]
+     apply(rule al_redu)
+     apply(rule better_LAnd1_intro)
+      apply(simp add: abs_fresh fresh_prod fresh_atm) 
+     apply(simp add: abs_fresh fresh_prod fresh_atm)
+    apply(fresh_fun_simp (no_asm))
+    apply(simp)
+    (* none of them in BINDING *)
+   apply(simp)
+   apply(erule conjE)
+   apply(frule CAND_AndR_elim)
+    apply(assumption)
+   apply(erule exE)
+   apply(frule CAND_AndL1_elim)
+    apply(assumption)
+   apply(erule exE)+
+   apply(simp only: ty.inject)
+   apply(drule_tac x="B1" in meta_spec)
+   apply(drule_tac x="M1" in meta_spec)
+   apply(drule_tac x="N'" in meta_spec)
+   apply(erule conjE)+
+   apply(drule mp)
+    apply(simp)
+   apply(drule_tac x="b" in spec)
+   apply(rotate_tac 14)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 14)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(drule_tac x="y" in spec)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* LAnd2 case *)
+  apply(erule disjE)
+   apply(erule exE)+
+   apply(auto)[1]
+   apply(frule_tac excluded_m)
+    apply(assumption)
+   apply(erule disjE)
+    (* one of them in BINDING *)
+    apply(erule disjE)
+     apply(drule fin_elims)
+     apply(drule fic_elims)
+     apply(simp)
+     apply(drule BINDINGc_elim)
+     apply(drule_tac x="x" in spec)
+     apply(drule_tac x="AndL2 (y).N' x" in spec)
+     apply(simp)
+     apply(simp add: better_AndR_substc)
+     apply(generate_fresh "coname")
+     apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL2 (y).N' x) 
                    = Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x")
-apply(simp)
-apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x \<longrightarrow>\<^sub>a Cut <c>.M2 (y).N'")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LAnd2_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(simp)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* other case of in BINDING *)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(drule_tac x="a" in spec)
-apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
-apply(simp)
-apply(simp add: better_AndL2_substn)
-apply(generate_fresh "name")
-apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL2 (y).N' z') 
+      apply(simp)
+      apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x \<longrightarrow>\<^sub>a Cut <c>.M2 (y).N'")
+       apply(auto intro: a_preserves_SNa)[1]
+      apply(rule al_redu)
+      apply(rule better_LAnd2_intro)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+      apply(simp)
+     apply(fresh_fun_simp (no_asm))
+     apply(simp)
+    (* other case of in BINDING *)
+    apply(drule fin_elims)
+    apply(drule fic_elims)
+    apply(simp)
+    apply(drule BINDINGn_elim)
+    apply(drule_tac x="a" in spec)
+    apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
+    apply(simp)
+    apply(simp add: better_AndL2_substn)
+    apply(generate_fresh "name")
+    apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL2 (y).N' z') 
                    = Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca")
-apply(simp)
-apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca \<longrightarrow>\<^sub>a Cut <c>.M2 (y).N'")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LAnd2_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm) 
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* none of them in BINDING *)
-apply(simp)
-apply(erule conjE)
-apply(frule CAND_AndR_elim)
-apply(assumption)
-apply(erule exE)
-apply(frule CAND_AndL2_elim)
-apply(assumption)
-apply(erule exE)+
-apply(simp only: ty.inject)
-apply(drule_tac x="B2" in meta_spec)
-apply(drule_tac x="M2" in meta_spec)
-apply(drule_tac x="N'" in meta_spec)
-apply(erule conjE)+
-apply(drule mp)
-apply(simp)
-apply(drule_tac x="c" in spec)
-apply(rotate_tac 14)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 14)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(drule_tac x="y" in spec)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* LOr1 case *)
-apply(erule disjE)
-apply(erule exE)+
-apply(auto)[1]
-apply(frule_tac excluded_m)
-apply(assumption)
-apply(erule disjE)
-(* one of them in BINDING *)
-apply(erule disjE)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(drule_tac x="x" in spec)
-apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
-apply(simp)
-apply(simp add: better_OrR1_substc)
-apply(generate_fresh "coname")
-apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.OrR1 <b>.N' a' (x).OrL (z).M1 (y).M2 x) 
+     apply(simp)
+     apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca \<longrightarrow>\<^sub>a Cut <c>.M2 (y).N'")
+      apply(auto intro: a_preserves_SNa)[1]
+     apply(rule al_redu)
+     apply(rule better_LAnd2_intro)
+      apply(simp add: abs_fresh fresh_prod fresh_atm) 
+     apply(simp add: abs_fresh fresh_prod fresh_atm)
+    apply(fresh_fun_simp (no_asm))
+    apply(simp)
+    (* none of them in BINDING *)
+   apply(simp)
+   apply(erule conjE)
+   apply(frule CAND_AndR_elim)
+    apply(assumption)
+   apply(erule exE)
+   apply(frule CAND_AndL2_elim)
+    apply(assumption)
+   apply(erule exE)+
+   apply(simp only: ty.inject)
+   apply(drule_tac x="B2" in meta_spec)
+   apply(drule_tac x="M2" in meta_spec)
+   apply(drule_tac x="N'" in meta_spec)
+   apply(erule conjE)+
+   apply(drule mp)
+    apply(simp)
+   apply(drule_tac x="c" in spec)
+   apply(rotate_tac 14)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 14)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(drule_tac x="y" in spec)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* LOr1 case *)
+  apply(erule disjE)
+   apply(erule exE)+
+   apply(auto)[1]
+   apply(frule_tac excluded_m)
+    apply(assumption)
+   apply(erule disjE)
+    (* one of them in BINDING *)
+    apply(erule disjE)
+     apply(drule fin_elims)
+     apply(drule fic_elims)
+     apply(simp)
+     apply(drule BINDINGc_elim)
+     apply(drule_tac x="x" in spec)
+     apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
+     apply(simp)
+     apply(simp add: better_OrR1_substc)
+     apply(generate_fresh "coname")
+     apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.OrR1 <b>.N' a' (x).OrL (z).M1 (y).M2 x) 
                    = Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x")
-apply(simp)
-apply(subgoal_tac "Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x \<longrightarrow>\<^sub>a Cut <b>.N' (z).M1")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LOr1_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(simp add: abs_fresh)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* other case of in BINDING *)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(drule_tac x="a" in spec)
-apply(drule_tac x="OrR1 <b>.N' a" in spec)
-apply(simp)
-apply(simp add: better_OrL_substn)
-apply(generate_fresh "name")
-apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.OrR1 <b>.N' a (z').OrL (z).M1 (y).M2 z') 
+      apply(simp)
+      apply(subgoal_tac "Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x \<longrightarrow>\<^sub>a Cut <b>.N' (z).M1")
+       apply(auto intro: a_preserves_SNa)[1]
+      apply(rule al_redu)
+      apply(rule better_LOr1_intro)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+      apply(simp add: abs_fresh)
+     apply(fresh_fun_simp (no_asm))
+     apply(simp)
+    (* other case of in BINDING *)
+    apply(drule fin_elims)
+    apply(drule fic_elims)
+    apply(simp)
+    apply(drule BINDINGn_elim)
+    apply(drule_tac x="a" in spec)
+    apply(drule_tac x="OrR1 <b>.N' a" in spec)
+    apply(simp)
+    apply(simp add: better_OrL_substn)
+    apply(generate_fresh "name")
+    apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.OrR1 <b>.N' a (z').OrL (z).M1 (y).M2 z') 
                    = Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c")
-apply(simp)
-apply(subgoal_tac "Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c \<longrightarrow>\<^sub>a Cut <b>.N' (z).M1")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LOr1_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm) 
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* none of them in BINDING *)
-apply(simp)
-apply(erule conjE)
-apply(frule CAND_OrR1_elim)
-apply(assumption)
-apply(erule exE)+
-apply(frule CAND_OrL_elim)
-apply(assumption)
-apply(erule exE)+
-apply(simp only: ty.inject)
-apply(drule_tac x="B1" in meta_spec)
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="M1" in meta_spec)
-apply(erule conjE)+
-apply(drule mp)
-apply(simp)
-apply(drule_tac x="b" in spec)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(drule_tac x="z" in spec)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* LOr2 case *)
-apply(erule disjE)
-apply(erule exE)+
-apply(auto)[1]
-apply(frule_tac excluded_m)
-apply(assumption)
-apply(erule disjE)
-(* one of them in BINDING *)
-apply(erule disjE)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(drule_tac x="x" in spec)
-apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
-apply(simp)
-apply(simp add: better_OrR2_substc)
-apply(generate_fresh "coname")
-apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.OrR2 <b>.N' a' (x).OrL (z).M1 (y).M2 x) 
+     apply(simp)
+     apply(subgoal_tac "Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c \<longrightarrow>\<^sub>a Cut <b>.N' (z).M1")
+      apply(auto intro: a_preserves_SNa)[1]
+     apply(rule al_redu)
+     apply(rule better_LOr1_intro)
+      apply(simp add: abs_fresh fresh_prod fresh_atm) 
+     apply(simp add: abs_fresh fresh_prod fresh_atm)
+    apply(fresh_fun_simp (no_asm))
+    apply(simp)
+    (* none of them in BINDING *)
+   apply(simp)
+   apply(erule conjE)
+   apply(frule CAND_OrR1_elim)
+    apply(assumption)
+   apply(erule exE)+
+   apply(frule CAND_OrL_elim)
+    apply(assumption)
+   apply(erule exE)+
+   apply(simp only: ty.inject)
+   apply(drule_tac x="B1" in meta_spec)
+   apply(drule_tac x="N'" in meta_spec)
+   apply(drule_tac x="M1" in meta_spec)
+   apply(erule conjE)+
+   apply(drule mp)
+    apply(simp)
+   apply(drule_tac x="b" in spec)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(drule_tac x="z" in spec)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* LOr2 case *)
+  apply(erule disjE)
+   apply(erule exE)+
+   apply(auto)[1]
+   apply(frule_tac excluded_m)
+    apply(assumption)
+   apply(erule disjE)
+    (* one of them in BINDING *)
+    apply(erule disjE)
+     apply(drule fin_elims)
+     apply(drule fic_elims)
+     apply(simp)
+     apply(drule BINDINGc_elim)
+     apply(drule_tac x="x" in spec)
+     apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
+     apply(simp)
+     apply(simp add: better_OrR2_substc)
+     apply(generate_fresh "coname")
+     apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.OrR2 <b>.N' a' (x).OrL (z).M1 (y).M2 x) 
                    = Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x")
-apply(simp)
-apply(subgoal_tac "Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x \<longrightarrow>\<^sub>a Cut <b>.N' (y).M2")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LOr2_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(simp add: abs_fresh)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* other case of in BINDING *)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(drule_tac x="a" in spec)
-apply(drule_tac x="OrR2 <b>.N' a" in spec)
-apply(simp)
-apply(simp add: better_OrL_substn)
-apply(generate_fresh "name")
-apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.OrR2 <b>.N' a (z').OrL (z).M1 (y).M2 z') 
+      apply(simp)
+      apply(subgoal_tac "Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x \<longrightarrow>\<^sub>a Cut <b>.N' (y).M2")
+       apply(auto intro: a_preserves_SNa)[1]
+      apply(rule al_redu)
+      apply(rule better_LOr2_intro)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+      apply(simp add: abs_fresh)
+     apply(fresh_fun_simp (no_asm))
+     apply(simp)
+    (* other case of in BINDING *)
+    apply(drule fin_elims)
+    apply(drule fic_elims)
+    apply(simp)
+    apply(drule BINDINGn_elim)
+    apply(drule_tac x="a" in spec)
+    apply(drule_tac x="OrR2 <b>.N' a" in spec)
+    apply(simp)
+    apply(simp add: better_OrL_substn)
+    apply(generate_fresh "name")
+    apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.OrR2 <b>.N' a (z').OrL (z).M1 (y).M2 z') 
                    = Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c")
-apply(simp)
-apply(subgoal_tac "Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c \<longrightarrow>\<^sub>a Cut <b>.N' (y).M2")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LOr2_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm) 
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* none of them in BINDING *)
-apply(simp)
-apply(erule conjE)
-apply(frule CAND_OrR2_elim)
-apply(assumption)
-apply(erule exE)+
-apply(frule CAND_OrL_elim)
-apply(assumption)
-apply(erule exE)+
-apply(simp only: ty.inject)
-apply(drule_tac x="B2" in meta_spec)
-apply(drule_tac x="N'" in meta_spec)
-apply(drule_tac x="M2" in meta_spec)
-apply(erule conjE)+
-apply(drule mp)
-apply(simp)
-apply(drule_tac x="b" in spec)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(drule_tac x="y" in spec)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 15)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* LImp case *)
-apply(erule exE)+
-apply(auto)[1]
-apply(frule_tac excluded_m)
-apply(assumption)
-apply(erule disjE)
-(* one of them in BINDING *)
-apply(erule disjE)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGc_elim)
-apply(drule_tac x="x" in spec)
-apply(drule_tac x="ImpL <c>.N1 (y).N2 x" in spec)
-apply(simp)
-apply(simp add: better_ImpR_substc)
-apply(generate_fresh "coname")
-apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.ImpR (z).<b>.M'a a' (x).ImpL <c>.N1 (y).N2 x)
+     apply(simp)
+     apply(subgoal_tac "Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c \<longrightarrow>\<^sub>a Cut <b>.N' (y).M2")
+      apply(auto intro: a_preserves_SNa)[1]
+     apply(rule al_redu)
+     apply(rule better_LOr2_intro)
+      apply(simp add: abs_fresh fresh_prod fresh_atm) 
+     apply(simp add: abs_fresh fresh_prod fresh_atm)
+    apply(fresh_fun_simp (no_asm))
+    apply(simp)
+    (* none of them in BINDING *)
+   apply(simp)
+   apply(erule conjE)
+   apply(frule CAND_OrR2_elim)
+    apply(assumption)
+   apply(erule exE)+
+   apply(frule CAND_OrL_elim)
+    apply(assumption)
+   apply(erule exE)+
+   apply(simp only: ty.inject)
+   apply(drule_tac x="B2" in meta_spec)
+   apply(drule_tac x="N'" in meta_spec)
+   apply(drule_tac x="M2" in meta_spec)
+   apply(erule conjE)+
+   apply(drule mp)
+    apply(simp)
+   apply(drule_tac x="b" in spec)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(drule_tac x="y" in spec)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 15)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* LImp case *)
+  apply(erule exE)+
+  apply(auto)[1]
+  apply(frule_tac excluded_m)
+   apply(assumption)
+  apply(erule disjE)
+    (* one of them in BINDING *)
+   apply(erule disjE)
+    apply(drule fin_elims)
+    apply(drule fic_elims)
+    apply(simp)
+    apply(drule BINDINGc_elim)
+    apply(drule_tac x="x" in spec)
+    apply(drule_tac x="ImpL <c>.N1 (y).N2 x" in spec)
+    apply(simp)
+    apply(simp add: better_ImpR_substc)
+    apply(generate_fresh "coname")
+    apply(subgoal_tac "fresh_fun (\<lambda>a'. Cut <a'>.ImpR (z).<b>.M'a a' (x).ImpL <c>.N1 (y).N2 x)
                    = Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x")
-apply(simp)
-apply(subgoal_tac "Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x \<longrightarrow>\<^sub>a 
+     apply(simp)
+     apply(subgoal_tac "Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x \<longrightarrow>\<^sub>a 
                                                           Cut <b>.Cut <c>.N1 (z).M'a (y).N2")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LImp_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(simp add: abs_fresh)
-apply(simp)
-apply(fresh_fun_simp (no_asm))
-apply(simp)
-(* other case of in BINDING *)
-apply(drule fin_elims)
-apply(drule fic_elims)
-apply(simp)
-apply(drule BINDINGn_elim)
-apply(drule_tac x="a" in spec)
-apply(drule_tac x="ImpR (z).<b>.M'a a" in spec)
-apply(simp)
-apply(simp add: better_ImpL_substn)
-apply(generate_fresh "name")
-apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.ImpR (z).<b>.M'a a (z').ImpL <c>.N1 (y).N2 z')
+      apply(auto intro: a_preserves_SNa)[1]
+     apply(rule al_redu)
+     apply(rule better_LImp_intro)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+      apply(simp add: abs_fresh)
+     apply(simp)
+    apply(fresh_fun_simp (no_asm))
+    apply(simp)
+    (* other case of in BINDING *)
+   apply(drule fin_elims)
+   apply(drule fic_elims)
+   apply(simp)
+   apply(drule BINDINGn_elim)
+   apply(drule_tac x="a" in spec)
+   apply(drule_tac x="ImpR (z).<b>.M'a a" in spec)
+   apply(simp)
+   apply(simp add: better_ImpL_substn)
+   apply(generate_fresh "name")
+   apply(subgoal_tac "fresh_fun (\<lambda>z'. Cut <a>.ImpR (z).<b>.M'a a (z').ImpL <c>.N1 (y).N2 z')
                    = Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca")
-apply(simp)
-apply(subgoal_tac "Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca \<longrightarrow>\<^sub>a 
+    apply(simp)
+    apply(subgoal_tac "Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca \<longrightarrow>\<^sub>a 
                                                           Cut <b>.Cut <c>.N1 (z).M'a (y).N2")
-apply(auto intro: a_preserves_SNa)[1]
-apply(rule al_redu)
-apply(rule better_LImp_intro)
-apply(simp add: abs_fresh fresh_prod fresh_atm) 
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(simp)
-apply(fresh_fun_simp (no_asm))
-apply(simp add: abs_fresh abs_supp fin_supp)
-apply(simp add: abs_fresh abs_supp fin_supp)
-apply(simp)
-(* none of them in BINDING *)
-apply(erule conjE)
-apply(frule CAND_ImpL_elim)
-apply(assumption)
-apply(erule exE)+
-apply(frule CAND_ImpR_elim) (* check here *)
-apply(assumption)
-apply(erule exE)+
-apply(erule conjE)+
-apply(simp only: ty.inject)
-apply(erule conjE)+
-apply(case_tac "M'a=Ax z b")
-(* case Ma = Ax z b *)
-apply(rule_tac t="Cut <b>.(Cut <c>.N1 (z).M'a) (y).N2" and s="Cut <b>.(M'a{z:=<c>.N1}) (y).N2" in subst)
-apply(simp)
-apply(drule_tac x="c" in spec)
-apply(drule_tac x="N1" in spec)
-apply(drule mp)
-apply(simp)
-apply(drule_tac x="B2" in meta_spec)
-apply(drule_tac x="M'a{z:=<c>.N1}" in meta_spec)
-apply(drule_tac x="N2" in meta_spec)
-apply(drule conjunct1)
-apply(drule mp)
-apply(simp)
-apply(rotate_tac 17)
-apply(drule_tac x="b" in spec)
-apply(drule mp)
-apply(assumption)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(rotate_tac 17)
-apply(drule_tac x="y" in spec)
-apply(drule mp)
-apply(assumption)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* case Ma \<noteq> Ax z b *)
-apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a \<in> \<parallel><B2>\<parallel>") (* lemma *)
-apply(frule_tac meta_spec)
-apply(drule_tac x="B2" in meta_spec)
-apply(drule_tac x="Cut <c>.N1 (z).M'a" in meta_spec)
-apply(drule_tac x="N2" in meta_spec)
-apply(erule conjE)+
-apply(drule mp)
-apply(simp)
-apply(rotate_tac 20)
-apply(drule_tac x="b" in spec)
-apply(rotate_tac 20)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 20)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(rotate_tac 20)
-apply(drule_tac x="y" in spec)
-apply(rotate_tac 20)
-apply(drule mp)
-apply(assumption)
-apply(rotate_tac 20)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(* lemma *)
-apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a \<in> BINDINGc B2 (\<parallel>(B2)\<parallel>)") (* second lemma *)
-apply(simp add: BINDING_implies_CAND)
-(* second lemma *)
-apply(simp (no_asm) add: BINDINGc_def)
-apply(rule exI)+
-apply(rule conjI)
-apply(rule refl)
-apply(rule allI)+
-apply(rule impI)
-apply(generate_fresh "name")
-apply(rule_tac t="Cut <c>.N1 (z).M'a" and s="Cut <c>.N1 (ca).([(ca,z)]\<bullet>M'a)" in subst)
-apply(simp add: trm.inject alpha fresh_prod fresh_atm)
-apply(rule_tac t="(Cut <c>.N1 (ca).([(ca,z)]\<bullet>M'a)){b:=(xa).P}" 
-           and s="Cut <c>.N1 (ca).(([(ca,z)]\<bullet>M'a){b:=(xa).P})" in subst)
-apply(rule sym)
-apply(rule tricky_subst)
-apply(simp)
-apply(simp)
-apply(clarify)
-apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
-apply(simp add: calc_atm)
-apply(drule_tac x="B1" in meta_spec)
-apply(drule_tac x="N1" in meta_spec)
-apply(drule_tac x="([(ca,z)]\<bullet>M'a){b:=(xa).P}" in meta_spec)
-apply(drule conjunct1)
-apply(drule mp)
-apply(simp)
-apply(rotate_tac 19)
-apply(drule_tac x="c" in spec)
-apply(drule mp)
-apply(assumption)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(rotate_tac 19)
-apply(drule_tac x="ca" in spec)
-apply(subgoal_tac "(ca):([(ca,z)]\<bullet>M'a){b:=(xa).P} \<in> \<parallel>(B1)\<parallel>")(*A*)
-apply(drule mp)
-apply(assumption)
-apply(drule mp)
-apply(simp add: CANDs_imply_SNa)
-apply(assumption)
-(*A*)
-apply(drule_tac x="[(ca,z)]\<bullet>xa" in spec)
-apply(drule_tac x="[(ca,z)]\<bullet>P" in spec)
-apply(rotate_tac 19)
-apply(simp add: fresh_prod fresh_left)
-apply(drule mp)
-apply(rule conjI)
-apply(auto simp add: calc_atm)[1]
-apply(rule conjI)
-apply(auto simp add: calc_atm)[1]
-apply(drule_tac pi="[(ca,z)]" and x="(xa):P" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
-apply(simp add: CAND_eqvt_name)
-apply(drule_tac pi="[(ca,z)]" and X="\<parallel>(B1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
-apply(simp add: CAND_eqvt_name csubst_eqvt)
-apply(perm_simp)
-done
+     apply(auto intro: a_preserves_SNa)[1]
+    apply(rule al_redu)
+    apply(rule better_LImp_intro)
+      apply(simp add: abs_fresh fresh_prod fresh_atm) 
+     apply(simp add: abs_fresh fresh_prod fresh_atm)
+    apply(simp)
+   apply(fresh_fun_simp (no_asm))
+    apply(simp add: abs_fresh abs_supp fin_supp)
+   apply(simp add: abs_fresh abs_supp fin_supp)
+  apply(simp)
+    (* none of them in BINDING *)
+  apply(erule conjE)
+  apply(frule CAND_ImpL_elim)
+   apply(assumption)
+  apply(erule exE)+
+  apply(frule CAND_ImpR_elim) (* check here *)
+   apply(assumption)
+  apply(erule exE)+
+  apply(erule conjE)+
+  apply(simp only: ty.inject)
+  apply(erule conjE)+
+  apply(case_tac "M'a=Ax z b")
+    (* case Ma = Ax z b *)
+   apply(rule_tac t="Cut <b>.(Cut <c>.N1 (z).M'a) (y).N2" and s="Cut <b>.(M'a{z:=<c>.N1}) (y).N2" in subst)
+    apply(simp)
+   apply(drule_tac x="c" in spec)
+   apply(drule_tac x="N1" in spec)
+   apply(drule mp)
+    apply(simp)
+   apply(drule_tac x="B2" in meta_spec)
+   apply(drule_tac x="M'a{z:=<c>.N1}" in meta_spec)
+   apply(drule_tac x="N2" in meta_spec)
+   apply(drule conjunct1)
+   apply(drule mp)
+    apply(simp)
+   apply(rotate_tac 17)
+   apply(drule_tac x="b" in spec)
+   apply(drule mp)
+    apply(assumption)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(rotate_tac 17)
+   apply(drule_tac x="y" in spec)
+   apply(drule mp)
+    apply(assumption)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* case Ma \<noteq> Ax z b *)
+  apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a \<in> \<parallel><B2>\<parallel>") (* lemma *)
+   apply(frule_tac meta_spec)
+   apply(drule_tac x="B2" in meta_spec)
+   apply(drule_tac x="Cut <c>.N1 (z).M'a" in meta_spec)
+   apply(drule_tac x="N2" in meta_spec)
+   apply(erule conjE)+
+   apply(drule mp)
+    apply(simp)
+   apply(rotate_tac 20)
+   apply(drule_tac x="b" in spec)
+   apply(rotate_tac 20)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 20)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(rotate_tac 20)
+   apply(drule_tac x="y" in spec)
+   apply(rotate_tac 20)
+   apply(drule mp)
+    apply(assumption)
+   apply(rotate_tac 20)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (* lemma *)
+  apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a \<in> BINDINGc B2 (\<parallel>(B2)\<parallel>)") (* second lemma *)
+   apply(simp add: BINDING_implies_CAND)
+    (* second lemma *)
+  apply(simp (no_asm) add: BINDINGc_def)
+  apply(rule exI)+
+  apply(rule conjI)
+   apply(rule refl)
+  apply(rule allI)+
+  apply(rule impI)
+  apply(generate_fresh "name")
+  apply(rule_tac t="Cut <c>.N1 (z).M'a" and s="Cut <c>.N1 (ca).([(ca,z)]\<bullet>M'a)" in subst)
+   apply(simp add: trm.inject alpha fresh_prod fresh_atm)
+  apply(rule_tac t="(Cut <c>.N1 (ca).([(ca,z)]\<bullet>M'a)){b:=(xa).P}" 
+      and s="Cut <c>.N1 (ca).(([(ca,z)]\<bullet>M'a){b:=(xa).P})" in subst)
+   apply(rule sym)
+   apply(rule tricky_subst)
+     apply(simp)
+    apply(simp)
+   apply(clarify)
+   apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+   apply(simp add: calc_atm)
+  apply(drule_tac x="B1" in meta_spec)
+  apply(drule_tac x="N1" in meta_spec)
+  apply(drule_tac x="([(ca,z)]\<bullet>M'a){b:=(xa).P}" in meta_spec)
+  apply(drule conjunct1)
+  apply(drule mp)
+   apply(simp)
+  apply(rotate_tac 19)
+  apply(drule_tac x="c" in spec)
+  apply(drule mp)
+   apply(assumption)
+  apply(drule mp)
+   apply(simp add: CANDs_imply_SNa)
+  apply(rotate_tac 19)
+  apply(drule_tac x="ca" in spec)
+  apply(subgoal_tac "(ca):([(ca,z)]\<bullet>M'a){b:=(xa).P} \<in> \<parallel>(B1)\<parallel>")(*A*)
+   apply(drule mp)
+    apply(assumption)
+   apply(drule mp)
+    apply(simp add: CANDs_imply_SNa)
+   apply(assumption)
+    (*A*)
+  apply(drule_tac x="[(ca,z)]\<bullet>xa" in spec)
+  apply(drule_tac x="[(ca,z)]\<bullet>P" in spec)
+  apply(rotate_tac 19)
+  apply(simp add: fresh_prod fresh_left)
+  apply(drule mp)
+   apply(rule conjI)
+    apply(auto simp add: calc_atm)[1]
+   apply(rule conjI)
+    apply(auto simp add: calc_atm)[1]
+   apply(drule_tac pi="[(ca,z)]" and x="(xa):P" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+   apply(simp add: CAND_eqvt_name)
+  apply(drule_tac pi="[(ca,z)]" and X="\<parallel>(B1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
+  apply(simp add: CAND_eqvt_name csubst_eqvt)
+  apply(perm_simp)
+  done
 
 
 (* parallel substitution *)
@@ -3079,2054 +3087,2054 @@
 
 lemma CUT_SNa:
   assumes a1: "<a>:M \<in> (\<parallel><B>\<parallel>)"
-  and     a2: "(x):N \<in> (\<parallel>(B)\<parallel>)"
+    and     a2: "(x):N \<in> (\<parallel>(B)\<parallel>)"
   shows   "SNa (Cut <a>.M (x).N)"
-using a1 a2
-apply -
-apply(rule CUT_SNa_aux[OF a1])
-apply(simp_all add: CANDs_imply_SNa)
-done 
+  using a1 a2
+  apply -
+  apply(rule CUT_SNa_aux[OF a1])
+    apply(simp_all add: CANDs_imply_SNa)
+  done 
 
 
 fun 
- findn :: "(name\<times>coname\<times>trm) list\<Rightarrow>name\<Rightarrow>(coname\<times>trm) option"
-where
-  "findn [] x = None"
-| "findn ((y,c,P)#\<theta>_n) x = (if y=x then Some (c,P) else findn \<theta>_n x)"
+  findn :: "(name\<times>coname\<times>trm) list\<Rightarrow>name\<Rightarrow>(coname\<times>trm) option"
+  where
+    "findn [] x = None"
+  | "findn ((y,c,P)#\<theta>_n) x = (if y=x then Some (c,P) else findn \<theta>_n x)"
 
 lemma findn_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>findn \<theta>_n x) = findn (pi1\<bullet>\<theta>_n) (pi1\<bullet>x)" 
-  and   "(pi2\<bullet>findn \<theta>_n x) = findn (pi2\<bullet>\<theta>_n) (pi2\<bullet>x)"
-apply(induct \<theta>_n)
-apply(auto simp add: perm_bij) 
-done
+    and   "(pi2\<bullet>findn \<theta>_n x) = findn (pi2\<bullet>\<theta>_n) (pi2\<bullet>x)"
+   apply(induct \<theta>_n)
+     apply(auto simp add: perm_bij) 
+  done
 
 lemma findn_fresh:
   assumes a: "x\<sharp>\<theta>_n"
   shows "findn \<theta>_n x = None"
-using a
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
-done
+  using a
+  apply(induct \<theta>_n)
+   apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
+  done
 
 fun 
- findc :: "(coname\<times>name\<times>trm) list\<Rightarrow>coname\<Rightarrow>(name\<times>trm) option"
-where
-  "findc [] x = None"
-| "findc ((c,y,P)#\<theta>_c) a = (if a=c then Some (y,P) else findc \<theta>_c a)"
+  findc :: "(coname\<times>name\<times>trm) list\<Rightarrow>coname\<Rightarrow>(name\<times>trm) option"
+  where
+    "findc [] x = None"
+  | "findc ((c,y,P)#\<theta>_c) a = (if a=c then Some (y,P) else findc \<theta>_c a)"
 
 lemma findc_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>findc \<theta>_c a) = findc (pi1\<bullet>\<theta>_c) (pi1\<bullet>a)" 
-  and   "(pi2\<bullet>findc \<theta>_c a) = findc (pi2\<bullet>\<theta>_c) (pi2\<bullet>a)"
-apply(induct \<theta>_c)
-apply(auto simp add: perm_bij) 
-done
+    and   "(pi2\<bullet>findc \<theta>_c a) = findc (pi2\<bullet>\<theta>_c) (pi2\<bullet>a)"
+   apply(induct \<theta>_c)
+     apply(auto simp add: perm_bij) 
+  done
 
 lemma findc_fresh:
   assumes a: "a\<sharp>\<theta>_c"
   shows "findc \<theta>_c a = None"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
+  done
 
 abbreviation 
- nmaps :: "(name\<times>coname\<times>trm) list \<Rightarrow> name \<Rightarrow> (coname\<times>trm) option \<Rightarrow> bool" ("_ nmaps _ to _" [55,55,55] 55) 
-where
- "\<theta>_n nmaps x to P \<equiv> (findn \<theta>_n x) = P"
+  nmaps :: "(name\<times>coname\<times>trm) list \<Rightarrow> name \<Rightarrow> (coname\<times>trm) option \<Rightarrow> bool" ("_ nmaps _ to _" [55,55,55] 55) 
+  where
+    "\<theta>_n nmaps x to P \<equiv> (findn \<theta>_n x) = P"
 
 abbreviation 
- cmaps :: "(coname\<times>name\<times>trm) list \<Rightarrow> coname \<Rightarrow> (name\<times>trm) option \<Rightarrow> bool" ("_ cmaps _ to _" [55,55,55] 55) 
-where
- "\<theta>_c cmaps a to P \<equiv> (findc \<theta>_c a) = P"
+  cmaps :: "(coname\<times>name\<times>trm) list \<Rightarrow> coname \<Rightarrow> (name\<times>trm) option \<Rightarrow> bool" ("_ cmaps _ to _" [55,55,55] 55) 
+  where
+    "\<theta>_c cmaps a to P \<equiv> (findc \<theta>_c a) = P"
 
 lemma nmaps_fresh:
   shows "\<theta>_n nmaps x to Some (c,P) \<Longrightarrow> a\<sharp>\<theta>_n \<Longrightarrow> a\<sharp>(c,P)"
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-apply(case_tac "aa=x")
-apply(auto)
-apply(case_tac "aa=x")
-apply(auto)
-done
+  apply(induct \<theta>_n)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+   apply(case_tac "aa=x")
+    apply(auto)
+  apply(case_tac "aa=x")
+   apply(auto)
+  done
 
 lemma cmaps_fresh:
   shows "\<theta>_c cmaps a to Some (y,P) \<Longrightarrow> x\<sharp>\<theta>_c \<Longrightarrow> x\<sharp>(y,P)"
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-apply(case_tac "a=aa")
-apply(auto)
-apply(case_tac "a=aa")
-apply(auto)
-done
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+   apply(case_tac "a=aa")
+    apply(auto)
+  apply(case_tac "a=aa")
+   apply(auto)
+  done
 
 lemma nmaps_false:
   shows "\<theta>_n nmaps x to Some (c,P) \<Longrightarrow> x\<sharp>\<theta>_n \<Longrightarrow> False"
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+  apply(induct \<theta>_n)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 lemma cmaps_false:
   shows "\<theta>_c cmaps c to Some (x,P) \<Longrightarrow> c\<sharp>\<theta>_c \<Longrightarrow> False"
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 fun 
- lookupa :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
-where
-  "lookupa x a [] = Ax x a"
-| "lookupa x a ((c,y,P)#\<theta>_c) = (if a=c then Cut <a>.Ax x a (y).P else lookupa x a \<theta>_c)"
+  lookupa :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
+  where
+    "lookupa x a [] = Ax x a"
+  | "lookupa x a ((c,y,P)#\<theta>_c) = (if a=c then Cut <a>.Ax x a (y).P else lookupa x a \<theta>_c)"
 
 lemma lookupa_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(lookupa x a \<theta>_c)) = lookupa (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_c)"
-  and   "(pi2\<bullet>(lookupa x a \<theta>_c)) = lookupa (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_c)"
-apply -
-apply(induct \<theta>_c)
-apply(auto simp add: eqvts)
-apply(induct \<theta>_c)
-apply(auto simp add: eqvts)
-done
+    and   "(pi2\<bullet>(lookupa x a \<theta>_c)) = lookupa (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_c)"
+   apply -
+   apply(induct \<theta>_c)
+    apply(auto simp add: eqvts)
+  apply(induct \<theta>_c)
+   apply(auto simp add: eqvts)
+  done
 
 lemma lookupa_fire:
   assumes a: "\<theta>_c cmaps a to Some (y,P)"
   shows "(lookupa x a \<theta>_c) = Cut <a>.Ax x a (y).P"
-using a
-apply(induct \<theta>_c arbitrary: x a y P)
-apply(auto)
-done
+  using a
+  apply(induct \<theta>_c arbitrary: x a y P)
+   apply(auto)
+  done
 
 fun 
- lookupb :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>coname\<Rightarrow>trm\<Rightarrow>trm"
-where
-  "lookupb x a [] c P = Cut <c>.P (x).Ax x a"
-| "lookupb x a ((d,y,N)#\<theta>_c) c P = (if a=d then Cut <c>.P (y).N  else lookupb x a \<theta>_c c P)"
+  lookupb :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>coname\<Rightarrow>trm\<Rightarrow>trm"
+  where
+    "lookupb x a [] c P = Cut <c>.P (x).Ax x a"
+  | "lookupb x a ((d,y,N)#\<theta>_c) c P = (if a=d then Cut <c>.P (y).N  else lookupb x a \<theta>_c c P)"
 
 lemma lookupb_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(lookupb x a \<theta>_c c P)) = lookupb (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_c) (pi1\<bullet>c) (pi1\<bullet>P)"
-  and   "(pi2\<bullet>(lookupb x a \<theta>_c c P)) = lookupb (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_c) (pi2\<bullet>c) (pi2\<bullet>P)"
-apply -
-apply(induct \<theta>_c)
-apply(auto simp add: eqvts)
-apply(induct \<theta>_c)
-apply(auto simp add: eqvts)
-done
+    and   "(pi2\<bullet>(lookupb x a \<theta>_c c P)) = lookupb (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_c) (pi2\<bullet>c) (pi2\<bullet>P)"
+   apply -
+   apply(induct \<theta>_c)
+    apply(auto simp add: eqvts)
+  apply(induct \<theta>_c)
+   apply(auto simp add: eqvts)
+  done
 
 fun 
   lookup :: "name\<Rightarrow>coname\<Rightarrow>(name\<times>coname\<times>trm) list\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
-where
-  "lookup x a [] \<theta>_c = lookupa x a \<theta>_c"
-| "lookup x a ((y,c,P)#\<theta>_n) \<theta>_c = (if x=y then (lookupb x a \<theta>_c c P) else lookup x a \<theta>_n \<theta>_c)"
+  where
+    "lookup x a [] \<theta>_c = lookupa x a \<theta>_c"
+  | "lookup x a ((y,c,P)#\<theta>_n) \<theta>_c = (if x=y then (lookupb x a \<theta>_c c P) else lookup x a \<theta>_n \<theta>_c)"
 
 lemma lookup_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(lookup x a \<theta>_n \<theta>_c)) = lookup (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_n) (pi1\<bullet>\<theta>_c)"
-  and   "(pi2\<bullet>(lookup x a \<theta>_n \<theta>_c)) = lookup (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n) (pi2\<bullet>\<theta>_c)"
-apply -
-apply(induct \<theta>_n)
-apply(auto simp add: eqvts)
-apply(induct \<theta>_n)
-apply(auto simp add: eqvts)
-done
+    and   "(pi2\<bullet>(lookup x a \<theta>_n \<theta>_c)) = lookup (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n) (pi2\<bullet>\<theta>_c)"
+   apply -
+   apply(induct \<theta>_n)
+    apply(auto simp add: eqvts)
+  apply(induct \<theta>_n)
+   apply(auto simp add: eqvts)
+  done
 
 fun 
   lookupc :: "name\<Rightarrow>coname\<Rightarrow>(name\<times>coname\<times>trm) list\<Rightarrow>trm"
-where
-  "lookupc x a [] = Ax x a"
-| "lookupc x a ((y,c,P)#\<theta>_n) = (if x=y then P[c\<turnstile>c>a] else lookupc x a \<theta>_n)"
+  where
+    "lookupc x a [] = Ax x a"
+  | "lookupc x a ((y,c,P)#\<theta>_n) = (if x=y then P[c\<turnstile>c>a] else lookupc x a \<theta>_n)"
 
 lemma lookupc_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(lookupc x a \<theta>_n)) = lookupc (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_n)"
-  and   "(pi2\<bullet>(lookupc x a \<theta>_n)) = lookupc (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n)"
-apply -
-apply(induct \<theta>_n)
-apply(auto simp add: eqvts)
-apply(induct \<theta>_n)
-apply(auto simp add: eqvts)
-done
+    and   "(pi2\<bullet>(lookupc x a \<theta>_n)) = lookupc (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n)"
+   apply -
+   apply(induct \<theta>_n)
+    apply(auto simp add: eqvts)
+  apply(induct \<theta>_n)
+   apply(auto simp add: eqvts)
+  done
 
 fun 
   lookupd :: "name\<Rightarrow>coname\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm"
-where
-  "lookupd x a [] = Ax x a"
-| "lookupd x a ((c,y,P)#\<theta>_c) = (if a=c then P[y\<turnstile>n>x] else lookupd x a \<theta>_c)"
+  where
+    "lookupd x a [] = Ax x a"
+  | "lookupd x a ((c,y,P)#\<theta>_c) = (if a=c then P[y\<turnstile>n>x] else lookupd x a \<theta>_c)"
 
 lemma lookupd_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(lookupd x a \<theta>_n)) = lookupd (pi1\<bullet>x) (pi1\<bullet>a) (pi1\<bullet>\<theta>_n)"
-  and   "(pi2\<bullet>(lookupd x a \<theta>_n)) = lookupd (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n)"
-apply -
-apply(induct \<theta>_n)
-apply(auto simp add: eqvts)
-apply(induct \<theta>_n)
-apply(auto simp add: eqvts)
-done
+    and   "(pi2\<bullet>(lookupd x a \<theta>_n)) = lookupd (pi2\<bullet>x) (pi2\<bullet>a) (pi2\<bullet>\<theta>_n)"
+   apply -
+   apply(induct \<theta>_n)
+    apply(auto simp add: eqvts)
+  apply(induct \<theta>_n)
+   apply(auto simp add: eqvts)
+  done
 
 lemma lookupa_fresh:
   assumes a: "a\<sharp>\<theta>_c"
   shows "lookupa y a \<theta>_c = Ax y a"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
+  done
 
 lemma lookupa_csubst:
   assumes a: "a\<sharp>\<theta>_c"
   shows "Cut <a>.Ax y a (x).P = (lookupa y a \<theta>_c){a:=(x).P}"
-using a by (simp add: lookupa_fresh)
+  using a by (simp add: lookupa_fresh)
 
 lemma lookupa_freshness:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(\<theta>_c,c) \<Longrightarrow> a\<sharp>lookupa y c \<theta>_c"
-  and   "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupa y c \<theta>_c"
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
-done
+    and   "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupa y c \<theta>_c"
+   apply(induct \<theta>_c)
+     apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
+  done
 
 lemma lookupa_unicity:
   assumes a: "lookupa x a \<theta>_c= Ax y b" "b\<sharp>\<theta>_c" "y\<sharp>\<theta>_c"
   shows "x=y \<and> a=b"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
-apply(case_tac "a=aa")
-apply(auto)
-apply(case_tac "a=aa")
-apply(auto)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
+   apply(case_tac "a=aa")
+    apply(auto)
+  apply(case_tac "a=aa")
+   apply(auto)
+  done
 
 lemma lookupb_csubst:
   assumes a: "a\<sharp>(\<theta>_c,c,N)"
   shows "Cut <c>.N (x).P = (lookupb y a \<theta>_c c N){a:=(x).P}"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
-apply(rule sym)
-apply(generate_fresh "name")
-apply(generate_fresh "coname")
-apply(subgoal_tac "Cut <c>.N (y).Ax y a = Cut <caa>.([(caa,c)]\<bullet>N) (ca).Ax ca a")
-apply(simp)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh)
-apply(simp)
-apply(subgoal_tac "a\<sharp>([(caa,c)]\<bullet>N)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
-apply(simp add: trm.inject)
-apply(rule conjI)
-apply(rule sym)
-apply(simp add: alpha fresh_prod fresh_atm)
-apply(simp add: alpha calc_atm fresh_prod fresh_atm)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
+  apply(rule sym)
+  apply(generate_fresh "name")
+  apply(generate_fresh "coname")
+  apply(subgoal_tac "Cut <c>.N (y).Ax y a = Cut <caa>.([(caa,c)]\<bullet>N) (ca).Ax ca a")
+   apply(simp)
+   apply(rule trans)
+    apply(rule better_Cut_substc)
+     apply(simp)
+    apply(simp add: abs_fresh)
+   apply(simp)
+   apply(subgoal_tac "a\<sharp>([(caa,c)]\<bullet>N)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+   apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
+  apply(simp add: trm.inject)
+  apply(rule conjI)
+   apply(rule sym)
+   apply(simp add: alpha fresh_prod fresh_atm)
+  apply(simp add: alpha calc_atm fresh_prod fresh_atm)
+  done
 
 lemma lookupb_freshness:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(\<theta>_c,c,b,P) \<Longrightarrow> a\<sharp>lookupb y c \<theta>_c b P"
-  and   "x\<sharp>(\<theta>_c,y,P) \<Longrightarrow> x\<sharp>lookupb y c \<theta>_c b P"
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
-done
+    and   "x\<sharp>(\<theta>_c,y,P) \<Longrightarrow> x\<sharp>lookupb y c \<theta>_c b P"
+   apply(induct \<theta>_c)
+     apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
+  done
 
 lemma lookupb_unicity:
   assumes a: "lookupb x a \<theta>_c c P = Ax y b" "b\<sharp>(\<theta>_c,c,P)" "y\<sharp>\<theta>_c"
   shows "x=y \<and> a=b"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-apply(case_tac "a=aa")
-apply(auto)
-apply(case_tac "a=aa")
-apply(auto)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+   apply(case_tac "a=aa")
+    apply(auto)
+  apply(case_tac "a=aa")
+   apply(auto)
+  done
 
 lemma lookupb_lookupa:
   assumes a: "x\<sharp>\<theta>_c"
   shows "lookupb x c \<theta>_c a P = (lookupa x c \<theta>_c){x:=<a>.P}"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_list_cons fresh_prod)
-apply(generate_fresh "coname")
-apply(generate_fresh "name")
-apply(subgoal_tac "Cut <c>.Ax x c (aa).b = Cut <ca>.Ax x ca (caa).([(caa,aa)]\<bullet>b)")
-apply(simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp)
-apply(simp)
-apply(subgoal_tac "x\<sharp>([(caa,aa)]\<bullet>b)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(simp add: trm.inject)
-apply(rule conjI)
-apply(simp add: alpha calc_atm fresh_atm fresh_prod)
-apply(rule sym)
-apply(simp add: alpha calc_atm fresh_atm fresh_prod)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_list_cons fresh_prod)
+  apply(generate_fresh "coname")
+  apply(generate_fresh "name")
+  apply(subgoal_tac "Cut <c>.Ax x c (aa).b = Cut <ca>.Ax x ca (caa).([(caa,aa)]\<bullet>b)")
+   apply(simp)
+   apply(rule sym)
+   apply(rule trans)
+    apply(rule better_Cut_substn)
+     apply(simp add: abs_fresh)
+    apply(simp)
+   apply(simp)
+   apply(subgoal_tac "x\<sharp>([(caa,aa)]\<bullet>b)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+   apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(simp add: trm.inject)
+  apply(rule conjI)
+   apply(simp add: alpha calc_atm fresh_atm fresh_prod)
+  apply(rule sym)
+  apply(simp add: alpha calc_atm fresh_atm fresh_prod)
+  done
 
 lemma lookup_csubst:
   assumes a: "a\<sharp>(\<theta>_n,\<theta>_c)"
   shows "lookup y c \<theta>_n ((a,x,P)#\<theta>_c) = (lookup y c \<theta>_n \<theta>_c){a:=(x).P}"
-using a
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_prod fresh_list_cons)
-apply(simp add: lookupa_csubst)
-apply(simp add: lookupa_freshness forget fresh_atm fresh_prod)
-apply(rule lookupb_csubst)
-apply(simp)
-apply(auto simp add: lookupb_freshness forget fresh_atm fresh_prod)
-done
+  using a
+  apply(induct \<theta>_n)
+   apply(auto simp add: fresh_prod fresh_list_cons)
+     apply(simp add: lookupa_csubst)
+    apply(simp add: lookupa_freshness forget fresh_atm fresh_prod)
+   apply(rule lookupb_csubst)
+   apply(simp)
+  apply(auto simp add: lookupb_freshness forget fresh_atm fresh_prod)
+  done
 
 lemma lookup_fresh:
   assumes a: "x\<sharp>(\<theta>_n,\<theta>_c)"
   shows "lookup x c \<theta>_n \<theta>_c = lookupa x c \<theta>_c"
-using a
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
-done
+  using a
+  apply(induct \<theta>_n)
+   apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
+  done
 
 lemma lookup_unicity:
   assumes a: "lookup x a \<theta>_n \<theta>_c= Ax y b" "b\<sharp>(\<theta>_c,\<theta>_n)" "y\<sharp>(\<theta>_c,\<theta>_n)"
   shows "x=y \<and> a=b"
-using a
-apply(induct \<theta>_n)
-apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
-apply(drule lookupa_unicity)
-apply(simp)+
-apply(drule lookupa_unicity)
-apply(simp)+
-apply(case_tac "x=aa")
-apply(auto)
-apply(drule lookupb_unicity)
-apply(simp add: fresh_atm)
-apply(simp)
-apply(simp)
-apply(case_tac "x=aa")
-apply(auto)
-apply(drule lookupb_unicity)
-apply(simp add: fresh_atm)
-apply(simp)
-apply(simp)
-done
+  using a
+  apply(induct \<theta>_n)
+   apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
+     apply(drule lookupa_unicity)
+       apply(simp)+
+    apply(drule lookupa_unicity)
+      apply(simp)+
+   apply(case_tac "x=aa")
+    apply(auto)
+   apply(drule lookupb_unicity)
+     apply(simp add: fresh_atm)
+    apply(simp)
+   apply(simp)
+  apply(case_tac "x=aa")
+   apply(auto)
+  apply(drule lookupb_unicity)
+    apply(simp add: fresh_atm)
+   apply(simp)
+  apply(simp)
+  done
 
 lemma lookup_freshness:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(c,\<theta>_c,\<theta>_n) \<Longrightarrow> a\<sharp>lookup y c \<theta>_n \<theta>_c"
-  and   "x\<sharp>(y,\<theta>_c,\<theta>_n) \<Longrightarrow> x\<sharp>lookup y c \<theta>_n \<theta>_c"   
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
-apply(simp add: fresh_atm fresh_prod lookupa_freshness)
-apply(simp add: fresh_atm fresh_prod lookupa_freshness)
-apply(simp add: fresh_atm fresh_prod lookupb_freshness)
-apply(simp add: fresh_atm fresh_prod lookupb_freshness)
-done
+    and   "x\<sharp>(y,\<theta>_c,\<theta>_n) \<Longrightarrow> x\<sharp>lookup y c \<theta>_n \<theta>_c"   
+   apply(induct \<theta>_n)
+     apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
+     apply(simp add: fresh_atm fresh_prod lookupa_freshness)
+    apply(simp add: fresh_atm fresh_prod lookupa_freshness)
+   apply(simp add: fresh_atm fresh_prod lookupb_freshness)
+  apply(simp add: fresh_atm fresh_prod lookupb_freshness)
+  done
 
 lemma lookupc_freshness:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(\<theta>_c,c) \<Longrightarrow> a\<sharp>lookupc y c \<theta>_c"
-  and   "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupc y c \<theta>_c"
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
-apply(rule rename_fresh)
-apply(simp add: fresh_atm)
-apply(rule rename_fresh)
-apply(simp add: fresh_atm)
-done
+    and   "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupc y c \<theta>_c"
+   apply(induct \<theta>_c)
+     apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
+   apply(rule rename_fresh)
+   apply(simp add: fresh_atm)
+  apply(rule rename_fresh)
+  apply(simp add: fresh_atm)
+  done
 
 lemma lookupc_fresh:
   assumes a: "y\<sharp>\<theta>_n"
   shows "lookupc y a \<theta>_n = Ax y a"
-using a
-apply(induct \<theta>_n)
-apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
-done
+  using a
+  apply(induct \<theta>_n)
+   apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
+  done
 
 lemma lookupc_nmaps:
   assumes a: "\<theta>_n nmaps x to Some (c,P)"
   shows "lookupc x a \<theta>_n = P[c\<turnstile>c>a]"
-using a
-apply(induct \<theta>_n)
-apply(auto)
-done 
+  using a
+  apply(induct \<theta>_n)
+   apply(auto)
+  done 
 
 lemma lookupc_unicity:
   assumes a: "lookupc y a \<theta>_n = Ax x b" "x\<sharp>\<theta>_n"
   shows "y=x"
-using a
-apply(induct \<theta>_n)
-apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
-apply(case_tac "y=aa")
-apply(auto)
-apply(subgoal_tac "x\<sharp>(ba[aa\<turnstile>c>a])")
-apply(simp add: fresh_atm)
-apply(rule rename_fresh)
-apply(simp)
-done
+  using a
+  apply(induct \<theta>_n)
+   apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
+  apply(case_tac "y=aa")
+   apply(auto)
+  apply(subgoal_tac "x\<sharp>(ba[aa\<turnstile>c>a])")
+   apply(simp add: fresh_atm)
+  apply(rule rename_fresh)
+  apply(simp)
+  done
 
 lemma lookupd_fresh:
   assumes a: "a\<sharp>\<theta>_c"
   shows "lookupd y a \<theta>_c = Ax y a"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
-done 
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
+  done 
 
 lemma lookupd_unicity:
   assumes a: "lookupd y a \<theta>_c = Ax y b" "b\<sharp>\<theta>_c"
   shows "a=b"
-using a
-apply(induct \<theta>_c)
-apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
-apply(case_tac "a=aa")
-apply(auto)
-apply(subgoal_tac "b\<sharp>(ba[aa\<turnstile>n>y])")
-apply(simp add: fresh_atm)
-apply(rule rename_fresh)
-apply(simp)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
+  apply(case_tac "a=aa")
+   apply(auto)
+  apply(subgoal_tac "b\<sharp>(ba[aa\<turnstile>n>y])")
+   apply(simp add: fresh_atm)
+  apply(rule rename_fresh)
+  apply(simp)
+  done
 
 lemma lookupd_freshness:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(\<theta>_c,c) \<Longrightarrow> a\<sharp>lookupd y c \<theta>_c"
-  and   "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupd y c \<theta>_c"
-apply(induct \<theta>_c)
-apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
-apply(rule rename_fresh)
-apply(simp add: fresh_atm)
-apply(rule rename_fresh)
-apply(simp add: fresh_atm)
-done
+    and   "x\<sharp>(\<theta>_c,y) \<Longrightarrow> x\<sharp>lookupd y c \<theta>_c"
+   apply(induct \<theta>_c)
+     apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
+   apply(rule rename_fresh)
+   apply(simp add: fresh_atm)
+  apply(rule rename_fresh)
+  apply(simp add: fresh_atm)
+  done
 
 lemma lookupd_cmaps:
   assumes a: "\<theta>_c cmaps a to Some (x,P)"
   shows "lookupd y a \<theta>_c = P[x\<turnstile>n>y]"
-using a
-apply(induct \<theta>_c)
-apply(auto)
-done 
+  using a
+  apply(induct \<theta>_c)
+   apply(auto)
+  done 
 
 nominal_primrec (freshness_context: "\<theta>_n::(name\<times>coname\<times>trm)")
   stn :: "trm\<Rightarrow>(name\<times>coname\<times>trm) list\<Rightarrow>trm" 
-where
-  "stn (Ax x a) \<theta>_n = lookupc x a \<theta>_n"
-| "\<lbrakk>a\<sharp>(N,\<theta>_n);x\<sharp>(M,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (Cut <a>.M (x).N) \<theta>_n = (Cut <a>.M (x).N)" 
-| "x\<sharp>\<theta>_n \<Longrightarrow> stn (NotR (x).M a) \<theta>_n = (NotR (x).M a)"
-| "a\<sharp>\<theta>_n \<Longrightarrow>stn (NotL <a>.M x) \<theta>_n = (NotL <a>.M x)"
-| "\<lbrakk>a\<sharp>(N,d,b,\<theta>_n);b\<sharp>(M,d,a,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (AndR <a>.M <b>.N d) \<theta>_n = (AndR <a>.M <b>.N d)"
-| "x\<sharp>(z,\<theta>_n) \<Longrightarrow> stn (AndL1 (x).M z) \<theta>_n = (AndL1 (x).M z)"
-| "x\<sharp>(z,\<theta>_n) \<Longrightarrow> stn (AndL2 (x).M z) \<theta>_n = (AndL2 (x).M z)"
-| "a\<sharp>(b,\<theta>_n) \<Longrightarrow> stn (OrR1 <a>.M b) \<theta>_n = (OrR1 <a>.M b)"
-| "a\<sharp>(b,\<theta>_n) \<Longrightarrow> stn (OrR2 <a>.M b) \<theta>_n = (OrR2 <a>.M b)"
-| "\<lbrakk>x\<sharp>(N,z,u,\<theta>_n);u\<sharp>(M,z,x,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (OrL (x).M (u).N z) \<theta>_n = (OrL (x).M (u).N z)"
-| "\<lbrakk>a\<sharp>(b,\<theta>_n);x\<sharp>\<theta>_n\<rbrakk> \<Longrightarrow> stn (ImpR (x).<a>.M b) \<theta>_n = (ImpR (x).<a>.M b)"
-| "\<lbrakk>a\<sharp>(N,\<theta>_n);x\<sharp>(M,z,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (ImpL <a>.M (x).N z) \<theta>_n = (ImpL <a>.M (x).N z)"
-apply(finite_guess)+
-apply(rule TrueI)+
-apply(simp add: abs_fresh abs_supp fin_supp)+
-apply(fresh_guess)+
-done
+  where
+    "stn (Ax x a) \<theta>_n = lookupc x a \<theta>_n"
+  | "\<lbrakk>a\<sharp>(N,\<theta>_n);x\<sharp>(M,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (Cut <a>.M (x).N) \<theta>_n = (Cut <a>.M (x).N)" 
+  | "x\<sharp>\<theta>_n \<Longrightarrow> stn (NotR (x).M a) \<theta>_n = (NotR (x).M a)"
+  | "a\<sharp>\<theta>_n \<Longrightarrow>stn (NotL <a>.M x) \<theta>_n = (NotL <a>.M x)"
+  | "\<lbrakk>a\<sharp>(N,d,b,\<theta>_n);b\<sharp>(M,d,a,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (AndR <a>.M <b>.N d) \<theta>_n = (AndR <a>.M <b>.N d)"
+  | "x\<sharp>(z,\<theta>_n) \<Longrightarrow> stn (AndL1 (x).M z) \<theta>_n = (AndL1 (x).M z)"
+  | "x\<sharp>(z,\<theta>_n) \<Longrightarrow> stn (AndL2 (x).M z) \<theta>_n = (AndL2 (x).M z)"
+  | "a\<sharp>(b,\<theta>_n) \<Longrightarrow> stn (OrR1 <a>.M b) \<theta>_n = (OrR1 <a>.M b)"
+  | "a\<sharp>(b,\<theta>_n) \<Longrightarrow> stn (OrR2 <a>.M b) \<theta>_n = (OrR2 <a>.M b)"
+  | "\<lbrakk>x\<sharp>(N,z,u,\<theta>_n);u\<sharp>(M,z,x,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (OrL (x).M (u).N z) \<theta>_n = (OrL (x).M (u).N z)"
+  | "\<lbrakk>a\<sharp>(b,\<theta>_n);x\<sharp>\<theta>_n\<rbrakk> \<Longrightarrow> stn (ImpR (x).<a>.M b) \<theta>_n = (ImpR (x).<a>.M b)"
+  | "\<lbrakk>a\<sharp>(N,\<theta>_n);x\<sharp>(M,z,\<theta>_n)\<rbrakk> \<Longrightarrow> stn (ImpL <a>.M (x).N z) \<theta>_n = (ImpL <a>.M (x).N z)"
+                       apply(finite_guess)+
+                       apply(rule TrueI)+
+                       apply(simp add: abs_fresh abs_supp fin_supp)+
+                       apply(fresh_guess)+
+  done
 
 nominal_primrec (freshness_context: "\<theta>_c::(coname\<times>name\<times>trm)")
   stc :: "trm\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm" 
-where
-  "stc (Ax x a) \<theta>_c = lookupd x a \<theta>_c"
-| "\<lbrakk>a\<sharp>(N,\<theta>_c);x\<sharp>(M,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (Cut <a>.M (x).N) \<theta>_c = (Cut <a>.M (x).N)" 
-| "x\<sharp>\<theta>_c \<Longrightarrow> stc (NotR (x).M a) \<theta>_c = (NotR (x).M a)"
-| "a\<sharp>\<theta>_c \<Longrightarrow> stc (NotL <a>.M x) \<theta>_c = (NotL <a>.M x)"
-| "\<lbrakk>a\<sharp>(N,d,b,\<theta>_c);b\<sharp>(M,d,a,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (AndR <a>.M <b>.N d) \<theta>_c = (AndR <a>.M <b>.N d)"
-| "x\<sharp>(z,\<theta>_c) \<Longrightarrow> stc (AndL1 (x).M z) \<theta>_c = (AndL1 (x).M z)"
-| "x\<sharp>(z,\<theta>_c) \<Longrightarrow> stc (AndL2 (x).M z) \<theta>_c = (AndL2 (x).M z)"
-| "a\<sharp>(b,\<theta>_c) \<Longrightarrow> stc (OrR1 <a>.M b) \<theta>_c = (OrR1 <a>.M b)"
-| "a\<sharp>(b,\<theta>_c) \<Longrightarrow> stc (OrR2 <a>.M b) \<theta>_c = (OrR2 <a>.M b)"
-| "\<lbrakk>x\<sharp>(N,z,u,\<theta>_c);u\<sharp>(M,z,x,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (OrL (x).M (u).N z) \<theta>_c = (OrL (x).M (u).N z)"
-| "\<lbrakk>a\<sharp>(b,\<theta>_c);x\<sharp>\<theta>_c\<rbrakk> \<Longrightarrow> stc (ImpR (x).<a>.M b) \<theta>_c = (ImpR (x).<a>.M b)"
-| "\<lbrakk>a\<sharp>(N,\<theta>_c);x\<sharp>(M,z,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (ImpL <a>.M (x).N z) \<theta>_c = (ImpL <a>.M (x).N z)"
-apply(finite_guess)+
-apply(rule TrueI)+
-apply(simp add: abs_fresh abs_supp fin_supp)+
-apply(fresh_guess)+
-done
+  where
+    "stc (Ax x a) \<theta>_c = lookupd x a \<theta>_c"
+  | "\<lbrakk>a\<sharp>(N,\<theta>_c);x\<sharp>(M,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (Cut <a>.M (x).N) \<theta>_c = (Cut <a>.M (x).N)" 
+  | "x\<sharp>\<theta>_c \<Longrightarrow> stc (NotR (x).M a) \<theta>_c = (NotR (x).M a)"
+  | "a\<sharp>\<theta>_c \<Longrightarrow> stc (NotL <a>.M x) \<theta>_c = (NotL <a>.M x)"
+  | "\<lbrakk>a\<sharp>(N,d,b,\<theta>_c);b\<sharp>(M,d,a,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (AndR <a>.M <b>.N d) \<theta>_c = (AndR <a>.M <b>.N d)"
+  | "x\<sharp>(z,\<theta>_c) \<Longrightarrow> stc (AndL1 (x).M z) \<theta>_c = (AndL1 (x).M z)"
+  | "x\<sharp>(z,\<theta>_c) \<Longrightarrow> stc (AndL2 (x).M z) \<theta>_c = (AndL2 (x).M z)"
+  | "a\<sharp>(b,\<theta>_c) \<Longrightarrow> stc (OrR1 <a>.M b) \<theta>_c = (OrR1 <a>.M b)"
+  | "a\<sharp>(b,\<theta>_c) \<Longrightarrow> stc (OrR2 <a>.M b) \<theta>_c = (OrR2 <a>.M b)"
+  | "\<lbrakk>x\<sharp>(N,z,u,\<theta>_c);u\<sharp>(M,z,x,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (OrL (x).M (u).N z) \<theta>_c = (OrL (x).M (u).N z)"
+  | "\<lbrakk>a\<sharp>(b,\<theta>_c);x\<sharp>\<theta>_c\<rbrakk> \<Longrightarrow> stc (ImpR (x).<a>.M b) \<theta>_c = (ImpR (x).<a>.M b)"
+  | "\<lbrakk>a\<sharp>(N,\<theta>_c);x\<sharp>(M,z,\<theta>_c)\<rbrakk> \<Longrightarrow> stc (ImpL <a>.M (x).N z) \<theta>_c = (ImpL <a>.M (x).N z)"
+                       apply(finite_guess)+
+                       apply(rule TrueI)+
+                       apply(simp add: abs_fresh abs_supp fin_supp)+
+                       apply(fresh_guess)+
+  done
 
 lemma stn_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(stn M \<theta>_n)) = stn (pi1\<bullet>M) (pi1\<bullet>\<theta>_n)"
-  and   "(pi2\<bullet>(stn M \<theta>_n)) = stn (pi2\<bullet>M) (pi2\<bullet>\<theta>_n)"
-apply -
-apply(nominal_induct M avoiding: \<theta>_n rule: trm.strong_induct)
-apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
-apply(nominal_induct M avoiding: \<theta>_n rule: trm.strong_induct)
-apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
-done
+    and   "(pi2\<bullet>(stn M \<theta>_n)) = stn (pi2\<bullet>M) (pi2\<bullet>\<theta>_n)"
+   apply -
+   apply(nominal_induct M avoiding: \<theta>_n rule: trm.strong_induct)
+              apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
+  apply(nominal_induct M avoiding: \<theta>_n rule: trm.strong_induct)
+             apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
+  done
 
 lemma stc_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(stc M \<theta>_c)) = stc (pi1\<bullet>M) (pi1\<bullet>\<theta>_c)"
-  and   "(pi2\<bullet>(stc M \<theta>_c)) = stc (pi2\<bullet>M) (pi2\<bullet>\<theta>_c)"
-apply -
-apply(nominal_induct M avoiding: \<theta>_c rule: trm.strong_induct)
-apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
-apply(nominal_induct M avoiding: \<theta>_c rule: trm.strong_induct)
-apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
-done
+    and   "(pi2\<bullet>(stc M \<theta>_c)) = stc (pi2\<bullet>M) (pi2\<bullet>\<theta>_c)"
+   apply -
+   apply(nominal_induct M avoiding: \<theta>_c rule: trm.strong_induct)
+              apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
+  apply(nominal_induct M avoiding: \<theta>_c rule: trm.strong_induct)
+             apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
+  done
 
 lemma stn_fresh:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(\<theta>_n,M) \<Longrightarrow> a\<sharp>stn M \<theta>_n"
-  and   "x\<sharp>(\<theta>_n,M) \<Longrightarrow> x\<sharp>stn M \<theta>_n"
-apply(nominal_induct M avoiding: \<theta>_n a x rule: trm.strong_induct)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_atm)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_atm)
-done
+    and   "x\<sharp>(\<theta>_n,M) \<Longrightarrow> x\<sharp>stn M \<theta>_n"
+   apply(nominal_induct M avoiding: \<theta>_n a x rule: trm.strong_induct)
+                       apply(auto simp add: abs_fresh fresh_prod fresh_atm)
+   apply(rule lookupc_freshness)
+   apply(simp add: fresh_atm)
+  apply(rule lookupc_freshness)
+  apply(simp add: fresh_atm)
+  done
 
 lemma stc_fresh:
   fixes a::"coname"
-  and   x::"name"
+    and   x::"name"
   shows "a\<sharp>(\<theta>_c,M) \<Longrightarrow> a\<sharp>stc M \<theta>_c"
-  and   "x\<sharp>(\<theta>_c,M) \<Longrightarrow> x\<sharp>stc M \<theta>_c"
-apply(nominal_induct M avoiding: \<theta>_c a x rule: trm.strong_induct)
-apply(auto simp add: abs_fresh fresh_prod fresh_atm)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-done
+    and   "x\<sharp>(\<theta>_c,M) \<Longrightarrow> x\<sharp>stc M \<theta>_c"
+   apply(nominal_induct M avoiding: \<theta>_c a x rule: trm.strong_induct)
+                       apply(auto simp add: abs_fresh fresh_prod fresh_atm)
+   apply(rule lookupd_freshness)
+   apply(simp add: fresh_atm)
+  apply(rule lookupd_freshness)
+  apply(simp add: fresh_atm)
+  done
 
 lemma case_option_eqvt1[eqvt_force]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
-  and   B::"(name\<times>trm) option"
-  and   r::"trm"
+    and   pi2::"coname prm"
+    and   B::"(name\<times>trm) option"
+    and   r::"trm"
   shows "(pi1\<bullet>(case B of Some (x,P) \<Rightarrow> s x P | None \<Rightarrow> r)) = 
               (case (pi1\<bullet>B) of Some (x,P) \<Rightarrow> (pi1\<bullet>s) x P | None \<Rightarrow> (pi1\<bullet>r))"
-  and   "(pi2\<bullet>(case B of Some (x,P) \<Rightarrow> s x P| None \<Rightarrow> r)) = 
+    and   "(pi2\<bullet>(case B of Some (x,P) \<Rightarrow> s x P| None \<Rightarrow> r)) = 
               (case (pi2\<bullet>B) of Some (x,P) \<Rightarrow> (pi2\<bullet>s) x P | None \<Rightarrow> (pi2\<bullet>r))"
-apply(cases "B")
-apply(auto)
-apply(perm_simp)
-apply(cases "B")
-apply(auto)
-apply(perm_simp)
-done
+   apply(cases "B")
+    apply(auto)
+   apply(perm_simp)
+  apply(cases "B")
+   apply(auto)
+  apply(perm_simp)
+  done
 
 lemma case_option_eqvt2[eqvt_force]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
-  and   B::"(coname\<times>trm) option"
-  and   r::"trm"
+    and   pi2::"coname prm"
+    and   B::"(coname\<times>trm) option"
+    and   r::"trm"
   shows "(pi1\<bullet>(case B of Some (x,P) \<Rightarrow> s x P | None \<Rightarrow> r)) = 
               (case (pi1\<bullet>B) of Some (x,P) \<Rightarrow> (pi1\<bullet>s) x P | None \<Rightarrow> (pi1\<bullet>r))"
-  and   "(pi2\<bullet>(case B of Some (x,P) \<Rightarrow> s x P| None \<Rightarrow> r)) = 
+    and   "(pi2\<bullet>(case B of Some (x,P) \<Rightarrow> s x P| None \<Rightarrow> r)) = 
               (case (pi2\<bullet>B) of Some (x,P) \<Rightarrow> (pi2\<bullet>s) x P | None \<Rightarrow> (pi2\<bullet>r))"
-apply(cases "B")
-apply(auto)
-apply(perm_simp)
-apply(cases "B")
-apply(auto)
-apply(perm_simp)
-done
+   apply(cases "B")
+    apply(auto)
+   apply(perm_simp)
+  apply(cases "B")
+   apply(auto)
+  apply(perm_simp)
+  done
 
 nominal_primrec (freshness_context: "(\<theta>_n::(name\<times>coname\<times>trm) list,\<theta>_c::(coname\<times>name\<times>trm) list)")
   psubst :: "(name\<times>coname\<times>trm) list\<Rightarrow>(coname\<times>name\<times>trm) list\<Rightarrow>trm\<Rightarrow>trm" ("_,_<_>" [100,100,100] 100) 
-where
-  "\<theta>_n,\<theta>_c<Ax x a> = lookup x a \<theta>_n \<theta>_c" 
-| "\<lbrakk>a\<sharp>(N,\<theta>_n,\<theta>_c);x\<sharp>(M,\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> \<theta>_n,\<theta>_c<Cut <a>.M (x).N> = 
+  where
+    "\<theta>_n,\<theta>_c<Ax x a> = lookup x a \<theta>_n \<theta>_c" 
+  | "\<lbrakk>a\<sharp>(N,\<theta>_n,\<theta>_c);x\<sharp>(M,\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> \<theta>_n,\<theta>_c<Cut <a>.M (x).N> = 
    Cut <a>.(if \<exists>x. M=Ax x a then stn M \<theta>_n else \<theta>_n,\<theta>_c<M>) 
        (x).(if \<exists>a. N=Ax x a then stc N \<theta>_c else \<theta>_n,\<theta>_c<N>)" 
-| "x\<sharp>(\<theta>_n,\<theta>_c) \<Longrightarrow> \<theta>_n,\<theta>_c<NotR (x).M a> = 
+  | "x\<sharp>(\<theta>_n,\<theta>_c) \<Longrightarrow> \<theta>_n,\<theta>_c<NotR (x).M a> = 
   (case (findc \<theta>_c a) of 
        Some (u,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.NotR (x).(\<theta>_n,\<theta>_c<M>) a' (u).P) 
      | None \<Rightarrow> NotR (x).(\<theta>_n,\<theta>_c<M>) a)"
-| "a\<sharp>(\<theta>_n,\<theta>_c) \<Longrightarrow> \<theta>_n,\<theta>_c<NotL <a>.M x> = 
+  | "a\<sharp>(\<theta>_n,\<theta>_c) \<Longrightarrow> \<theta>_n,\<theta>_c<NotL <a>.M x> = 
   (case (findn \<theta>_n x) of 
        Some (c,P) \<Rightarrow> fresh_fun (\<lambda>x'. Cut <c>.P (x').(NotL <a>.(\<theta>_n,\<theta>_c<M>) x')) 
      | None \<Rightarrow> NotL <a>.(\<theta>_n,\<theta>_c<M>) x)"
-| "\<lbrakk>a\<sharp>(N,c,\<theta>_n,\<theta>_c);b\<sharp>(M,c,\<theta>_n,\<theta>_c);b\<noteq>a\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<AndR <a>.M <b>.N c>) = 
+  | "\<lbrakk>a\<sharp>(N,c,\<theta>_n,\<theta>_c);b\<sharp>(M,c,\<theta>_n,\<theta>_c);b\<noteq>a\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<AndR <a>.M <b>.N c>) = 
   (case (findc \<theta>_c c) of 
        Some (x,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.(AndR <a>.(\<theta>_n,\<theta>_c<M>) <b>.(\<theta>_n,\<theta>_c<N>) a') (x).P)
      | None \<Rightarrow> AndR <a>.(\<theta>_n,\<theta>_c<M>) <b>.(\<theta>_n,\<theta>_c<N>) c)"
-| "x\<sharp>(z,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<AndL1 (x).M z>) = 
+  | "x\<sharp>(z,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<AndL1 (x).M z>) = 
   (case (findn \<theta>_n z) of 
        Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').AndL1 (x).(\<theta>_n,\<theta>_c<M>) z') 
      | None \<Rightarrow> AndL1 (x).(\<theta>_n,\<theta>_c<M>) z)"
-| "x\<sharp>(z,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<AndL2 (x).M z>) = 
+  | "x\<sharp>(z,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<AndL2 (x).M z>) = 
   (case (findn \<theta>_n z) of 
        Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').AndL2 (x).(\<theta>_n,\<theta>_c<M>) z') 
      | None \<Rightarrow> AndL2 (x).(\<theta>_n,\<theta>_c<M>) z)"
-| "\<lbrakk>x\<sharp>(N,z,\<theta>_n,\<theta>_c);u\<sharp>(M,z,\<theta>_n,\<theta>_c);x\<noteq>u\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<OrL (x).M (u).N z>) =
+  | "\<lbrakk>x\<sharp>(N,z,\<theta>_n,\<theta>_c);u\<sharp>(M,z,\<theta>_n,\<theta>_c);x\<noteq>u\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<OrL (x).M (u).N z>) =
   (case (findn \<theta>_n z) of  
        Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').OrL (x).(\<theta>_n,\<theta>_c<M>) (u).(\<theta>_n,\<theta>_c<N>) z') 
      | None \<Rightarrow> OrL (x).(\<theta>_n,\<theta>_c<M>) (u).(\<theta>_n,\<theta>_c<N>) z)"
-| "a\<sharp>(b,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<OrR1 <a>.M b>) = 
+  | "a\<sharp>(b,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<OrR1 <a>.M b>) = 
   (case (findc \<theta>_c b) of
        Some (x,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.OrR1 <a>.(\<theta>_n,\<theta>_c<M>) a' (x).P) 
      | None \<Rightarrow> OrR1 <a>.(\<theta>_n,\<theta>_c<M>) b)"
-| "a\<sharp>(b,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<OrR2 <a>.M b>) = 
+  | "a\<sharp>(b,\<theta>_n,\<theta>_c) \<Longrightarrow> (\<theta>_n,\<theta>_c<OrR2 <a>.M b>) = 
   (case (findc \<theta>_c b) of
        Some (x,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.OrR2 <a>.(\<theta>_n,\<theta>_c<M>) a' (x).P) 
      | None \<Rightarrow> OrR2 <a>.(\<theta>_n,\<theta>_c<M>) b)"
-| "\<lbrakk>a\<sharp>(b,\<theta>_n,\<theta>_c); x\<sharp>(\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<ImpR (x).<a>.M b>) = 
+  | "\<lbrakk>a\<sharp>(b,\<theta>_n,\<theta>_c); x\<sharp>(\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<ImpR (x).<a>.M b>) = 
   (case (findc \<theta>_c b) of
        Some (z,P) \<Rightarrow> fresh_fun (\<lambda>a'. Cut <a'>.ImpR (x).<a>.(\<theta>_n,\<theta>_c<M>) a' (z).P)
      | None \<Rightarrow> ImpR (x).<a>.(\<theta>_n,\<theta>_c<M>) b)"
-| "\<lbrakk>a\<sharp>(N,\<theta>_n,\<theta>_c); x\<sharp>(z,M,\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<ImpL <a>.M (x).N z>) = 
+  | "\<lbrakk>a\<sharp>(N,\<theta>_n,\<theta>_c); x\<sharp>(z,M,\<theta>_n,\<theta>_c)\<rbrakk> \<Longrightarrow> (\<theta>_n,\<theta>_c<ImpL <a>.M (x).N z>) = 
   (case (findn \<theta>_n z) of
        Some (c,P) \<Rightarrow> fresh_fun (\<lambda>z'. Cut <c>.P (z').ImpL <a>.(\<theta>_n,\<theta>_c<M>) (x).(\<theta>_n,\<theta>_c<N>) z') 
      | None \<Rightarrow> ImpL <a>.(\<theta>_n,\<theta>_c<M>) (x).(\<theta>_n,\<theta>_c<N>) z)"
-apply(finite_guess)+
-apply(rule TrueI)+
-apply(simp add: abs_fresh stc_fresh)
-apply(simp add: abs_fresh stn_fresh)
-apply(case_tac "findc \<theta>_c x3")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findn \<theta>_n x3")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findc \<theta>_c x5")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findc \<theta>_c x5")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule_tac x="x3" in cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findn \<theta>_n x3")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findn \<theta>_n x3")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findc \<theta>_c x3")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findc \<theta>_c x3")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findn \<theta>_n x5")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findn \<theta>_n x5")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule_tac a="x3" in nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findc \<theta>_c x4")
-apply(simp add: abs_fresh abs_supp fin_supp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
-apply(case_tac "findc \<theta>_c x4")
-apply(simp add: abs_fresh abs_supp fin_supp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp (no_asm))
-apply(drule_tac x="x2" in cmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
-apply(case_tac "findn \<theta>_n x5")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(case_tac "findn \<theta>_n x5")
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp (no_asm))
-apply(drule_tac a="x3" in nmaps_fresh)
-apply(auto simp add: fresh_prod)[1]
-apply(simp add: abs_fresh fresh_prod fresh_atm)
-apply(fresh_guess)+
-done
+                       apply(finite_guess)+
+                       apply(rule TrueI)+
+                       apply(simp add: abs_fresh stc_fresh)
+                       apply(simp add: abs_fresh stn_fresh)
+                       apply(case_tac "findc \<theta>_c x3")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findn \<theta>_n x3")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findc \<theta>_c x5")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findc \<theta>_c x5")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule_tac x="x3" in cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findn \<theta>_n x3")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findn \<theta>_n x3")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findc \<theta>_c x3")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findc \<theta>_c x3")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findn \<theta>_n x5")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findn \<theta>_n x5")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule_tac a="x3" in nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findc \<theta>_c x4")
+                       apply(simp add: abs_fresh abs_supp fin_supp)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
+                       apply(case_tac "findc \<theta>_c x4")
+                       apply(simp add: abs_fresh abs_supp fin_supp)
+                       apply(auto)[1]
+                       apply(generate_fresh "coname")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule_tac x="x2" in cmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
+                       apply(case_tac "findn \<theta>_n x5")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(case_tac "findn \<theta>_n x5")
+                       apply(simp add: abs_fresh)
+                       apply(auto)[1]
+                       apply(generate_fresh "name")
+                       apply(fresh_fun_simp (no_asm))
+                       apply(drule_tac a="x3" in nmaps_fresh)
+                       apply(auto simp add: fresh_prod)[1]
+                       apply(simp add: abs_fresh fresh_prod fresh_atm)
+                       apply(fresh_guess)+
+  done
 
 lemma case_cong:
   assumes a: "B1=B2" "x1=x2" "y1=y2"
   shows "(case B1 of None \<Rightarrow> x1 | Some (x,P) \<Rightarrow> y1 x P) = (case B2 of None \<Rightarrow> x2 | Some (x,P) \<Rightarrow> y2 x P)"
-using a
-apply(auto)
-done
+  using a
+  apply(auto)
+  done
 
 lemma find_maps:
   shows "\<theta>_c cmaps a to (findc \<theta>_c a)"
-  and   "\<theta>_n nmaps x to (findn \<theta>_n x)"
-apply(auto)
-done
+    and   "\<theta>_n nmaps x to (findn \<theta>_n x)"
+   apply(auto)
+  done
 
 lemma psubst_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "pi1\<bullet>(\<theta>_n,\<theta>_c<M>) = (pi1\<bullet>\<theta>_n),(pi1\<bullet>\<theta>_c)<(pi1\<bullet>M)>"
-  and   "pi2\<bullet>(\<theta>_n,\<theta>_c<M>) = (pi2\<bullet>\<theta>_n),(pi2\<bullet>\<theta>_c)<(pi2\<bullet>M)>"
-apply(nominal_induct M avoiding: \<theta>_n \<theta>_c rule: trm.strong_induct)
-apply(auto simp add: eq_bij fresh_bij eqvts perm_pi_simp)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-apply(rule case_cong)
-apply(rule find_maps)
-apply(simp)
-apply(perm_simp add: eqvts)
-done
+    and   "pi2\<bullet>(\<theta>_n,\<theta>_c<M>) = (pi2\<bullet>\<theta>_n),(pi2\<bullet>\<theta>_c)<(pi2\<bullet>M)>"
+   apply(nominal_induct M avoiding: \<theta>_n \<theta>_c rule: trm.strong_induct)
+                       apply(auto simp add: eq_bij fresh_bij eqvts perm_pi_simp)
+                     apply(rule case_cong)
+                       apply(rule find_maps)
+                      apply(simp)
+                     apply(perm_simp add: eqvts)
+                    apply(rule case_cong)
+                      apply(rule find_maps)
+                     apply(simp)
+                    apply(perm_simp add: eqvts)
+                   apply(rule case_cong)
+                     apply(rule find_maps)
+                    apply(simp)
+                   apply(perm_simp add: eqvts)
+                  apply(rule case_cong)
+                    apply(rule find_maps)
+                   apply(simp)
+                  apply(perm_simp add: eqvts)
+                 apply(rule case_cong)
+                   apply(rule find_maps)
+                  apply(simp)
+                 apply(perm_simp add: eqvts)
+                apply(rule case_cong)
+                  apply(rule find_maps)
+                 apply(simp)
+                apply(perm_simp add: eqvts)
+               apply(rule case_cong)
+                 apply(rule find_maps)
+                apply(simp)
+               apply(perm_simp add: eqvts)
+              apply(rule case_cong)
+                apply(rule find_maps)
+               apply(simp)
+              apply(perm_simp add: eqvts)
+             apply(rule case_cong)
+               apply(rule find_maps)
+              apply(simp)
+             apply(perm_simp add: eqvts)
+            apply(rule case_cong)
+              apply(rule find_maps)
+             apply(simp)
+            apply(perm_simp add: eqvts)
+           apply(rule case_cong)
+             apply(rule find_maps)
+            apply(simp)
+           apply(perm_simp add: eqvts)
+          apply(rule case_cong)
+            apply(rule find_maps)
+           apply(simp)
+          apply(perm_simp add: eqvts)
+         apply(rule case_cong)
+           apply(rule find_maps)
+          apply(simp)
+         apply(perm_simp add: eqvts)
+        apply(rule case_cong)
+          apply(rule find_maps)
+         apply(simp)
+        apply(perm_simp add: eqvts)
+       apply(rule case_cong)
+         apply(rule find_maps)
+        apply(simp)
+       apply(perm_simp add: eqvts)
+      apply(rule case_cong)
+        apply(rule find_maps)
+       apply(simp)
+      apply(perm_simp add: eqvts)
+     apply(rule case_cong)
+       apply(rule find_maps)
+      apply(simp)
+     apply(perm_simp add: eqvts)
+    apply(rule case_cong)
+      apply(rule find_maps)
+     apply(simp)
+    apply(perm_simp add: eqvts)
+   apply(rule case_cong)
+     apply(rule find_maps)
+    apply(simp)
+   apply(perm_simp add: eqvts)
+  apply(rule case_cong)
+    apply(rule find_maps)
+   apply(simp)
+  apply(perm_simp add: eqvts)
+  done
 
 lemma ax_psubst:
   assumes a: "\<theta>_n,\<theta>_c<M> = Ax x a"
-  and     b: "a\<sharp>(\<theta>_n,\<theta>_c)" "x\<sharp>(\<theta>_n,\<theta>_c)"
+    and     b: "a\<sharp>(\<theta>_n,\<theta>_c)" "x\<sharp>(\<theta>_n,\<theta>_c)"
   shows "M = Ax x a"
-using a b
-apply(nominal_induct M avoiding: \<theta>_n \<theta>_c rule: trm.strong_induct)
-apply(auto)
-apply(drule lookup_unicity)
-apply(simp)+
-apply(case_tac "findc \<theta>_c coname")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findn \<theta>_n name")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname3")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findn \<theta>_n name3")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp)
-done
+  using a b
+  apply(nominal_induct M avoiding: \<theta>_n \<theta>_c rule: trm.strong_induct)
+             apply(auto)
+            apply(drule lookup_unicity)
+              apply(simp)+
+           apply(case_tac "findc \<theta>_c coname")
+            apply(simp)
+           apply(auto)[1]
+           apply(generate_fresh "coname")
+           apply(fresh_fun_simp)
+           apply(simp)
+          apply(case_tac "findn \<theta>_n name")
+           apply(simp)
+          apply(auto)[1]
+          apply(generate_fresh "name")
+          apply(fresh_fun_simp)
+          apply(simp)
+         apply(case_tac "findc \<theta>_c coname3")
+          apply(simp)
+         apply(auto)[1]
+         apply(generate_fresh "coname")
+         apply(fresh_fun_simp)
+         apply(simp)
+        apply(case_tac "findn \<theta>_n name2")
+         apply(simp)
+        apply(auto)[1]
+        apply(generate_fresh "name")
+        apply(fresh_fun_simp)
+        apply(simp)
+       apply(case_tac "findn \<theta>_n name2")
+        apply(simp)
+       apply(auto)[1]
+       apply(generate_fresh "name")
+       apply(fresh_fun_simp)
+       apply(simp)
+      apply(case_tac "findc \<theta>_c coname2")
+       apply(simp)
+      apply(auto)[1]
+      apply(generate_fresh "coname")
+      apply(fresh_fun_simp)
+      apply(simp)
+     apply(case_tac "findc \<theta>_c coname2")
+      apply(simp)
+     apply(auto)[1]
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(simp)
+    apply(case_tac "findn \<theta>_n name3")
+     apply(simp)
+    apply(auto)[1]
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(simp)
+   apply(case_tac "findc \<theta>_c coname2")
+    apply(simp)
+   apply(auto)[1]
+   apply(generate_fresh "coname")
+   apply(fresh_fun_simp)
+   apply(simp)
+  apply(case_tac "findn \<theta>_n name2")
+   apply(simp)
+  apply(auto)[1]
+  apply(generate_fresh "name")
+  apply(fresh_fun_simp)
+  apply(simp)
+  done
 
 lemma better_Cut_substc1:
   assumes a: "a\<sharp>(P,b)" "b\<sharp>N" 
   shows "(Cut <a>.M (x).N){b:=(y).P} = Cut <a>.(M{b:=(y).P}) (x).N"
-using a
-apply -
-apply(generate_fresh "coname")
-apply(generate_fresh "name")
-apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
-apply(simp)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
-apply(simp add: calc_atm fresh_atm)
-apply(subgoal_tac"b\<sharp>([(ca,x)]\<bullet>N)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(perm_simp)
-apply(simp add: fresh_left calc_atm)
-apply(simp add: trm.inject)
-apply(rule conjI)
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-done
+  using a
+  apply -
+  apply(generate_fresh "coname")
+  apply(generate_fresh "name")
+  apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
+   apply(simp)
+   apply(rule trans)
+    apply(rule better_Cut_substc)
+     apply(simp)
+    apply(simp add: abs_fresh)
+   apply(auto)[1]
+    apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+    apply(simp add: calc_atm fresh_atm)
+   apply(subgoal_tac"b\<sharp>([(ca,x)]\<bullet>N)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+    apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+    apply(perm_simp)
+   apply(simp add: fresh_left calc_atm)
+  apply(simp add: trm.inject)
+  apply(rule conjI)
+   apply(rule sym)
+   apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  apply(rule sym)
+  apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  done
 
 lemma better_Cut_substc2:
   assumes a: "x\<sharp>(y,P)" "b\<sharp>(a,M)" "N\<noteq>Ax x b"
   shows "(Cut <a>.M (x).N){b:=(y).P} = Cut <a>.M (x).(N{b:=(y).P})"
-using a
-apply -
-apply(generate_fresh "coname")
-apply(generate_fresh "name")
-apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
-apply(simp)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
-apply(simp add: calc_atm fresh_atm fresh_prod)
-apply(subgoal_tac"b\<sharp>([(c,a)]\<bullet>M)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(perm_simp)
-apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(simp add: trm.inject)
-apply(rule conjI)
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-done
+  using a
+  apply -
+  apply(generate_fresh "coname")
+  apply(generate_fresh "name")
+  apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
+   apply(simp)
+   apply(rule trans)
+    apply(rule better_Cut_substc)
+     apply(simp)
+    apply(simp add: abs_fresh)
+   apply(auto)[1]
+    apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
+    apply(simp add: calc_atm fresh_atm fresh_prod)
+   apply(subgoal_tac"b\<sharp>([(c,a)]\<bullet>M)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+    apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+    apply(perm_simp)
+   apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(simp add: trm.inject)
+  apply(rule conjI)
+   apply(rule sym)
+   apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  apply(rule sym)
+  apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  done
 
 lemma better_Cut_substn1:
   assumes a: "y\<sharp>(x,N)" "a\<sharp>(b,P)" "M\<noteq>Ax y a"
   shows "(Cut <a>.M (x).N){y:=<b>.P} = Cut <a>.(M{y:=<b>.P}) (x).N"
-using a
-apply -
-apply(generate_fresh "coname")
-apply(generate_fresh "name")
-apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
-apply(simp)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
-apply(simp add: calc_atm fresh_atm fresh_prod)
-apply(subgoal_tac"y\<sharp>([(ca,x)]\<bullet>N)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(perm_simp)
-apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
-apply(simp add: trm.inject)
-apply(rule conjI)
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-done
+  using a
+  apply -
+  apply(generate_fresh "coname")
+  apply(generate_fresh "name")
+  apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
+   apply(simp)
+   apply(rule trans)
+    apply(rule better_Cut_substn)
+     apply(simp add: abs_fresh)
+    apply(simp add: abs_fresh)
+   apply(auto)[1]
+    apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+    apply(simp add: calc_atm fresh_atm fresh_prod)
+   apply(subgoal_tac"y\<sharp>([(ca,x)]\<bullet>N)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+    apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+    apply(perm_simp)
+   apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
+  apply(simp add: trm.inject)
+  apply(rule conjI)
+   apply(rule sym)
+   apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  apply(rule sym)
+  apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  done
 
 lemma better_Cut_substn2:
   assumes a: "x\<sharp>(P,y)" "y\<sharp>M" 
   shows "(Cut <a>.M (x).N){y:=<b>.P} = Cut <a>.M (x).(N{y:=<b>.P})"
-using a
-apply -
-apply(generate_fresh "coname")
-apply(generate_fresh "name")
-apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
-apply(simp)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(auto)[1]
-apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
-apply(simp add: calc_atm fresh_atm)
-apply(subgoal_tac"y\<sharp>([(c,a)]\<bullet>M)")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(perm_simp)
-apply(simp add: fresh_left calc_atm)
-apply(simp add: trm.inject)
-apply(rule conjI)
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-apply(rule sym)
-apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
-done
+  using a
+  apply -
+  apply(generate_fresh "coname")
+  apply(generate_fresh "name")
+  apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]\<bullet>M) (ca).([(ca,x)]\<bullet>N)")
+   apply(simp)
+   apply(rule trans)
+    apply(rule better_Cut_substn)
+     apply(simp add: abs_fresh)
+    apply(simp add: abs_fresh)
+   apply(auto)[1]
+    apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
+    apply(simp add: calc_atm fresh_atm)
+   apply(subgoal_tac"y\<sharp>([(c,a)]\<bullet>M)")
+    apply(simp add: forget)
+    apply(simp add: trm.inject)
+    apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+    apply(perm_simp)
+   apply(simp add: fresh_left calc_atm)
+  apply(simp add: trm.inject)
+  apply(rule conjI)
+   apply(rule sym)
+   apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  apply(rule sym)
+  apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
+  done
 
 lemma psubst_fresh_name:
   fixes x::"name"
   assumes a: "x\<sharp>\<theta>_n" "x\<sharp>\<theta>_c" "x\<sharp>M"
   shows "x\<sharp>\<theta>_n,\<theta>_c<M>"
-using a
-apply(nominal_induct M avoiding: x \<theta>_n \<theta>_c rule: trm.strong_induct)
-apply(simp add: lookup_freshness)
-apply(auto simp add: abs_fresh)[1]
-apply(simp add: lookupc_freshness)
-apply(simp add: lookupc_freshness)
-apply(simp add: lookupc_freshness)
-apply(simp add: lookupd_freshness)
-apply(simp add: lookupd_freshness)
-apply(simp add: lookupc_freshness)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname3")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name3")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-done
+  using a
+  apply(nominal_induct M avoiding: x \<theta>_n \<theta>_c rule: trm.strong_induct)
+             apply(simp add: lookup_freshness)
+            apply(auto simp add: abs_fresh)[1]
+                 apply(simp add: lookupc_freshness)
+                apply(simp add: lookupc_freshness)
+               apply(simp add: lookupc_freshness)
+              apply(simp add: lookupd_freshness)
+             apply(simp add: lookupd_freshness)
+            apply(simp add: lookupc_freshness)
+           apply(simp)
+           apply(case_tac "findc \<theta>_c coname")
+            apply(auto simp add: abs_fresh)[1]
+           apply(auto)[1]
+           apply(generate_fresh "coname")
+           apply(fresh_fun_simp)
+           apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+          apply(simp)
+          apply(case_tac "findn \<theta>_n name")
+           apply(auto simp add: abs_fresh)[1]
+          apply(auto)[1]
+          apply(generate_fresh "name")
+          apply(fresh_fun_simp)
+          apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+         apply(simp)
+         apply(case_tac "findc \<theta>_c coname3")
+          apply(auto simp add: abs_fresh)[1]
+         apply(auto)[1]
+         apply(generate_fresh "coname")
+         apply(fresh_fun_simp)
+         apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+        apply(simp)
+        apply(case_tac "findn \<theta>_n name2")
+         apply(auto simp add: abs_fresh)[1]
+        apply(auto)[1]
+        apply(generate_fresh "name")
+        apply(fresh_fun_simp)
+        apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+       apply(simp)
+       apply(case_tac "findn \<theta>_n name2")
+        apply(auto simp add: abs_fresh)[1]
+       apply(auto)[1]
+       apply(generate_fresh "name")
+       apply(fresh_fun_simp)
+       apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+      apply(simp)
+      apply(case_tac "findc \<theta>_c coname2")
+       apply(auto simp add: abs_fresh)[1]
+      apply(auto)[1]
+      apply(generate_fresh "coname")
+      apply(fresh_fun_simp)
+      apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+     apply(simp)
+     apply(case_tac "findc \<theta>_c coname2")
+      apply(auto simp add: abs_fresh)[1]
+     apply(auto)[1]
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+    apply(simp)
+    apply(case_tac "findn \<theta>_n name3")
+     apply(auto simp add: abs_fresh)[1]
+    apply(auto)[1]
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+   apply(simp)
+   apply(case_tac "findc \<theta>_c coname2")
+    apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
+   apply(auto)[1]
+   apply(generate_fresh "coname")
+   apply(fresh_fun_simp)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
+  apply(simp)
+  apply(case_tac "findn \<theta>_n name2")
+   apply(auto simp add: abs_fresh)[1]
+  apply(auto)[1]
+  apply(generate_fresh "name")
+  apply(fresh_fun_simp)
+  apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+  done
 
 lemma psubst_fresh_coname:
   fixes a::"coname"
   assumes a: "a\<sharp>\<theta>_n" "a\<sharp>\<theta>_c" "a\<sharp>M"
   shows "a\<sharp>\<theta>_n,\<theta>_c<M>"
-using a
-apply(nominal_induct M avoiding: a \<theta>_n \<theta>_c rule: trm.strong_induct)
-apply(simp add: lookup_freshness)
-apply(auto simp add: abs_fresh)[1]
-apply(simp add: lookupd_freshness)
-apply(simp add: lookupd_freshness)
-apply(simp add: lookupc_freshness)
-apply(simp add: lookupd_freshness)
-apply(simp add: lookupc_freshness)
-apply(simp add: lookupd_freshness)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname3")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name3")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(auto simp add: abs_fresh)[1]
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
-done
+  using a
+  apply(nominal_induct M avoiding: a \<theta>_n \<theta>_c rule: trm.strong_induct)
+             apply(simp add: lookup_freshness)
+            apply(auto simp add: abs_fresh)[1]
+                 apply(simp add: lookupd_freshness)
+                apply(simp add: lookupd_freshness)
+               apply(simp add: lookupc_freshness)
+              apply(simp add: lookupd_freshness)
+             apply(simp add: lookupc_freshness)
+            apply(simp add: lookupd_freshness)
+           apply(simp)
+           apply(case_tac "findc \<theta>_c coname")
+            apply(auto simp add: abs_fresh)[1]
+           apply(auto)[1]
+           apply(generate_fresh "coname")
+           apply(fresh_fun_simp)
+           apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+          apply(simp)
+          apply(case_tac "findn \<theta>_n name")
+           apply(auto simp add: abs_fresh)[1]
+          apply(auto)[1]
+          apply(generate_fresh "name")
+          apply(fresh_fun_simp)
+          apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+         apply(simp)
+         apply(case_tac "findc \<theta>_c coname3")
+          apply(auto simp add: abs_fresh)[1]
+         apply(auto)[1]
+         apply(generate_fresh "coname")
+         apply(fresh_fun_simp)
+         apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+        apply(simp)
+        apply(case_tac "findn \<theta>_n name2")
+         apply(auto simp add: abs_fresh)[1]
+        apply(auto)[1]
+        apply(generate_fresh "name")
+        apply(fresh_fun_simp)
+        apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+       apply(simp)
+       apply(case_tac "findn \<theta>_n name2")
+        apply(auto simp add: abs_fresh)[1]
+       apply(auto)[1]
+       apply(generate_fresh "name")
+       apply(fresh_fun_simp)
+       apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+      apply(simp)
+      apply(case_tac "findc \<theta>_c coname2")
+       apply(auto simp add: abs_fresh)[1]
+      apply(auto)[1]
+      apply(generate_fresh "coname")
+      apply(fresh_fun_simp)
+      apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+     apply(simp)
+     apply(case_tac "findc \<theta>_c coname2")
+      apply(auto simp add: abs_fresh)[1]
+     apply(auto)[1]
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
+    apply(simp)
+    apply(case_tac "findn \<theta>_n name3")
+     apply(auto simp add: abs_fresh)[1]
+    apply(auto)[1]
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+   apply(simp)
+   apply(case_tac "findc \<theta>_c coname2")
+    apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
+   apply(auto)[1]
+   apply(generate_fresh "coname")
+   apply(fresh_fun_simp)
+   apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
+  apply(simp)
+  apply(case_tac "findn \<theta>_n name2")
+   apply(auto simp add: abs_fresh)[1]
+  apply(auto)[1]
+  apply(generate_fresh "name")
+  apply(fresh_fun_simp)
+  apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
+  done
 
 lemma psubst_csubst:
   assumes a: "a\<sharp>(\<theta>_n,\<theta>_c)"
   shows "\<theta>_n,((a,x,P)#\<theta>_c)<M> = ((\<theta>_n,\<theta>_c<M>){a:=(x).P})"
-using a
-apply(nominal_induct M avoiding: a x \<theta>_n \<theta>_c P rule: trm.strong_induct)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp add: lookup_csubst)
-apply(simp add: fresh_list_cons fresh_prod)
-apply(auto)[1]
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp add: lookupd_fresh)
-apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(rule sym)
-apply(simp add: alpha nrename_swap fresh_atm)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(simp add: lookupd_unicity)
-apply(rule impI)
-apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
-apply(subgoal_tac "a\<sharp>lookupd name aa \<theta>_c")
-apply(simp add: forget)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(drule ax_psubst)
-apply(simp)
-apply(simp)
-apply(blast)
-apply(rule impI)
-apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
-apply(simp add: forget)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(simp add: trm.inject)
-apply(rule sym)
-apply(simp add: alpha)
-apply(simp add: alpha nrename_swap fresh_atm)
-apply(simp add: lookupd_fresh)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(simp add: lookupd_unicity)
-apply(rule impI)
-apply(subgoal_tac "a\<sharp>lookupd name aa \<theta>_c")
-apply(simp add: forget)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc)
-apply(simp)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule impI)
-apply(drule ax_psubst)
-apply(simp)
-apply(simp)
-apply(blast)
-(* NotR *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule cmaps_false)
-apply(assumption)
-apply(simp)
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc1)
-apply(simp)
-apply(simp add: cmaps_fresh)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-(* NotL *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(drule_tac a="a" in nmaps_fresh)
-apply(assumption)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc2)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp)
-(* AndR *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname3")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule cmaps_false)
-apply(assumption)
-apply(simp)
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc1)
-apply(simp)
-apply(simp add: cmaps_fresh)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* AndL1 *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(drule_tac a="a" in nmaps_fresh)
-apply(assumption)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc2)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* AndL2 *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(drule_tac a="a" in nmaps_fresh)
-apply(assumption)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc2)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* OrR1 *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule cmaps_false)
-apply(assumption)
-apply(simp)
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc1)
-apply(simp)
-apply(simp add: cmaps_fresh)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* OrR2 *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule cmaps_false)
-apply(assumption)
-apply(simp)
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc1)
-apply(simp)
-apply(simp add: cmaps_fresh)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* OrL *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name3")
-apply(simp)
-apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(drule_tac a="a" in nmaps_fresh)
-apply(assumption)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc2)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_name fresh_prod fresh_atm)[1]
-(* ImpR *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule cmaps_false)
-apply(assumption)
-apply(simp)
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc1)
-apply(simp)
-apply(simp add: cmaps_fresh)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* ImpL *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(simp add: abs_fresh subst_fresh)
-apply(drule_tac a="a" in nmaps_fresh)
-apply(assumption)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substc2)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
-done
+  using a
+  apply(nominal_induct M avoiding: a x \<theta>_n \<theta>_c P rule: trm.strong_induct)
+             apply(auto simp add: fresh_list_cons fresh_prod)[1]
+             apply(simp add: lookup_csubst)
+            apply(simp add: fresh_list_cons fresh_prod)
+            apply(auto)[1]
+                 apply(rule sym)
+                 apply(rule trans)
+                  apply(rule better_Cut_substc)
+                   apply(simp)
+                  apply(simp add: abs_fresh fresh_atm)
+                 apply(simp add: lookupd_fresh)
+                 apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
+                  apply(simp add: forget)
+                  apply(simp add: trm.inject)
+                  apply(rule sym)
+                  apply(simp add: alpha nrename_swap fresh_atm)
+                 apply(rule lookupc_freshness)
+                 apply(simp add: fresh_atm)
+                apply(rule sym)
+                apply(rule trans)
+                 apply(rule better_Cut_substc)
+                  apply(simp)
+                 apply(simp add: abs_fresh fresh_atm)
+                apply(simp)
+                apply(rule conjI)
+                 apply(rule impI)
+                 apply(simp add: lookupd_unicity)
+                apply(rule impI)
+                apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
+                 apply(subgoal_tac "a\<sharp>lookupd name aa \<theta>_c")
+                  apply(simp add: forget)
+                 apply(rule lookupd_freshness)
+                 apply(simp add: fresh_atm)
+                apply(rule lookupc_freshness)
+                apply(simp add: fresh_atm)
+               apply(rule sym)
+               apply(rule trans)
+                apply(rule better_Cut_substc)
+                 apply(simp)
+                apply(simp add: abs_fresh fresh_atm)
+               apply(simp)
+               apply(rule conjI)
+                apply(rule impI)
+                apply(drule ax_psubst)
+                  apply(simp)
+                 apply(simp)
+                apply(blast)
+               apply(rule impI)
+               apply(subgoal_tac "a\<sharp>lookupc xa coname \<theta>_n")
+                apply(simp add: forget)
+               apply(rule lookupc_freshness)
+               apply(simp add: fresh_atm)
+              apply(rule sym)
+              apply(rule trans)
+               apply(rule better_Cut_substc)
+                apply(simp)
+               apply(simp add: abs_fresh fresh_atm)
+              apply(simp)
+              apply(rule conjI)
+               apply(rule impI)
+               apply(simp add: trm.inject)
+               apply(rule sym)
+               apply(simp add: alpha)
+               apply(simp add: alpha nrename_swap fresh_atm)
+              apply(simp add: lookupd_fresh)
+             apply(rule sym)
+             apply(rule trans)
+              apply(rule better_Cut_substc)
+               apply(simp)
+              apply(simp add: abs_fresh fresh_atm)
+             apply(simp)
+             apply(rule conjI)
+              apply(rule impI)
+              apply(simp add: lookupd_unicity)
+             apply(rule impI)
+             apply(subgoal_tac "a\<sharp>lookupd name aa \<theta>_c")
+              apply(simp add: forget)
+             apply(rule lookupd_freshness)
+             apply(simp add: fresh_atm)
+            apply(rule sym)
+            apply(rule trans)
+             apply(rule better_Cut_substc)
+              apply(simp)
+             apply(simp add: abs_fresh fresh_atm)
+            apply(simp)
+            apply(rule impI)
+            apply(drule ax_psubst)
+              apply(simp)
+             apply(simp)
+            apply(blast)
+    (* NotR *)
+           apply(simp)
+           apply(case_tac "findc \<theta>_c coname")
+            apply(simp)
+            apply(auto simp add: fresh_list_cons fresh_prod)[1]
+           apply(simp)
+           apply(auto simp add: fresh_list_cons fresh_prod)[1]
+            apply(drule cmaps_false)
+             apply(assumption)
+            apply(simp)
+           apply(generate_fresh "coname")
+           apply(fresh_fun_simp)
+           apply(fresh_fun_simp)
+           apply(rule sym)
+           apply(rule trans)
+            apply(rule better_Cut_substc1)
+             apply(simp)
+            apply(simp add: cmaps_fresh)
+           apply(auto simp add: fresh_prod fresh_atm)[1]
+    (* NotL *)
+          apply(simp)
+          apply(case_tac "findn \<theta>_n name")
+           apply(simp)
+           apply(auto simp add: fresh_list_cons fresh_prod)[1]
+          apply(simp)
+          apply(auto simp add: fresh_list_cons fresh_prod)[1]
+          apply(generate_fresh "name")
+          apply(fresh_fun_simp)
+          apply(fresh_fun_simp)
+          apply(drule_tac a="a" in nmaps_fresh)
+           apply(assumption)
+          apply(rule sym)
+          apply(rule trans)
+           apply(rule better_Cut_substc2)
+             apply(simp)
+            apply(simp)
+           apply(simp)
+          apply(simp)
+    (* AndR *)
+         apply(simp)
+         apply(case_tac "findc \<theta>_c coname3")
+          apply(simp)
+          apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+         apply(simp)
+         apply(auto simp add: fresh_list_cons fresh_prod)[1]
+          apply(drule cmaps_false)
+           apply(assumption)
+          apply(simp)
+         apply(generate_fresh "coname")
+         apply(fresh_fun_simp)
+         apply(fresh_fun_simp)
+         apply(rule sym)
+         apply(rule trans)
+          apply(rule better_Cut_substc1)
+           apply(simp)
+          apply(simp add: cmaps_fresh)
+         apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* AndL1 *)
+        apply(simp)
+        apply(case_tac "findn \<theta>_n name2")
+         apply(simp)
+         apply(auto simp add: fresh_list_cons fresh_prod)[1]
+        apply(simp)
+        apply(auto simp add: fresh_list_cons fresh_prod)[1]
+        apply(generate_fresh "name")
+        apply(fresh_fun_simp)
+        apply(fresh_fun_simp)
+        apply(drule_tac a="a" in nmaps_fresh)
+         apply(assumption)
+        apply(rule sym)
+        apply(rule trans)
+         apply(rule better_Cut_substc2)
+           apply(simp)
+          apply(simp)
+         apply(simp)
+        apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* AndL2 *)
+       apply(simp)
+       apply(case_tac "findn \<theta>_n name2")
+        apply(simp)
+        apply(auto simp add: fresh_list_cons fresh_prod)[1]
+       apply(simp)
+       apply(auto simp add: fresh_list_cons fresh_prod)[1]
+       apply(generate_fresh "name")
+       apply(fresh_fun_simp)
+       apply(fresh_fun_simp)
+       apply(drule_tac a="a" in nmaps_fresh)
+        apply(assumption)
+       apply(rule sym)
+       apply(rule trans)
+        apply(rule better_Cut_substc2)
+          apply(simp)
+         apply(simp)
+        apply(simp)
+       apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* OrR1 *)
+      apply(simp)
+      apply(case_tac "findc \<theta>_c coname2")
+       apply(simp)
+       apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+      apply(simp)
+      apply(auto simp add: fresh_list_cons fresh_prod)[1]
+       apply(drule cmaps_false)
+        apply(assumption)
+       apply(simp)
+      apply(generate_fresh "coname")
+      apply(fresh_fun_simp)
+      apply(fresh_fun_simp)
+      apply(rule sym)
+      apply(rule trans)
+       apply(rule better_Cut_substc1)
+        apply(simp)
+       apply(simp add: cmaps_fresh)
+      apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* OrR2 *)
+     apply(simp)
+     apply(case_tac "findc \<theta>_c coname2")
+      apply(simp)
+      apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+     apply(simp)
+     apply(auto simp add: fresh_list_cons fresh_prod)[1]
+      apply(drule cmaps_false)
+       apply(assumption)
+      apply(simp)
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(fresh_fun_simp)
+     apply(rule sym)
+     apply(rule trans)
+      apply(rule better_Cut_substc1)
+       apply(simp)
+      apply(simp add: cmaps_fresh)
+     apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* OrL *)
+    apply(simp)
+    apply(case_tac "findn \<theta>_n name3")
+     apply(simp)
+     apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
+    apply(simp)
+    apply(auto simp add: fresh_list_cons fresh_prod)[1]
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(drule_tac a="a" in nmaps_fresh)
+     apply(assumption)
+    apply(rule sym)
+    apply(rule trans)
+     apply(rule better_Cut_substc2)
+       apply(simp)
+      apply(simp)
+     apply(simp)
+    apply(auto simp add:  psubst_fresh_name fresh_prod fresh_atm)[1]
+    (* ImpR *)
+   apply(simp)
+   apply(case_tac "findc \<theta>_c coname2")
+    apply(simp)
+    apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+   apply(simp)
+   apply(auto simp add: fresh_list_cons fresh_prod)[1]
+    apply(drule cmaps_false)
+     apply(assumption)
+    apply(simp)
+   apply(generate_fresh "coname")
+   apply(fresh_fun_simp)
+   apply(fresh_fun_simp)
+   apply(rule sym)
+   apply(rule trans)
+    apply(rule better_Cut_substc1)
+     apply(simp)
+    apply(simp add: cmaps_fresh)
+   apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* ImpL *)
+  apply(simp)
+  apply(case_tac "findn \<theta>_n name2")
+   apply(simp)
+   apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
+  apply(simp)
+  apply(auto simp add: fresh_list_cons fresh_prod)[1]
+  apply(generate_fresh "name")
+  apply(fresh_fun_simp)
+  apply(fresh_fun_simp)
+  apply(simp add: abs_fresh subst_fresh)
+  apply(drule_tac a="a" in nmaps_fresh)
+   apply(assumption)
+  apply(rule sym)
+  apply(rule trans)
+   apply(rule better_Cut_substc2)
+     apply(simp)
+    apply(simp)
+   apply(simp)
+  apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
+  done
 
 lemma psubst_nsubst:
   assumes a: "x\<sharp>(\<theta>_n,\<theta>_c)"
   shows "((x,a,P)#\<theta>_n),\<theta>_c<M> = ((\<theta>_n,\<theta>_c<M>){x:=<a>.P})"
-using a
-apply(nominal_induct M avoiding: a x \<theta>_n \<theta>_c P rule: trm.strong_induct)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp add: lookup_fresh)
-apply(rule lookupb_lookupa)
-apply(simp)
-apply(rule sym)
-apply(rule forget)
-apply(rule lookup_freshness)
-apply(simp add: fresh_atm)
-apply(auto simp add: lookupc_freshness fresh_list_cons fresh_prod)[1]
-apply(simp add: lookupc_fresh)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp add: lookupd_fresh)
-apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
-apply(simp add: forget)
-apply(simp add: trm.inject)
-apply(rule sym)
-apply(simp add: alpha crename_swap fresh_atm)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh) 
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(simp add: lookupc_unicity)
-apply(rule impI)
-apply(subgoal_tac "x\<sharp>lookupc xa coname \<theta>_n")
-apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
-apply(simp add: forget)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(simp add: trm.inject)
-apply(rule sym)
-apply(simp add: alpha crename_swap fresh_atm)
-apply(rule impI)
-apply(simp add: lookupc_fresh)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(simp add: lookupc_unicity)
-apply(rule impI)
-apply(subgoal_tac "x\<sharp>lookupc xa coname \<theta>_n")
-apply(simp add: forget)
-apply(rule lookupc_freshness)
-apply(simp add: fresh_prod fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule conjI)
-apply(rule impI)
-apply(drule ax_psubst)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(blast)
-apply(rule impI)
-apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
-apply(simp add: forget)
-apply(rule lookupd_freshness)
-apply(simp add: fresh_atm)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh fresh_atm)
-apply(simp)
-apply(rule impI)
-apply(drule ax_psubst)
-apply(simp)
-apply(simp)
-apply(blast)
-(* NotR *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn1)
-apply(simp add: cmaps_fresh)
-apply(simp)
-apply(simp)
-apply(simp)
-(* NotL *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule nmaps_false)
-apply(simp)
-apply(simp)
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn2)
-apply(simp)
-apply(simp add: nmaps_fresh)
-apply(simp add: fresh_prod fresh_atm)
-(* AndR *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname3")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn1)
-apply(simp add: cmaps_fresh)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* AndL1 *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule nmaps_false)
-apply(simp)
-apply(simp)
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn2)
-apply(simp)
-apply(simp add: nmaps_fresh)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* AndL2 *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule nmaps_false)
-apply(simp)
-apply(simp)
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn2)
-apply(simp)
-apply(simp add: nmaps_fresh)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* OrR1 *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn1)
-apply(simp add: cmaps_fresh)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* OrR2 *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn1)
-apply(simp add: cmaps_fresh)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* OrL *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name3")
-apply(simp)
-apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule nmaps_false)
-apply(simp)
-apply(simp)
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn2)
-apply(simp)
-apply(simp add: nmaps_fresh)
-apply(auto simp add:  psubst_fresh_name fresh_prod fresh_atm)[1]
-(* ImpR *)
-apply(simp)
-apply(case_tac "findc \<theta>_c coname2")
-apply(simp)
-apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn1)
-apply(simp add: cmaps_fresh)
-apply(simp)
-apply(simp)
-apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
-(* ImpL *)
-apply(simp)
-apply(case_tac "findn \<theta>_n name2")
-apply(simp)
-apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
-apply(simp)
-apply(auto simp add: fresh_list_cons fresh_prod)[1]
-apply(drule nmaps_false)
-apply(simp)
-apply(simp)
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(fresh_fun_simp)
-apply(rule sym)
-apply(rule trans)
-apply(rule better_Cut_substn2)
-apply(simp)
-apply(simp add: nmaps_fresh)
-apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
-done
+  using a
+  apply(nominal_induct M avoiding: a x \<theta>_n \<theta>_c P rule: trm.strong_induct)
+             apply(auto simp add: fresh_list_cons fresh_prod)[1]
+              apply(simp add: lookup_fresh)
+              apply(rule lookupb_lookupa)
+              apply(simp)
+             apply(rule sym)
+             apply(rule forget)
+             apply(rule lookup_freshness)
+             apply(simp add: fresh_atm)
+            apply(auto simp add: lookupc_freshness fresh_list_cons fresh_prod)[1]
+                 apply(simp add: lookupc_fresh)
+                 apply(rule sym)
+                 apply(rule trans)
+                  apply(rule better_Cut_substn)
+                   apply(simp add: abs_fresh)
+                  apply(simp add: abs_fresh fresh_atm)
+                 apply(simp add: lookupd_fresh)
+                 apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
+                  apply(simp add: forget)
+                  apply(simp add: trm.inject)
+                  apply(rule sym)
+                  apply(simp add: alpha crename_swap fresh_atm)
+                 apply(rule lookupd_freshness)
+                 apply(simp add: fresh_atm)
+                apply(rule sym)
+                apply(rule trans)
+                 apply(rule better_Cut_substn)
+                  apply(simp add: abs_fresh) 
+                 apply(simp add: abs_fresh fresh_atm)
+                apply(simp)
+                apply(rule conjI)
+                 apply(rule impI)
+                 apply(simp add: lookupc_unicity)
+                apply(rule impI)
+                apply(subgoal_tac "x\<sharp>lookupc xa coname \<theta>_n")
+                 apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
+                  apply(simp add: forget)
+                 apply(rule lookupd_freshness)
+                 apply(simp add: fresh_atm)
+                apply(rule lookupc_freshness)
+                apply(simp add: fresh_atm)
+               apply(rule sym)
+               apply(rule trans)
+                apply(rule better_Cut_substn)
+                 apply(simp add: abs_fresh)
+                apply(simp add: abs_fresh fresh_atm)
+               apply(simp)
+               apply(rule conjI)
+                apply(rule impI)
+                apply(simp add: trm.inject)
+                apply(rule sym)
+                apply(simp add: alpha crename_swap fresh_atm)
+               apply(rule impI)
+               apply(simp add: lookupc_fresh)
+              apply(rule sym)
+              apply(rule trans)
+               apply(rule better_Cut_substn)
+                apply(simp add: abs_fresh)
+               apply(simp add: abs_fresh fresh_atm)
+              apply(simp)
+              apply(rule conjI)
+               apply(rule impI)
+               apply(simp add: lookupc_unicity)
+              apply(rule impI)
+              apply(subgoal_tac "x\<sharp>lookupc xa coname \<theta>_n")
+               apply(simp add: forget)
+              apply(rule lookupc_freshness)
+              apply(simp add: fresh_prod fresh_atm)
+             apply(rule sym)
+             apply(rule trans)
+              apply(rule better_Cut_substn)
+               apply(simp add: abs_fresh)
+              apply(simp add: abs_fresh fresh_atm)
+             apply(simp)
+             apply(rule conjI)
+              apply(rule impI)
+              apply(drule ax_psubst)
+                apply(simp)
+               apply(simp)
+              apply(simp)
+              apply(blast)
+             apply(rule impI)
+             apply(subgoal_tac "x\<sharp>lookupd name aa \<theta>_c")
+              apply(simp add: forget)
+             apply(rule lookupd_freshness)
+             apply(simp add: fresh_atm)
+            apply(rule sym)
+            apply(rule trans)
+             apply(rule better_Cut_substn)
+              apply(simp add: abs_fresh)
+             apply(simp add: abs_fresh fresh_atm)
+            apply(simp)
+            apply(rule impI)
+            apply(drule ax_psubst)
+              apply(simp)
+             apply(simp)
+            apply(blast)
+    (* NotR *)
+           apply(simp)
+           apply(case_tac "findc \<theta>_c coname")
+            apply(simp)
+            apply(auto simp add: fresh_list_cons fresh_prod)[1]
+           apply(simp)
+           apply(auto simp add: fresh_list_cons fresh_prod)[1]
+           apply(generate_fresh "coname")
+           apply(fresh_fun_simp)
+           apply(fresh_fun_simp)
+           apply(rule sym)
+           apply(rule trans)
+            apply(rule better_Cut_substn1)
+              apply(simp add: cmaps_fresh)
+             apply(simp)
+            apply(simp)
+           apply(simp)
+    (* NotL *)
+          apply(simp)
+          apply(case_tac "findn \<theta>_n name")
+           apply(simp)
+           apply(auto simp add: fresh_list_cons fresh_prod)[1]
+          apply(simp)
+          apply(auto simp add: fresh_list_cons fresh_prod)[1]
+           apply(drule nmaps_false)
+            apply(simp)
+           apply(simp)
+          apply(generate_fresh "name")
+          apply(fresh_fun_simp)
+          apply(fresh_fun_simp)
+          apply(rule sym)
+          apply(rule trans)
+           apply(rule better_Cut_substn2)
+            apply(simp)
+           apply(simp add: nmaps_fresh)
+          apply(simp add: fresh_prod fresh_atm)
+    (* AndR *)
+         apply(simp)
+         apply(case_tac "findc \<theta>_c coname3")
+          apply(simp)
+          apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+         apply(simp)
+         apply(auto simp add: fresh_list_cons fresh_prod)[1]
+         apply(generate_fresh "coname")
+         apply(fresh_fun_simp)
+         apply(fresh_fun_simp)
+         apply(rule sym)
+         apply(rule trans)
+          apply(rule better_Cut_substn1)
+            apply(simp add: cmaps_fresh)
+           apply(simp)
+          apply(simp)
+         apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* AndL1 *)
+        apply(simp)
+        apply(case_tac "findn \<theta>_n name2")
+         apply(simp)
+         apply(auto simp add: fresh_list_cons fresh_prod)[1]
+        apply(simp)
+        apply(auto simp add: fresh_list_cons fresh_prod)[1]
+         apply(drule nmaps_false)
+          apply(simp)
+         apply(simp)
+        apply(generate_fresh "name")
+        apply(fresh_fun_simp)
+        apply(fresh_fun_simp)
+        apply(rule sym)
+        apply(rule trans)
+         apply(rule better_Cut_substn2)
+          apply(simp)
+         apply(simp add: nmaps_fresh)
+        apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* AndL2 *)
+       apply(simp)
+       apply(case_tac "findn \<theta>_n name2")
+        apply(simp)
+        apply(auto simp add: fresh_list_cons fresh_prod)[1]
+       apply(simp)
+       apply(auto simp add: fresh_list_cons fresh_prod)[1]
+        apply(drule nmaps_false)
+         apply(simp)
+        apply(simp)
+       apply(generate_fresh "name")
+       apply(fresh_fun_simp)
+       apply(fresh_fun_simp)
+       apply(rule sym)
+       apply(rule trans)
+        apply(rule better_Cut_substn2)
+         apply(simp)
+        apply(simp add: nmaps_fresh)
+       apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* OrR1 *)
+      apply(simp)
+      apply(case_tac "findc \<theta>_c coname2")
+       apply(simp)
+       apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+      apply(simp)
+      apply(auto simp add: fresh_list_cons fresh_prod)[1]
+      apply(generate_fresh "coname")
+      apply(fresh_fun_simp)
+      apply(fresh_fun_simp)
+      apply(rule sym)
+      apply(rule trans)
+       apply(rule better_Cut_substn1)
+         apply(simp add: cmaps_fresh)
+        apply(simp)
+       apply(simp)
+      apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* OrR2 *)
+     apply(simp)
+     apply(case_tac "findc \<theta>_c coname2")
+      apply(simp)
+      apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+     apply(simp)
+     apply(auto simp add: fresh_list_cons fresh_prod)[1]
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(fresh_fun_simp)
+     apply(rule sym)
+     apply(rule trans)
+      apply(rule better_Cut_substn1)
+        apply(simp add: cmaps_fresh)
+       apply(simp)
+      apply(simp)
+     apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* OrL *)
+    apply(simp)
+    apply(case_tac "findn \<theta>_n name3")
+     apply(simp)
+     apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
+    apply(simp)
+    apply(auto simp add: fresh_list_cons fresh_prod)[1]
+     apply(drule nmaps_false)
+      apply(simp)
+     apply(simp)
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(fresh_fun_simp)
+    apply(rule sym)
+    apply(rule trans)
+     apply(rule better_Cut_substn2)
+      apply(simp)
+     apply(simp add: nmaps_fresh)
+    apply(auto simp add:  psubst_fresh_name fresh_prod fresh_atm)[1]
+    (* ImpR *)
+   apply(simp)
+   apply(case_tac "findc \<theta>_c coname2")
+    apply(simp)
+    apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
+   apply(simp)
+   apply(auto simp add: fresh_list_cons fresh_prod)[1]
+   apply(generate_fresh "coname")
+   apply(fresh_fun_simp)
+   apply(fresh_fun_simp)
+   apply(rule sym)
+   apply(rule trans)
+    apply(rule better_Cut_substn1)
+      apply(simp add: cmaps_fresh)
+     apply(simp)
+    apply(simp)
+   apply(auto simp add:  psubst_fresh_coname fresh_prod fresh_atm)[1]
+    (* ImpL *)
+  apply(simp)
+  apply(case_tac "findn \<theta>_n name2")
+   apply(simp)
+   apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
+  apply(simp)
+  apply(auto simp add: fresh_list_cons fresh_prod)[1]
+   apply(drule nmaps_false)
+    apply(simp)
+   apply(simp)
+  apply(generate_fresh "name")
+  apply(fresh_fun_simp)
+  apply(fresh_fun_simp)
+  apply(rule sym)
+  apply(rule trans)
+   apply(rule better_Cut_substn2)
+    apply(simp)
+   apply(simp add: nmaps_fresh)
+  apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
+  done
 
 definition 
   ncloses :: "(name\<times>coname\<times>trm) list\<Rightarrow>(name\<times>ty) list \<Rightarrow> bool" ("_ ncloses _" [55,55] 55) 
-where
-  "\<theta>_n ncloses \<Gamma> \<equiv> \<forall>x B. ((x,B) \<in> set \<Gamma> \<longrightarrow> (\<exists>c P. \<theta>_n nmaps x to Some (c,P) \<and> <c>:P \<in> (\<parallel><B>\<parallel>)))"
-  
+  where
+    "\<theta>_n ncloses \<Gamma> \<equiv> \<forall>x B. ((x,B) \<in> set \<Gamma> \<longrightarrow> (\<exists>c P. \<theta>_n nmaps x to Some (c,P) \<and> <c>:P \<in> (\<parallel><B>\<parallel>)))"
+
 definition 
   ccloses :: "(coname\<times>name\<times>trm) list\<Rightarrow>(coname\<times>ty) list \<Rightarrow> bool" ("_ ccloses _" [55,55] 55) 
-where
-  "\<theta>_c ccloses \<Delta> \<equiv> \<forall>a B. ((a,B) \<in> set \<Delta> \<longrightarrow> (\<exists>x P. \<theta>_c cmaps a to Some (x,P) \<and> (x):P \<in> (\<parallel>(B)\<parallel>)))"
+  where
+    "\<theta>_c ccloses \<Delta> \<equiv> \<forall>a B. ((a,B) \<in> set \<Delta> \<longrightarrow> (\<exists>x P. \<theta>_c cmaps a to Some (x,P) \<and> (x):P \<in> (\<parallel>(B)\<parallel>)))"
 
 lemma ncloses_elim:
   assumes a: "(x,B) \<in> set \<Gamma>"
-  and     b: "\<theta>_n ncloses \<Gamma>"
+    and     b: "\<theta>_n ncloses \<Gamma>"
   shows "\<exists>c P. \<theta>_n nmaps x to Some (c,P) \<and> <c>:P \<in> (\<parallel><B>\<parallel>)"
-using a b by (auto simp add: ncloses_def)
+  using a b by (auto simp add: ncloses_def)
 
 lemma ccloses_elim:
   assumes a: "(a,B) \<in> set \<Delta>"
-  and     b: "\<theta>_c ccloses \<Delta>"
+    and     b: "\<theta>_c ccloses \<Delta>"
   shows "\<exists>x P. \<theta>_c cmaps a to Some (x,P) \<and> (x):P \<in> (\<parallel>(B)\<parallel>)"
-using a b by (auto simp add: ccloses_def)
+  using a b by (auto simp add: ccloses_def)
 
 lemma ncloses_subset:
   assumes a: "\<theta>_n ncloses \<Gamma>"
-  and     b: "set \<Gamma>' \<subseteq> set \<Gamma>"
+    and     b: "set \<Gamma>' \<subseteq> set \<Gamma>"
   shows "\<theta>_n ncloses \<Gamma>'"
-using a b by (auto  simp add: ncloses_def)
+  using a b by (auto  simp add: ncloses_def)
 
 lemma ccloses_subset:
   assumes a: "\<theta>_c ccloses \<Delta>"
-  and     b: "set \<Delta>' \<subseteq> set \<Delta>"
+    and     b: "set \<Delta>' \<subseteq> set \<Delta>"
   shows "\<theta>_c ccloses \<Delta>'"
-using a b by (auto  simp add: ccloses_def)
+  using a b by (auto  simp add: ccloses_def)
 
 lemma validc_fresh:
   fixes a::"coname"
-  and   \<Delta>::"(coname\<times>ty) list"
+    and   \<Delta>::"(coname\<times>ty) list"
   assumes a: "a\<sharp>\<Delta>"
   shows "\<not>(\<exists>B. (a,B)\<in>set \<Delta>)"
-using a
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+  using a
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 lemma validn_fresh:
   fixes x::"name"
-  and   \<Gamma>::"(name\<times>ty) list"
+    and   \<Gamma>::"(name\<times>ty) list"
   assumes a: "x\<sharp>\<Gamma>"
   shows "\<not>(\<exists>B. (x,B)\<in>set \<Gamma>)"
-using a
-apply(induct \<Gamma>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+  using a
+  apply(induct \<Gamma>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 lemma ccloses_extend:
   assumes a: "\<theta>_c ccloses \<Delta>" "a\<sharp>\<Delta>" "a\<sharp>\<theta>_c" "(x):P\<in>\<parallel>(B)\<parallel>"
   shows "(a,x,P)#\<theta>_c ccloses (a,B)#\<Delta>"
-using a
-apply(simp add: ccloses_def)
-apply(drule validc_fresh)
-apply(auto)
-done
+  using a
+  apply(simp add: ccloses_def)
+  apply(drule validc_fresh)
+  apply(auto)
+  done
 
 lemma ncloses_extend:
   assumes a: "\<theta>_n ncloses \<Gamma>" "x\<sharp>\<Gamma>" "x\<sharp>\<theta>_n" "<a>:P\<in>\<parallel><B>\<parallel>"
   shows "(x,a,P)#\<theta>_n ncloses (x,B)#\<Gamma>"
-using a
-apply(simp add: ncloses_def)
-apply(drule validn_fresh)
-apply(auto)
-done
+  using a
+  apply(simp add: ncloses_def)
+  apply(drule validn_fresh)
+  apply(auto)
+  done
 
 
 text \<open>typing relation\<close>
 
 inductive
-   typing :: "ctxtn \<Rightarrow> trm \<Rightarrow> ctxtc \<Rightarrow> bool" ("_ \<turnstile> _ \<turnstile> _" [100,100,100] 100)
-where
-  TAx:    "\<lbrakk>validn \<Gamma>;validc \<Delta>; (x,B)\<in>set \<Gamma>; (a,B)\<in>set \<Delta>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Ax x a \<turnstile> \<Delta>"
-| TNotR:  "\<lbrakk>x\<sharp>\<Gamma>; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Delta>' = {(a,NOT B)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
+  typing :: "ctxtn \<Rightarrow> trm \<Rightarrow> ctxtc \<Rightarrow> bool" ("_ \<turnstile> _ \<turnstile> _" [100,100,100] 100)
+  where
+    TAx:    "\<lbrakk>validn \<Gamma>;validc \<Delta>; (x,B)\<in>set \<Gamma>; (a,B)\<in>set \<Delta>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Ax x a \<turnstile> \<Delta>"
+  | TNotR:  "\<lbrakk>x\<sharp>\<Gamma>; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Delta>' = {(a,NOT B)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
            \<Longrightarrow> \<Gamma> \<turnstile> NotR (x).M a \<turnstile> \<Delta>'"
-| TNotL:  "\<lbrakk>a\<sharp>\<Delta>; \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); set \<Gamma>' = {(x,NOT B)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>  
+  | TNotL:  "\<lbrakk>a\<sharp>\<Delta>; \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); set \<Gamma>' = {(x,NOT B)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk>  
            \<Longrightarrow> \<Gamma>' \<turnstile> NotL <a>.M x \<turnstile> \<Delta>"
-| TAndL1: "\<lbrakk>x\<sharp>(\<Gamma>,y); ((x,B1)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Gamma>' = {(y,B1 AND B2)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk> 
+  | TAndL1: "\<lbrakk>x\<sharp>(\<Gamma>,y); ((x,B1)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Gamma>' = {(y,B1 AND B2)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk> 
            \<Longrightarrow> \<Gamma>' \<turnstile> AndL1 (x).M y \<turnstile> \<Delta>"
-| TAndL2: "\<lbrakk>x\<sharp>(\<Gamma>,y); ((x,B2)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Gamma>' = {(y,B1 AND B2)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk> 
+  | TAndL2: "\<lbrakk>x\<sharp>(\<Gamma>,y); ((x,B2)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; set \<Gamma>' = {(y,B1 AND B2)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk> 
            \<Longrightarrow> \<Gamma>' \<turnstile> AndL2 (x).M y \<turnstile> \<Delta>"
-| TAndR:  "\<lbrakk>a\<sharp>(\<Delta>,N,c); b\<sharp>(\<Delta>,M,c); a\<noteq>b; \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); \<Gamma> \<turnstile> N \<turnstile> ((b,C)#\<Delta>); 
+  | TAndR:  "\<lbrakk>a\<sharp>(\<Delta>,N,c); b\<sharp>(\<Delta>,M,c); a\<noteq>b; \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); \<Gamma> \<turnstile> N \<turnstile> ((b,C)#\<Delta>); 
            set \<Delta>' = {(c,B AND C)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
            \<Longrightarrow> \<Gamma> \<turnstile> AndR <a>.M <b>.N c \<turnstile> \<Delta>'"
-| TOrL:   "\<lbrakk>x\<sharp>(\<Gamma>,N,z); y\<sharp>(\<Gamma>,M,z); x\<noteq>y; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; ((y,C)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>;
+  | TOrL:   "\<lbrakk>x\<sharp>(\<Gamma>,N,z); y\<sharp>(\<Gamma>,M,z); x\<noteq>y; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> \<Delta>; ((y,C)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>;
            set \<Gamma>' = {(z,B OR C)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk> 
            \<Longrightarrow> \<Gamma>' \<turnstile> OrL (x).M (y).N z \<turnstile> \<Delta>"
-| TOrR1:  "\<lbrakk>a\<sharp>(\<Delta>,b); \<Gamma> \<turnstile> M \<turnstile> ((a,B1)#\<Delta>); set \<Delta>' = {(b,B1 OR B2)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
+  | TOrR1:  "\<lbrakk>a\<sharp>(\<Delta>,b); \<Gamma> \<turnstile> M \<turnstile> ((a,B1)#\<Delta>); set \<Delta>' = {(b,B1 OR B2)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
            \<Longrightarrow> \<Gamma> \<turnstile> OrR1 <a>.M b \<turnstile> \<Delta>'"
-| TOrR2:  "\<lbrakk>a\<sharp>(\<Delta>,b); \<Gamma> \<turnstile> M \<turnstile> ((a,B2)#\<Delta>); set \<Delta>' = {(b,B1 OR B2)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
+  | TOrR2:  "\<lbrakk>a\<sharp>(\<Delta>,b); \<Gamma> \<turnstile> M \<turnstile> ((a,B2)#\<Delta>); set \<Delta>' = {(b,B1 OR B2)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
            \<Longrightarrow> \<Gamma> \<turnstile> OrR2 <a>.M b \<turnstile> \<Delta>'"
-| TImpL:  "\<lbrakk>a\<sharp>(\<Delta>,N); x\<sharp>(\<Gamma>,M,y); \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); ((x,C)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>;
+  | TImpL:  "\<lbrakk>a\<sharp>(\<Delta>,N); x\<sharp>(\<Gamma>,M,y); \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); ((x,C)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>;
            set \<Gamma>' = {(y,B IMP C)} \<union> set \<Gamma>; validn \<Gamma>'\<rbrakk> 
            \<Longrightarrow> \<Gamma>' \<turnstile> ImpL <a>.M (x).N y \<turnstile> \<Delta>"
-| TImpR:  "\<lbrakk>a\<sharp>(\<Delta>,b); x\<sharp>\<Gamma>; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> ((a,C)#\<Delta>); set \<Delta>' = {(b,B IMP C)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
+  | TImpR:  "\<lbrakk>a\<sharp>(\<Delta>,b); x\<sharp>\<Gamma>; ((x,B)#\<Gamma>) \<turnstile> M \<turnstile> ((a,C)#\<Delta>); set \<Delta>' = {(b,B IMP C)}\<union>set \<Delta>; validc \<Delta>'\<rbrakk> 
            \<Longrightarrow> \<Gamma> \<turnstile> ImpR (x).<a>.M b \<turnstile> \<Delta>'"
-| TCut:   "\<lbrakk>a\<sharp>(\<Delta>,N); x\<sharp>(\<Gamma>,M); \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); ((x,B)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>\<rbrakk> 
+  | TCut:   "\<lbrakk>a\<sharp>(\<Delta>,N); x\<sharp>(\<Gamma>,M); \<Gamma> \<turnstile> M \<turnstile> ((a,B)#\<Delta>); ((x,B)#\<Gamma>) \<turnstile> N \<turnstile> \<Delta>\<rbrakk> 
            \<Longrightarrow> \<Gamma> \<turnstile> Cut <a>.M (x).N \<turnstile> \<Delta>"
 
 equivariance typing
 
 lemma fresh_set_member:
   fixes x::"name"
-  and   a::"coname"
+    and   a::"coname"
   shows "x\<sharp>L \<Longrightarrow> e\<in>set L \<Longrightarrow> x\<sharp>e"
-  and   "a\<sharp>L \<Longrightarrow> e\<in>set L \<Longrightarrow> a\<sharp>e"   
-by (induct L) (auto simp add: fresh_list_cons) 
+    and   "a\<sharp>L \<Longrightarrow> e\<in>set L \<Longrightarrow> a\<sharp>e"   
+  by (induct L) (auto simp add: fresh_list_cons) 
 
 lemma fresh_subset:
   fixes x::"name"
-  and   a::"coname"
+    and   a::"coname"
   shows "x\<sharp>L \<Longrightarrow> set L' \<subseteq> set L \<Longrightarrow> x\<sharp>L'"
-  and   "a\<sharp>L \<Longrightarrow> set L' \<subseteq> set L \<Longrightarrow> a\<sharp>L'"   
-apply(induct L' arbitrary: L) 
-apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
-done
+    and   "a\<sharp>L \<Longrightarrow> set L' \<subseteq> set L \<Longrightarrow> a\<sharp>L'"   
+   apply(induct L' arbitrary: L) 
+     apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
+  done
 
 lemma fresh_subset_ext:
   fixes x::"name"
-  and   a::"coname"
+    and   a::"coname"
   shows "x\<sharp>L \<Longrightarrow> x\<sharp>e \<Longrightarrow> set L' \<subseteq> set (e#L) \<Longrightarrow> x\<sharp>L'"
-  and   "a\<sharp>L \<Longrightarrow> a\<sharp>e \<Longrightarrow> set L' \<subseteq> set (e#L) \<Longrightarrow> a\<sharp>L'"   
-apply(induct L' arbitrary: L) 
-apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
-done
+    and   "a\<sharp>L \<Longrightarrow> a\<sharp>e \<Longrightarrow> set L' \<subseteq> set (e#L) \<Longrightarrow> a\<sharp>L'"   
+   apply(induct L' arbitrary: L) 
+     apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
+  done
 
 lemma fresh_under_insert:
   fixes x::"name"
-  and   a::"coname"
-  and   \<Gamma>::"ctxtn"
-  and   \<Delta>::"ctxtc"
+    and   a::"coname"
+    and   \<Gamma>::"ctxtn"
+    and   \<Delta>::"ctxtc"
   shows "x\<sharp>\<Gamma> \<Longrightarrow> x\<noteq>y \<Longrightarrow> set \<Gamma>' = insert (y,B) (set \<Gamma>) \<Longrightarrow> x\<sharp>\<Gamma>'"
-  and   "a\<sharp>\<Delta> \<Longrightarrow> a\<noteq>c \<Longrightarrow> set \<Delta>' = insert (c,B) (set \<Delta>) \<Longrightarrow> a\<sharp>\<Delta>'"   
-apply(rule fresh_subset_ext(1))
-apply(auto simp add: fresh_prod fresh_atm fresh_ty)
-apply(rule fresh_subset_ext(2))
-apply(auto simp add: fresh_prod fresh_atm fresh_ty)
-done
+    and   "a\<sharp>\<Delta> \<Longrightarrow> a\<noteq>c \<Longrightarrow> set \<Delta>' = insert (c,B) (set \<Delta>) \<Longrightarrow> a\<sharp>\<Delta>'"   
+   apply(rule fresh_subset_ext(1))
+     apply(auto simp add: fresh_prod fresh_atm fresh_ty)
+  apply(rule fresh_subset_ext(2))
+    apply(auto simp add: fresh_prod fresh_atm fresh_ty)
+  done
 
 nominal_inductive typing
-  apply (simp_all add: abs_fresh fresh_atm fresh_list_cons fresh_prod fresh_ty fresh_ctxt 
-                       fresh_list_append abs_supp fin_supp)
-  apply(auto intro: fresh_under_insert)
+                       apply (simp_all add: abs_fresh fresh_atm fresh_list_cons fresh_prod fresh_ty fresh_ctxt 
+      fresh_list_append abs_supp fin_supp)
+           apply(auto intro: fresh_under_insert)
   done
 
 lemma validn_elim:
   assumes a: "validn ((x,B)#\<Gamma>)"
   shows "validn \<Gamma> \<and> x\<sharp>\<Gamma>"
-using a
-apply(erule_tac validn.cases)
-apply(auto)
-done
+  using a
+  apply(erule_tac validn.cases)
+   apply(auto)
+  done
 
 lemma validc_elim:
   assumes a: "validc ((a,B)#\<Delta>)"
   shows "validc \<Delta> \<and> a\<sharp>\<Delta>"
-using a
-apply(erule_tac validc.cases)
-apply(auto)
-done
+  using a
+  apply(erule_tac validc.cases)
+   apply(auto)
+  done
 
 lemma context_fresh:
   fixes x::"name"
-  and   a::"coname"
+    and   a::"coname"
   shows "x\<sharp>\<Gamma> \<Longrightarrow> \<not>(\<exists>B. (x,B)\<in>set \<Gamma>)"
-  and   "a\<sharp>\<Delta> \<Longrightarrow> \<not>(\<exists>B. (a,B)\<in>set \<Delta>)"
-apply -
-apply(induct \<Gamma>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+    and   "a\<sharp>\<Delta> \<Longrightarrow> \<not>(\<exists>B. (a,B)\<in>set \<Delta>)"
+   apply -
+   apply(induct \<Gamma>)
+    apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 lemma typing_implies_valid:
   assumes a: "\<Gamma> \<turnstile> M \<turnstile> \<Delta>"
   shows "validn \<Gamma> \<and> validc \<Delta>"
-using a
-apply(nominal_induct rule: typing.strong_induct)
-apply(auto dest: validn_elim validc_elim)
-done
+  using a
+  apply(nominal_induct rule: typing.strong_induct)
+             apply(auto dest: validn_elim validc_elim)
+  done
 
 lemma ty_perm:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
-  and   B::"ty"
+    and   pi2::"coname prm"
+    and   B::"ty"
   shows "pi1\<bullet>B=B" and "pi2\<bullet>B=B"
-apply(nominal_induct B rule: ty.strong_induct)
-apply(auto simp add: perm_string)
-done
+   apply(nominal_induct B rule: ty.strong_induct)
+           apply(auto simp add: perm_string)
+  done
 
 lemma ctxt_perm:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
-  and   \<Gamma>::"ctxtn"
-  and   \<Delta>::"ctxtc"
+    and   pi2::"coname prm"
+    and   \<Gamma>::"ctxtn"
+    and   \<Delta>::"ctxtc"
   shows "pi2\<bullet>\<Gamma>=\<Gamma>" and "pi1\<bullet>\<Delta>=\<Delta>"
-apply -
-apply(induct \<Gamma>)
-apply(auto simp add: calc_atm ty_perm)
-apply(induct \<Delta>)
-apply(auto simp add: calc_atm ty_perm)
-done
+   apply -
+   apply(induct \<Gamma>)
+    apply(auto simp add: calc_atm ty_perm)
+  apply(induct \<Delta>)
+   apply(auto simp add: calc_atm ty_perm)
+  done
 
 lemma typing_Ax_elim1: 
   assumes a: "\<Gamma> \<turnstile> Ax x a \<turnstile> ((a,B)#\<Delta>)"
   shows "(x,B)\<in>set \<Gamma>"
-using a
-apply(erule_tac typing.cases)
-apply(simp_all add: trm.inject)
-apply(auto)
-apply(auto dest: validc_elim context_fresh)
-done
+  using a
+  apply(erule_tac typing.cases)
+             apply(simp_all add: trm.inject)
+  apply(auto)
+  apply(auto dest: validc_elim context_fresh)
+  done
 
 lemma typing_Ax_elim2: 
   assumes a: "((x,B)#\<Gamma>) \<turnstile> Ax x a \<turnstile> \<Delta>"
   shows "(a,B)\<in>set \<Delta>"
-using a
-apply(erule_tac typing.cases)
-apply(simp_all add: trm.inject)
-apply(auto  dest!: validn_elim context_fresh)
-done
+  using a
+  apply(erule_tac typing.cases)
+             apply(simp_all add: trm.inject)
+  apply(auto  dest!: validn_elim context_fresh)
+  done
 
 lemma psubst_Ax_aux: 
   assumes a: "\<theta>_c cmaps a to Some (y,N)"
   shows "lookupb x a \<theta>_c c P = Cut <c>.P (y).N"
-using a
-apply(induct \<theta>_c)
-apply(auto)
-done
+  using a
+  apply(induct \<theta>_c)
+   apply(auto)
+  done
 
 lemma psubst_Ax:
   assumes a: "\<theta>_n nmaps x to Some (c,P)"
-  and     b: "\<theta>_c cmaps a to Some (y,N)"
+    and     b: "\<theta>_c cmaps a to Some (y,N)"
   shows "\<theta>_n,\<theta>_c<Ax x a> = Cut <c>.P (y).N"
-using a b
-apply(induct \<theta>_n)
-apply(auto simp add: psubst_Ax_aux)
-done
+  using a b
+  apply(induct \<theta>_n)
+   apply(auto simp add: psubst_Ax_aux)
+  done
 
 lemma psubst_Cut:
   assumes a: "\<forall>x. M\<noteq>Ax x c"
-  and     b: "\<forall>a. N\<noteq>Ax x a"
-  and     c: "c\<sharp>(\<theta>_n,\<theta>_c,N)" "x\<sharp>(\<theta>_n,\<theta>_c,M)"
+    and     b: "\<forall>a. N\<noteq>Ax x a"
+    and     c: "c\<sharp>(\<theta>_n,\<theta>_c,N)" "x\<sharp>(\<theta>_n,\<theta>_c,M)"
   shows "\<theta>_n,\<theta>_c<Cut <c>.M (x).N> = Cut <c>.(\<theta>_n,\<theta>_c<M>) (x).(\<theta>_n,\<theta>_c<N>)"
-using a b c
-apply(simp)
-done
+  using a b c
+  apply(simp)
+  done
 
 lemma all_CAND: 
   assumes a: "\<Gamma> \<turnstile> M \<turnstile> \<Delta>"
-  and     b: "\<theta>_n ncloses \<Gamma>"
-  and     c: "\<theta>_c ccloses \<Delta>"
+    and     b: "\<theta>_n ncloses \<Gamma>"
+    and     c: "\<theta>_c ccloses \<Delta>"
   shows "SNa (\<theta>_n,\<theta>_c<M>)"
-using a b c
+  using a b c
 proof(nominal_induct avoiding: \<theta>_n \<theta>_c rule: typing.strong_induct)
   case (TAx \<Gamma> \<Delta> x B a \<theta>_n \<theta>_c)
   then show ?case
     apply -
     apply(drule ncloses_elim)
-    apply(assumption)
+     apply(assumption)
     apply(drule ccloses_elim)
-    apply(assumption)
+     apply(assumption)
     apply(erule exE)+
     apply(erule conjE)+
     apply(rule_tac s="Cut <c>.P (xa).Pa" and t="\<theta>_n,\<theta>_c<Ax x a>" in subst)
-    apply(rule sym)
-    apply(simp only: psubst_Ax)
+     apply(rule sym)
+     apply(simp only: psubst_Ax)
     apply(simp add: CUT_SNa)
     done
 next
@@ -5134,49 +5142,49 @@
   then show ?case 
     apply(simp)
     apply(subgoal_tac "(a,NOT B) \<in> set \<Delta>'")
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(simp)
-    apply(generate_fresh "coname")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="NOT B" in CUT_SNa)
-    apply(simp)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="c" in exI)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule fic.intros)
-    apply(rule psubst_fresh_coname)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp add: psubst_nsubst[symmetric])
-    apply(drule_tac x="(x,aa,Pa)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(assumption)
-    apply(simp)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(simp)
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="NOT B" in CUT_SNa)
+      apply(simp)
+      apply(rule disjI2)
+      apply(rule disjI2)
+      apply(rule_tac x="c" in exI)
+      apply(rule_tac x="x" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule conjI)
+       apply(rule fic.intros)
+       apply(rule psubst_fresh_coname)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGn_def)
+      apply(simp)
+      apply(rule_tac x="x" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(simp add: psubst_nsubst[symmetric])
+      apply(drule_tac x="(x,aa,Pa)#\<theta>_n" in meta_spec)
+      apply(drule_tac x="\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(rule ncloses_extend)
+          apply(assumption)
+         apply(assumption)
+        apply(assumption)
+       apply(assumption)
+      apply(drule meta_mp)
+       apply(rule ccloses_subset)
+        apply(assumption)
+       apply(blast)
+      apply(assumption)
+     apply(simp)
     apply(blast)
     done
 next
@@ -5184,50 +5192,50 @@
   then show ?case
     apply(simp)
     apply(subgoal_tac "(x,NOT B) \<in> set \<Gamma>'")
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "name")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="NOT B" in CUT_SNa)
-    apply(simp)
-    apply(rule NEG_intro)
-    apply(simp (no_asm))
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="ca" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule conjI)
-    apply(rule fin.intros)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp (no_asm))
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp (no_asm))
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
+     apply(drule ncloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "name")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="NOT B" in CUT_SNa)
+      apply(simp)
+     apply(rule NEG_intro)
+     apply(simp (no_asm))
+     apply(rule disjI2)
+     apply(rule disjI2)
+     apply(rule_tac x="a" in exI)
+     apply(rule_tac x="ca" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule conjI)
+      apply(rule fin.intros)
+      apply(rule psubst_fresh_name)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(rule BINDING_implies_CAND)
+     apply(unfold BINDINGc_def)
+     apply(simp (no_asm))
+     apply(rule_tac x="a" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(simp (no_asm))
+     apply(rule allI)+
+     apply(rule impI)
+     apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
+     apply(drule_tac x="\<theta>_n" in meta_spec)
+     apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
+     apply(drule meta_mp)
+      apply(rule ncloses_subset)
+       apply(assumption)
+      apply(blast)
+     apply(drule meta_mp)
+      apply(rule ccloses_extend)
+         apply(assumption)
+        apply(assumption)
+       apply(assumption)
+      apply(assumption)
+     apply(assumption)
     apply(blast)
     done
 next
@@ -5235,52 +5243,52 @@
   then show ?case     
     apply(simp)
     apply(subgoal_tac "(y,B1 AND B2) \<in> set \<Gamma>'")
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+ 
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "name")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B1 AND B2" in CUT_SNa)
-    apply(simp)
-    apply(rule NEG_intro)
-    apply(simp (no_asm))
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule disjI1)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="ca" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule conjI)
-    apply(rule fin.intros)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp (no_asm))
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp (no_asm))
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
-    apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(assumption)
+     apply(drule ncloses_elim)
+      apply(assumption)
+     apply(erule exE)+ 
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "name")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B1 AND B2" in CUT_SNa)
+      apply(simp)
+     apply(rule NEG_intro)
+     apply(simp (no_asm))
+     apply(rule disjI2)
+     apply(rule disjI2)
+     apply(rule disjI1)
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="ca" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule conjI)
+      apply(rule fin.intros)
+      apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+      apply(rule psubst_fresh_name)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(rule BINDING_implies_CAND)
+     apply(unfold BINDINGn_def)
+     apply(simp (no_asm))
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(simp (no_asm))
+     apply(rule allI)+
+     apply(rule impI)
+     apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
+     apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
+     apply(drule_tac x="\<theta>_c" in meta_spec)
+     apply(drule meta_mp)
+      apply(rule ncloses_extend)
+         apply(rule ncloses_subset)
+          apply(assumption)
+         apply(blast)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(drule meta_mp)
+      apply(assumption)
+     apply(assumption)
     apply(blast)
     done
 next
@@ -5288,52 +5296,52 @@
   then show ?case 
     apply(simp)
     apply(subgoal_tac "(y,B1 AND B2) \<in> set \<Gamma>'")
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+ 
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "name")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B1 AND B2" in CUT_SNa)
-    apply(simp)
-    apply(rule NEG_intro)
-    apply(simp (no_asm))
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="ca" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule conjI)
-    apply(rule fin.intros)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp (no_asm))
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp (no_asm))
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
-    apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(assumption)
+     apply(drule ncloses_elim)
+      apply(assumption)
+     apply(erule exE)+ 
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "name")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B1 AND B2" in CUT_SNa)
+      apply(simp)
+     apply(rule NEG_intro)
+     apply(simp (no_asm))
+     apply(rule disjI2)
+     apply(rule disjI2)
+     apply(rule disjI2)
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="ca" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule conjI)
+      apply(rule fin.intros)
+      apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+      apply(rule psubst_fresh_name)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(rule BINDING_implies_CAND)
+     apply(unfold BINDINGn_def)
+     apply(simp (no_asm))
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(simp (no_asm))
+     apply(rule allI)+
+     apply(rule impI)
+     apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
+     apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
+     apply(drule_tac x="\<theta>_c" in meta_spec)
+     apply(drule meta_mp)
+      apply(rule ncloses_extend)
+         apply(rule ncloses_subset)
+          apply(assumption)
+         apply(blast)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(drule meta_mp)
+      apply(assumption)
+     apply(assumption)
     apply(blast)
     done
 next
@@ -5341,81 +5349,81 @@
   then show ?case 
     apply(simp)
     apply(subgoal_tac "(c,B AND C) \<in> set \<Delta>'")
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(simp)
-    apply(generate_fresh "coname")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B AND C" in CUT_SNa)
-    apply(simp)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="ca" in exI)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="b" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule fic.intros)
-    apply(simp add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_coname)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(simp add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_coname)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp add: psubst_csubst[symmetric])
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(assumption)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp)
-    apply(rule_tac x="b" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp add: psubst_csubst[symmetric])
-    apply(rotate_tac 14)
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(b,xa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(assumption)
-    apply(simp)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(simp)
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B AND C" in CUT_SNa)
+      apply(simp)
+      apply(rule disjI2)
+      apply(rule disjI2)
+      apply(rule_tac x="ca" in exI)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="b" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+      apply(simp)
+      apply(rule conjI)
+       apply(rule fic.intros)
+        apply(simp add: abs_fresh fresh_prod fresh_atm)
+        apply(rule psubst_fresh_coname)
+          apply(simp)
+         apply(simp)
+        apply(simp)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+       apply(rule psubst_fresh_coname)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(rule conjI)
+       apply(rule BINDING_implies_CAND)
+       apply(unfold BINDINGc_def)
+       apply(simp)
+       apply(rule_tac x="a" in exI)
+       apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+       apply(simp)
+       apply(rule allI)+
+       apply(rule impI)
+       apply(simp add: psubst_csubst[symmetric])
+       apply(drule_tac x="\<theta>_n" in meta_spec)
+       apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
+       apply(drule meta_mp)
+        apply(assumption)
+       apply(drule meta_mp)
+        apply(rule ccloses_extend)
+           apply(rule ccloses_subset)
+            apply(assumption)
+           apply(blast)
+          apply(simp)
+         apply(simp)
+        apply(assumption)
+       apply(assumption)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGc_def)
+      apply(simp)
+      apply(rule_tac x="b" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+      apply(simp)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(simp add: psubst_csubst[symmetric])
+      apply(rotate_tac 14)
+      apply(drule_tac x="\<theta>_n" in meta_spec)
+      apply(drule_tac x="(b,xa,Pa)#\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(assumption)
+      apply(drule meta_mp)
+       apply(rule ccloses_extend)
+          apply(rule ccloses_subset)
+           apply(assumption)
+          apply(blast)
+         apply(simp)
+        apply(simp)
+       apply(assumption)
+      apply(assumption)
+     apply(simp)
     apply(blast)
     done
 next
@@ -5423,82 +5431,82 @@
   then show ?case 
     apply(simp)
     apply(subgoal_tac "(z,B OR C) \<in> set \<Gamma>'")
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "name")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B OR C" in CUT_SNa)
-    apply(simp)
-    apply(rule NEG_intro)
-    apply(simp (no_asm))
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="y" in exI)
-    apply(rule_tac x="ca" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule conjI)
-    apply(rule fin.intros)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp del: NEGc.simps)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
-    apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(assumption)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp del: NEGc.simps)
-    apply(rule_tac x="y" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
-    apply(rotate_tac 14)
-    apply(drule_tac x="(y,a,Pa)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(assumption)
+     apply(drule ncloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "name")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B OR C" in CUT_SNa)
+      apply(simp)
+     apply(rule NEG_intro)
+     apply(simp (no_asm))
+     apply(rule disjI2)
+     apply(rule disjI2)
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="y" in exI)
+     apply(rule_tac x="ca" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule conjI)
+      apply(rule fin.intros)
+       apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+       apply(rule psubst_fresh_name)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+      apply(rule psubst_fresh_name)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(rule conjI)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGn_def)
+      apply(simp del: NEGc.simps)
+      apply(rule_tac x="x" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp del: NEGc.simps)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
+      apply(drule_tac x="(x,a,Pa)#\<theta>_n" in meta_spec)
+      apply(drule_tac x="\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(rule ncloses_extend)
+          apply(rule ncloses_subset)
+           apply(assumption)
+          apply(blast)
+         apply(simp)
+        apply(simp)
+       apply(assumption)
+      apply(drule meta_mp)
+       apply(assumption)
+      apply(assumption)
+     apply(rule BINDING_implies_CAND)
+     apply(unfold BINDINGn_def)
+     apply(simp del: NEGc.simps)
+     apply(rule_tac x="y" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule allI)+
+     apply(rule impI)
+     apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
+     apply(rotate_tac 14)
+     apply(drule_tac x="(y,a,Pa)#\<theta>_n" in meta_spec)
+     apply(drule_tac x="\<theta>_c" in meta_spec)
+     apply(drule meta_mp)
+      apply(rule ncloses_extend)
+         apply(rule ncloses_subset)
+          apply(assumption)
+         apply(blast)
+        apply(simp)
+       apply(simp)
+      apply(assumption)
+     apply(drule meta_mp)
+      apply(assumption)
+     apply(assumption)
     apply(blast)
     done
 next
@@ -5506,51 +5514,51 @@
   then show ?case
     apply(simp)
     apply(subgoal_tac "(b,B1 OR B2) \<in> set \<Delta>'")
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+ 
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "coname")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B1 OR B2" in CUT_SNa)
-    apply(simp)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule disjI1)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="c" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule fic.intros)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_coname)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp (no_asm))
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp (no_asm))
-    apply(rule allI)+
-    apply(rule impI)    
-    apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(simp)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+ 
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B1 OR B2" in CUT_SNa)
+      apply(simp)
+      apply(rule disjI2)
+      apply(rule disjI2)
+      apply(rule disjI1)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="c" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule conjI)
+       apply(rule fic.intros)
+       apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+       apply(rule psubst_fresh_coname)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGc_def)
+      apply(simp (no_asm))
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp (no_asm))
+      apply(rule allI)+
+      apply(rule impI)    
+      apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
+      apply(drule_tac x="\<theta>_n" in meta_spec)
+      apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(assumption)
+      apply(drule meta_mp)
+       apply(rule ccloses_extend)
+          apply(rule ccloses_subset)
+           apply(assumption)
+          apply(blast)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(assumption)
+     apply(simp)
     apply(blast)
     done
 next
@@ -5558,51 +5566,51 @@
   then show ?case 
     apply(simp)
     apply(subgoal_tac "(b,B1 OR B2) \<in> set \<Delta>'")
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+ 
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "coname")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B1 OR B2" in CUT_SNa)
-    apply(simp)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="c" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule fic.intros)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_coname)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp (no_asm))
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp (no_asm))
-    apply(rule allI)+
-    apply(rule impI)    
-    apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(simp)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+ 
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B1 OR B2" in CUT_SNa)
+      apply(simp)
+      apply(rule disjI2)
+      apply(rule disjI2)
+      apply(rule disjI2)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="c" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule conjI)
+       apply(rule fic.intros)
+       apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+       apply(rule psubst_fresh_coname)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGc_def)
+      apply(simp (no_asm))
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp (no_asm))
+      apply(rule allI)+
+      apply(rule impI)    
+      apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
+      apply(drule_tac x="\<theta>_n" in meta_spec)
+      apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(assumption)
+      apply(drule meta_mp)
+       apply(rule ccloses_extend)
+          apply(rule ccloses_subset)
+           apply(assumption)
+          apply(blast)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(assumption)
+     apply(simp)
     apply(blast)
     done
 next
@@ -5610,81 +5618,81 @@
   then show ?case
     apply(simp)
     apply(subgoal_tac "(y,B IMP C) \<in> set \<Gamma>'")
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(simp del: NEGc.simps)
-    apply(generate_fresh "name")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B IMP C" in CUT_SNa)
-    apply(simp)
-    apply(rule NEG_intro)
-    apply(simp (no_asm))
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="ca" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule conjI)
-    apply(rule fin.intros)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_name)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp del: NEGc.simps)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(assumption)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(assumption)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp del: NEGc.simps)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp del: NEGc.simps)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
-    apply(rotate_tac 12)
-    apply(drule_tac x="(x,aa,Pa)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(rule ncloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(assumption)
+     apply(drule ncloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(simp del: NEGc.simps)
+     apply(generate_fresh "name")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B IMP C" in CUT_SNa)
+      apply(simp)
+     apply(rule NEG_intro)
+     apply(simp (no_asm))
+     apply(rule disjI2)
+     apply(rule disjI2)
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="a" in exI)
+     apply(rule_tac x="ca" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule conjI)
+      apply(rule fin.intros)
+       apply(rule psubst_fresh_name)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
+      apply(rule psubst_fresh_name)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+     apply(rule conjI)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGc_def)
+      apply(simp del: NEGc.simps)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp del: NEGc.simps)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
+      apply(drule_tac x="\<theta>_n" in meta_spec)
+      apply(drule_tac x="(a,xa,Pa)#\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(rule ncloses_subset)
+        apply(assumption)
+       apply(blast)
+      apply(drule meta_mp)
+       apply(rule ccloses_extend)
+          apply(assumption)
+         apply(simp)
+        apply(simp)
+       apply(assumption)
+      apply(assumption)
+     apply(rule BINDING_implies_CAND)
+     apply(unfold BINDINGn_def)
+     apply(simp del: NEGc.simps)
+     apply(rule_tac x="x" in exI)
+     apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+     apply(simp del: NEGc.simps)
+     apply(rule allI)+
+     apply(rule impI)
+     apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
+     apply(rotate_tac 12)
+     apply(drule_tac x="(x,aa,Pa)#\<theta>_n" in meta_spec)
+     apply(drule_tac x="\<theta>_c" in meta_spec)
+     apply(drule meta_mp)
+      apply(rule ncloses_extend)
+         apply(rule ncloses_subset)
+          apply(assumption)
+         apply(blast)
+        apply(simp)
+       apply(simp)
+      apply(assumption)
+     apply(drule meta_mp)
+      apply(assumption)
+     apply(assumption)
     apply(blast)
     done
 next
@@ -5692,94 +5700,94 @@
   then show ?case
     apply(simp)
     apply(subgoal_tac "(b,B IMP C) \<in> set \<Delta>'")
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(simp)
-    apply(generate_fresh "coname")
-    apply(fresh_fun_simp)
-    apply(rule_tac B="B IMP C" in CUT_SNa)
-    apply(simp)
-    apply(rule disjI2)
-    apply(rule disjI2)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="c" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule fic.intros)
-    apply(simp add: abs_fresh fresh_prod fresh_atm)
-    apply(rule psubst_fresh_coname)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(rule conjI)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp add: psubst_csubst[symmetric])
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,((a,z,Pa)#\<theta>_c)<M>" in exI)
-    apply(simp)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(rule_tac t="\<theta>_n,((a,z,Pa)#\<theta>_c)<M>{x:=<aa>.Pb}" and 
-                   s="((x,aa,Pb)#\<theta>_n),((a,z,Pa)#\<theta>_c)<M>" in subst)
-    apply(rule psubst_nsubst)
-    apply(simp add: fresh_prod fresh_atm fresh_list_cons)
-    apply(drule_tac x="(x,aa,Pb)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,z,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(assumption)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(simp add: psubst_nsubst[symmetric])
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="((x,ca,Q)#\<theta>_n),\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(rule_tac t="((x,ca,Q)#\<theta>_n),\<theta>_c<M>{a:=(xaa).Pa}" and 
-                   s="((x,ca,Q)#\<theta>_n),((a,xaa,Pa)#\<theta>_c)<M>" in subst)
-    apply(rule psubst_csubst)
-    apply(simp add: fresh_prod fresh_atm fresh_list_cons)
-    apply(drule_tac x="(x,ca,Q)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xaa,Pa)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(assumption)
-    apply(simp)
-    apply(simp)
-    apply(simp)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend)
-    apply(rule ccloses_subset)
-    apply(assumption)
-    apply(blast)
-    apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
-    apply(simp)
-    apply(simp)
-    apply(assumption)
-    apply(simp)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(simp)
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(rule_tac B="B IMP C" in CUT_SNa)
+      apply(simp)
+      apply(rule disjI2)
+      apply(rule disjI2)
+      apply(rule_tac x="x" in exI)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="c" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule conjI)
+       apply(rule fic.intros)
+       apply(simp add: abs_fresh fresh_prod fresh_atm)
+       apply(rule psubst_fresh_coname)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(rule conjI)
+       apply(rule allI)+
+       apply(rule impI)
+       apply(simp add: psubst_csubst[symmetric])
+       apply(rule BINDING_implies_CAND)
+       apply(unfold BINDINGn_def)
+       apply(simp)
+       apply(rule_tac x="x" in exI)
+       apply(rule_tac x="\<theta>_n,((a,z,Pa)#\<theta>_c)<M>" in exI)
+       apply(simp)
+       apply(rule allI)+
+       apply(rule impI)
+       apply(rule_tac t="\<theta>_n,((a,z,Pa)#\<theta>_c)<M>{x:=<aa>.Pb}" and 
+        s="((x,aa,Pb)#\<theta>_n),((a,z,Pa)#\<theta>_c)<M>" in subst)
+        apply(rule psubst_nsubst)
+        apply(simp add: fresh_prod fresh_atm fresh_list_cons)
+       apply(drule_tac x="(x,aa,Pb)#\<theta>_n" in meta_spec)
+       apply(drule_tac x="(a,z,Pa)#\<theta>_c" in meta_spec)
+       apply(drule meta_mp)
+        apply(rule ncloses_extend)
+           apply(assumption)
+          apply(simp)
+         apply(simp)
+        apply(simp)
+       apply(drule meta_mp)
+        apply(rule ccloses_extend)
+           apply(rule ccloses_subset)
+            apply(assumption)
+           apply(blast)
+          apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
+         apply(simp)
+        apply(simp)
+       apply(assumption)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(simp add: psubst_nsubst[symmetric])
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGc_def)
+      apply(simp)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="((x,ca,Q)#\<theta>_n),\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(rule_tac t="((x,ca,Q)#\<theta>_n),\<theta>_c<M>{a:=(xaa).Pa}" and 
+        s="((x,ca,Q)#\<theta>_n),((a,xaa,Pa)#\<theta>_c)<M>" in subst)
+       apply(rule psubst_csubst)
+       apply(simp add: fresh_prod fresh_atm fresh_list_cons)
+      apply(drule_tac x="(x,ca,Q)#\<theta>_n" in meta_spec)
+      apply(drule_tac x="(a,xaa,Pa)#\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(rule ncloses_extend)
+          apply(assumption)
+         apply(simp)
+        apply(simp)
+       apply(simp)
+      apply(drule meta_mp)
+       apply(rule ccloses_extend)
+          apply(rule ccloses_subset)
+           apply(assumption)
+          apply(blast)
+         apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
+        apply(simp)
+       apply(simp)
+      apply(assumption)
+     apply(simp)
     apply(blast)
     done
 next
@@ -5787,151 +5795,151 @@
   then show ?case 
     apply -
     apply(case_tac "\<forall>y. M\<noteq>Ax y a")
-    apply(case_tac "\<forall>c. N\<noteq>Ax x c")
-    apply(simp)
-    apply(rule_tac B="B" in CUT_SNa)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule allI)
-    apply(rule allI)
-    apply(rule impI)
-    apply(simp add: psubst_csubst[symmetric]) (*?*)
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,P)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend) 
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGn_def)
-    apply(simp)
-    apply(rule_tac x="x" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
-    apply(simp)
-    apply(rule allI)
-    apply(rule allI)
-    apply(rule impI)
-    apply(simp add: psubst_nsubst[symmetric]) (*?*)
-    apply(rotate_tac 11)
-    apply(drule_tac x="(x,aa,P)#\<theta>_n" in meta_spec)
-    apply(drule_tac x="\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(drule_tac meta_mp)
-    apply(assumption)
-    apply(assumption)
-    (* cases at least one axiom *)
-    apply(simp (no_asm_use))
-    apply(erule exE)
-    apply(simp del: psubst.simps)
-    apply(drule typing_Ax_elim2)
-    apply(auto simp add: trm.inject)[1]
-    apply(rule_tac B="B" in CUT_SNa)
-    (* left term *)
-    apply(rule BINDING_implies_CAND)
-    apply(unfold BINDINGc_def)
-    apply(simp)
-    apply(rule_tac x="a" in exI)
-    apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
-    apply(simp)
-    apply(rule allI)+
-    apply(rule impI)
-    apply(drule_tac x="\<theta>_n" in meta_spec)
-    apply(drule_tac x="(a,xa,P)#\<theta>_c" in meta_spec)
-    apply(drule meta_mp)
-    apply(assumption)
-    apply(drule meta_mp)
-    apply(rule ccloses_extend) 
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(simp add: psubst_csubst[symmetric]) (*?*)
-    (* right term -axiom *)
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(erule conjE)
-    apply(frule_tac y="x" in lookupd_cmaps)
-    apply(drule cmaps_fresh)
-    apply(assumption)
-    apply(simp)
-    apply(subgoal_tac "(x):P[xa\<turnstile>n>x] = (xa):P")
-    apply(simp)
-    apply(simp add: ntrm.inject)
-    apply(simp add: alpha fresh_prod fresh_atm)
-    apply(rule sym)
-    apply(rule nrename_swap)
-    apply(simp)
-    (* M is axiom *)
+     apply(case_tac "\<forall>c. N\<noteq>Ax x c")
+      apply(simp)
+      apply(rule_tac B="B" in CUT_SNa)
+       apply(rule BINDING_implies_CAND)
+       apply(unfold BINDINGc_def)
+       apply(simp)
+       apply(rule_tac x="a" in exI)
+       apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+       apply(simp)
+       apply(rule allI)
+       apply(rule allI)
+       apply(rule impI)
+       apply(simp add: psubst_csubst[symmetric]) (*?*)
+       apply(drule_tac x="\<theta>_n" in meta_spec)
+       apply(drule_tac x="(a,xa,P)#\<theta>_c" in meta_spec)
+       apply(drule meta_mp)
+        apply(assumption)
+       apply(drule meta_mp)
+        apply(rule ccloses_extend) 
+           apply(assumption)
+          apply(assumption)
+         apply(assumption)
+        apply(assumption)
+       apply(assumption)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGn_def)
+      apply(simp)
+      apply(rule_tac x="x" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<N>" in exI)
+      apply(simp)
+      apply(rule allI)
+      apply(rule allI)
+      apply(rule impI)
+      apply(simp add: psubst_nsubst[symmetric]) (*?*)
+      apply(rotate_tac 11)
+      apply(drule_tac x="(x,aa,P)#\<theta>_n" in meta_spec)
+      apply(drule_tac x="\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(rule ncloses_extend)
+          apply(assumption)
+         apply(assumption)
+        apply(assumption)
+       apply(assumption)
+      apply(drule_tac meta_mp)
+       apply(assumption)
+      apply(assumption)
+      (* cases at least one axiom *)
+     apply(simp (no_asm_use))
+     apply(erule exE)
+     apply(simp del: psubst.simps)
+     apply(drule typing_Ax_elim2)
+     apply(auto simp add: trm.inject)[1]
+     apply(rule_tac B="B" in CUT_SNa)
+      (* left term *)
+      apply(rule BINDING_implies_CAND)
+      apply(unfold BINDINGc_def)
+      apply(simp)
+      apply(rule_tac x="a" in exI)
+      apply(rule_tac x="\<theta>_n,\<theta>_c<M>" in exI)
+      apply(simp)
+      apply(rule allI)+
+      apply(rule impI)
+      apply(drule_tac x="\<theta>_n" in meta_spec)
+      apply(drule_tac x="(a,xa,P)#\<theta>_c" in meta_spec)
+      apply(drule meta_mp)
+       apply(assumption)
+      apply(drule meta_mp)
+       apply(rule ccloses_extend) 
+          apply(assumption)
+         apply(assumption)
+        apply(assumption)
+       apply(assumption)
+      apply(simp add: psubst_csubst[symmetric]) (*?*)
+      (* right term -axiom *)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(erule conjE)
+     apply(frule_tac y="x" in lookupd_cmaps)
+     apply(drule cmaps_fresh)
+      apply(assumption)
+     apply(simp)
+     apply(subgoal_tac "(x):P[xa\<turnstile>n>x] = (xa):P")
+      apply(simp)
+     apply(simp add: ntrm.inject)
+     apply(simp add: alpha fresh_prod fresh_atm)
+     apply(rule sym)
+     apply(rule nrename_swap)
+     apply(simp)
+      (* M is axiom *)
     apply(simp)
     apply(auto)[1]
-    (* both are axioms *)
+      (* both are axioms *)
+     apply(rule_tac B="B" in CUT_SNa)
+      apply(drule typing_Ax_elim1)
+      apply(drule ncloses_elim)
+       apply(assumption)
+      apply(erule exE)+
+      apply(erule conjE)
+      apply(frule_tac a="a" in lookupc_nmaps)
+      apply(drule_tac a="a" in nmaps_fresh)
+       apply(assumption)
+      apply(simp)
+      apply(subgoal_tac "<a>:P[c\<turnstile>c>a] = <c>:P")
+       apply(simp)
+      apply(simp add: ctrm.inject)
+      apply(simp add: alpha fresh_prod fresh_atm)
+      apply(rule sym)
+      apply(rule crename_swap)
+      apply(simp)
+     apply(drule typing_Ax_elim2)
+     apply(drule ccloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(erule conjE)
+     apply(frule_tac y="x" in lookupd_cmaps)
+     apply(drule cmaps_fresh)
+      apply(assumption)
+     apply(simp)
+     apply(subgoal_tac "(x):P[xa\<turnstile>n>x] = (xa):P")
+      apply(simp)
+     apply(simp add: ntrm.inject)
+     apply(simp add: alpha fresh_prod fresh_atm)
+     apply(rule sym)
+     apply(rule nrename_swap)
+     apply(simp)
+      (* N is not axioms *)
     apply(rule_tac B="B" in CUT_SNa)
-    apply(drule typing_Ax_elim1)
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(erule conjE)
-    apply(frule_tac a="a" in lookupc_nmaps)
-    apply(drule_tac a="a" in nmaps_fresh)
-    apply(assumption)
-    apply(simp)
-    apply(subgoal_tac "<a>:P[c\<turnstile>c>a] = <c>:P")
-    apply(simp)
-    apply(simp add: ctrm.inject)
-    apply(simp add: alpha fresh_prod fresh_atm)
-    apply(rule sym)
-    apply(rule crename_swap)
-    apply(simp)
-    apply(drule typing_Ax_elim2)
-    apply(drule ccloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(erule conjE)
-    apply(frule_tac y="x" in lookupd_cmaps)
-    apply(drule cmaps_fresh)
-    apply(assumption)
-    apply(simp)
-    apply(subgoal_tac "(x):P[xa\<turnstile>n>x] = (xa):P")
-    apply(simp)
-    apply(simp add: ntrm.inject)
-    apply(simp add: alpha fresh_prod fresh_atm)
-    apply(rule sym)
-    apply(rule nrename_swap)
-    apply(simp)
-    (* N is not axioms *)
-    apply(rule_tac B="B" in CUT_SNa)
-    (* left term *)
-    apply(drule typing_Ax_elim1)
-    apply(drule ncloses_elim)
-    apply(assumption)
-    apply(erule exE)+
-    apply(erule conjE)
-    apply(frule_tac a="a" in lookupc_nmaps)
-    apply(drule_tac a="a" in nmaps_fresh)
-    apply(assumption)
-    apply(simp)
-    apply(subgoal_tac "<a>:P[c\<turnstile>c>a] = <c>:P")
-    apply(simp)
-    apply(simp add: ctrm.inject)
-    apply(simp add: alpha fresh_prod fresh_atm)
-    apply(rule sym)
-    apply(rule crename_swap)
-    apply(simp)
+      (* left term *)
+     apply(drule typing_Ax_elim1)
+     apply(drule ncloses_elim)
+      apply(assumption)
+     apply(erule exE)+
+     apply(erule conjE)
+     apply(frule_tac a="a" in lookupc_nmaps)
+     apply(drule_tac a="a" in nmaps_fresh)
+      apply(assumption)
+     apply(simp)
+     apply(subgoal_tac "<a>:P[c\<turnstile>c>a] = <c>:P")
+      apply(simp)
+     apply(simp add: ctrm.inject)
+     apply(simp add: alpha fresh_prod fresh_atm)
+     apply(rule sym)
+     apply(rule crename_swap)
+     apply(simp)
     apply(rule BINDING_implies_CAND)
     apply(unfold BINDINGn_def)
     apply(simp)
@@ -5946,13 +5954,13 @@
     apply(drule_tac x="(x,aa,P)#\<theta>_n" in meta_spec)
     apply(drule_tac x="\<theta>_c" in meta_spec)
     apply(drule meta_mp)
-    apply(rule ncloses_extend)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
-    apply(assumption)
+     apply(rule ncloses_extend)
+        apply(assumption)
+       apply(assumption)
+      apply(assumption)
+     apply(assumption)
     apply(drule_tac meta_mp)
-    apply(assumption)
+     apply(assumption)
     apply(assumption)
     done
 qed
@@ -5967,525 +5975,525 @@
 
 lemma idn_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(idn \<Gamma> a)) = idn (pi1\<bullet>\<Gamma>) (pi1\<bullet>a)"
-  and   "(pi2\<bullet>(idn \<Gamma> a)) = idn (pi2\<bullet>\<Gamma>) (pi2\<bullet>a)"
-apply(induct \<Gamma>)
-apply(auto)
-done
+    and   "(pi2\<bullet>(idn \<Gamma> a)) = idn (pi2\<bullet>\<Gamma>) (pi2\<bullet>a)"
+   apply(induct \<Gamma>)
+     apply(auto)
+  done
 
 lemma idc_eqvt[eqvt]:
   fixes pi1::"name prm"
-  and   pi2::"coname prm"
+    and   pi2::"coname prm"
   shows "(pi1\<bullet>(idc \<Delta> x)) = idc (pi1\<bullet>\<Delta>) (pi1\<bullet>x)"
-  and   "(pi2\<bullet>(idc \<Delta> x)) = idc (pi2\<bullet>\<Delta>) (pi2\<bullet>x)"
-apply(induct \<Delta>)
-apply(auto)
-done
+    and   "(pi2\<bullet>(idc \<Delta> x)) = idc (pi2\<bullet>\<Delta>) (pi2\<bullet>x)"
+   apply(induct \<Delta>)
+     apply(auto)
+  done
 
 lemma ccloses_id:
   shows "(idc \<Delta> x) ccloses \<Delta>"
-apply(induct \<Delta>)
-apply(auto simp add: ccloses_def)
-apply(rule Ax_in_CANDs)
-apply(rule Ax_in_CANDs)
-done
+  apply(induct \<Delta>)
+   apply(auto simp add: ccloses_def)
+   apply(rule Ax_in_CANDs)
+  apply(rule Ax_in_CANDs)
+  done
 
 lemma ncloses_id:
   shows "(idn \<Gamma> a) ncloses \<Gamma>"
-apply(induct \<Gamma>)
-apply(auto simp add: ncloses_def)
-apply(rule Ax_in_CANDs)
-apply(rule Ax_in_CANDs)
-done
+  apply(induct \<Gamma>)
+   apply(auto simp add: ncloses_def)
+   apply(rule Ax_in_CANDs)
+  apply(rule Ax_in_CANDs)
+  done
 
 lemma fresh_idn:
   fixes x::"name"
-  and   a::"coname"
+    and   a::"coname"
   shows "x\<sharp>\<Gamma> \<Longrightarrow> x\<sharp>idn \<Gamma> a"
-  and   "a\<sharp>(\<Gamma>,b) \<Longrightarrow> a\<sharp>idn \<Gamma> b"
-apply(induct \<Gamma>)
-apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
-done
+    and   "a\<sharp>(\<Gamma>,b) \<Longrightarrow> a\<sharp>idn \<Gamma> b"
+   apply(induct \<Gamma>)
+     apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
+  done
 
 lemma fresh_idc:
   fixes x::"name"
-  and   a::"coname"
+    and   a::"coname"
   shows "x\<sharp>(\<Delta>,y) \<Longrightarrow> x\<sharp>idc \<Delta> y"
-  and   "a\<sharp>\<Delta>  \<Longrightarrow> a\<sharp>idc \<Delta> y"
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
-done
+    and   "a\<sharp>\<Delta>  \<Longrightarrow> a\<sharp>idc \<Delta> y"
+   apply(induct \<Delta>)
+     apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
+  done
 
 lemma idc_cmaps:
   assumes a: "idc \<Delta> y cmaps b to Some (x,M)"
   shows "M=Ax x b"
-using a
-apply(induct \<Delta>)
-apply(auto)
-apply(case_tac "b=a")
-apply(auto)
-done
+  using a
+  apply(induct \<Delta>)
+   apply(auto)
+  apply(case_tac "b=a")
+   apply(auto)
+  done
 
 lemma idn_nmaps:
   assumes a: "idn \<Gamma> a nmaps x to Some (b,M)"
   shows "M=Ax x b"
-using a
-apply(induct \<Gamma>)
-apply(auto)
-apply(case_tac "aa=x")
-apply(auto)
-done
+  using a
+  apply(induct \<Gamma>)
+   apply(auto)
+  apply(case_tac "aa=x")
+   apply(auto)
+  done
 
 lemma lookup1:
   assumes a: "x\<sharp>(idn \<Gamma> b)"
   shows "lookup x a (idn \<Gamma> b) \<theta>_c = lookupa x a \<theta>_c"
-using a
-apply(induct \<Gamma>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+  using a
+  apply(induct \<Gamma>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 lemma lookup2:
   assumes a: "\<not>(x\<sharp>(idn \<Gamma> b))"
   shows "lookup x a (idn \<Gamma> b) \<theta>_c = lookupb x a \<theta>_c b (Ax x b)"
-using a
-apply(induct \<Gamma>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
-done
+  using a
+  apply(induct \<Gamma>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
+  done
 
 lemma lookup3:
   assumes a: "a\<sharp>(idc \<Delta> y)"
   shows "lookupa x a (idc \<Delta> y) = Ax x a"
-using a
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
-done
+  using a
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
+  done
 
 lemma lookup4:
   assumes a: "\<not>(a\<sharp>(idc \<Delta> y))"
   shows "lookupa x a (idc \<Delta> y) = Cut <a>.(Ax x a) (y).Ax y a"
-using a
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
-done
+  using a
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
+  done
 
 lemma lookup5:
   assumes a: "a\<sharp>(idc \<Delta> y)"
   shows "lookupb x a (idc \<Delta> y) c P = Cut <c>.P (x).Ax x a"
-using a
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
-done
+  using a
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
+  done
 
 lemma lookup6:
   assumes a: "\<not>(a\<sharp>(idc \<Delta> y))"
   shows "lookupb x a (idc \<Delta> y) c P = Cut <c>.P (y).Ax y a"
-using a
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
-done
+  using a
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
+  done
 
 lemma lookup7:
   shows "lookupc x a (idn \<Gamma> b) = Ax x a"
-apply(induct \<Gamma>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
-done
+  apply(induct \<Gamma>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
+  done
 
 lemma lookup8:
   shows "lookupd x a (idc \<Delta> y) = Ax x a"
-apply(induct \<Delta>)
-apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
-done
+  apply(induct \<Delta>)
+   apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
+  done
 
 lemma id_redu:
   shows "(idn \<Gamma> x),(idc \<Delta> a)<M> \<longrightarrow>\<^sub>a* M"
-apply(nominal_induct M avoiding: \<Gamma> \<Delta> x a rule: trm.strong_induct)
-apply(auto)
-(* Ax *)
-apply(case_tac "name\<sharp>(idn \<Gamma> x)")
-apply(simp add: lookup1)
-apply(case_tac "coname\<sharp>(idc \<Delta> a)")
-apply(simp add: lookup3)
-apply(simp add: lookup4)
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp)
-apply(simp add: lookup2)
-apply(case_tac "coname\<sharp>(idc \<Delta> a)")
-apply(simp add: lookup5)
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp)
-apply(simp add: lookup6)
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp)
-(* Cut *)
-apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name psubst_fresh_coname fresh_atm fresh_prod )[1]
-apply(simp add: lookup7 lookup8)
-apply(simp add: lookup7 lookup8)
-apply(simp add: a_star_Cut)
-apply(simp add: lookup7 lookup8)
-apply(simp add: a_star_Cut)
-apply(simp add: a_star_Cut)
-(* NotR *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findc (idc \<Delta> a) coname")
-apply(simp)
-apply(simp add: a_star_NotR)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(drule idc_cmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(assumption)
-apply(simp add: crename_fresh)
-apply(simp add: a_star_NotR)
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* NotL *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findn (idn \<Gamma> x) name")
-apply(simp)
-apply(simp add: a_star_NotL)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(drule idn_nmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxL_intro)
-apply(rule fin.intros)
-apply(assumption)
-apply(simp add: nrename_fresh)
-apply(simp add: a_star_NotL)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* AndR *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findc (idc \<Delta> a) coname3")
-apply(simp)
-apply(simp add: a_star_AndR)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(drule idc_cmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name crename_fresh fresh_atm fresh_prod )[1]
-apply(rule aux3)
-apply(rule crename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp add: fresh_prod fresh_atm)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp add: fresh_prod fresh_atm)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp add: crename_fresh)
-apply(simp add: a_star_AndR)
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* AndL1 *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findn (idn \<Gamma> x) name2")
-apply(simp)
-apply(simp add: a_star_AndL1)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(drule idn_nmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxL_intro)
-apply(rule fin.intros)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule nrename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(simp)
-apply(simp add: nrename_fresh)
-apply(simp add: a_star_AndL1)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* AndL2 *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findn (idn \<Gamma> x) name2")
-apply(simp)
-apply(simp add: a_star_AndL2)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(drule idn_nmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxL_intro)
-apply(rule fin.intros)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule nrename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(simp)
-apply(simp add: nrename_fresh)
-apply(simp add: a_star_AndL2)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* OrR1 *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findc (idc \<Delta> a) coname2")
-apply(simp)
-apply(simp add: a_star_OrR1)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(drule idc_cmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule crename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(simp)
-apply(simp add: crename_fresh)
-apply(simp add: a_star_OrR1)
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* OrR2 *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findc (idc \<Delta> a) coname2")
-apply(simp)
-apply(simp add: a_star_OrR2)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(drule idc_cmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule crename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(simp)
-apply(simp add: crename_fresh)
-apply(simp add: a_star_OrR2)
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* OrL *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findn (idn \<Gamma> x) name3")
-apply(simp)
-apply(simp add: a_star_OrL)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(drule idn_nmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxL_intro)
-apply(rule fin.intros)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule nrename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(simp add: nrename_fresh)
-apply(simp add: a_star_OrL)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* ImpR *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findc (idc \<Delta> a) coname2")
-apply(simp)
-apply(simp add: a_star_ImpR)
-apply(auto)[1]
-apply(generate_fresh "coname")
-apply(fresh_fun_simp)
-apply(drule idc_cmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxR_intro)
-apply(rule fic.intros)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule crename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(simp)
-apply(simp add: crename_fresh)
-apply(simp add: a_star_ImpR)
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-(* ImpL *)
-apply(simp add: fresh_idn fresh_idc)
-apply(case_tac "findn (idn \<Gamma> x) name2")
-apply(simp)
-apply(simp add: a_star_ImpL)
-apply(auto)[1]
-apply(generate_fresh "name")
-apply(fresh_fun_simp)
-apply(drule idn_nmaps)
-apply(simp)
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
-apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
-apply(rule a_star_trans)
-apply(rule a_starI)
-apply(rule al_redu)
-apply(rule better_LAxL_intro)
-apply(rule fin.intros)
-apply(simp add: abs_fresh)
-apply(simp add: abs_fresh)
-apply(rule aux3)
-apply(rule nrename.simps)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(rule psubst_fresh_coname)
-apply(rule fresh_idn)
-apply(simp add: fresh_atm)
-apply(rule fresh_idc)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp)
-apply(auto simp add: fresh_prod fresh_atm)[1]
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp add: fresh_prod fresh_atm)
-apply(simp)
-apply(simp)
-apply(simp add: nrename_fresh)
-apply(simp add: a_star_ImpL)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-apply(rule psubst_fresh_name)
-apply(rule fresh_idn)
-apply(simp)
-apply(rule fresh_idc)
-apply(simp)
-apply(simp)
-done
+  apply(nominal_induct M avoiding: \<Gamma> \<Delta> x a rule: trm.strong_induct)
+             apply(auto)
+    (* Ax *)
+             apply(case_tac "name\<sharp>(idn \<Gamma> x)")
+              apply(simp add: lookup1)
+              apply(case_tac "coname\<sharp>(idc \<Delta> a)")
+               apply(simp add: lookup3)
+              apply(simp add: lookup4)
+              apply(rule a_star_trans)
+               apply(rule a_starI)
+               apply(rule al_redu)
+               apply(rule better_LAxR_intro)
+               apply(rule fic.intros)
+              apply(simp)
+             apply(simp add: lookup2)
+             apply(case_tac "coname\<sharp>(idc \<Delta> a)")
+              apply(simp add: lookup5)
+              apply(rule a_star_trans)
+               apply(rule a_starI)
+               apply(rule al_redu)
+               apply(rule better_LAxR_intro)
+               apply(rule fic.intros)
+              apply(simp)
+             apply(simp add: lookup6)
+             apply(rule a_star_trans)
+              apply(rule a_starI)
+              apply(rule al_redu)
+              apply(rule better_LAxR_intro)
+              apply(rule fic.intros)
+             apply(simp)
+    (* Cut *)
+            apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name psubst_fresh_coname fresh_atm fresh_prod )[1]
+               apply(simp add: lookup7 lookup8)
+              apply(simp add: lookup7 lookup8)
+              apply(simp add: a_star_Cut)
+             apply(simp add: lookup7 lookup8)
+             apply(simp add: a_star_Cut)
+            apply(simp add: a_star_Cut)
+    (* NotR *)
+           apply(simp add: fresh_idn fresh_idc)
+           apply(case_tac "findc (idc \<Delta> a) coname")
+            apply(simp)
+            apply(simp add: a_star_NotR)
+           apply(auto)[1]
+           apply(generate_fresh "coname")
+           apply(fresh_fun_simp)
+           apply(drule idc_cmaps)
+           apply(simp)
+           apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+            apply(rule a_star_trans)
+             apply(rule a_starI)
+             apply(rule al_redu)
+             apply(rule better_LAxR_intro)
+             apply(rule fic.intros)
+             apply(assumption)
+            apply(simp add: crename_fresh)
+            apply(simp add: a_star_NotR)
+           apply(rule psubst_fresh_coname)
+             apply(rule fresh_idn)
+             apply(simp)
+            apply(rule fresh_idc)
+            apply(simp)
+           apply(simp)
+    (* NotL *)
+          apply(simp add: fresh_idn fresh_idc)
+          apply(case_tac "findn (idn \<Gamma> x) name")
+           apply(simp)
+           apply(simp add: a_star_NotL)
+          apply(auto)[1]
+          apply(generate_fresh "name")
+          apply(fresh_fun_simp)
+          apply(drule idn_nmaps)
+          apply(simp)
+          apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+           apply(rule a_star_trans)
+            apply(rule a_starI)
+            apply(rule al_redu)
+            apply(rule better_LAxL_intro)
+            apply(rule fin.intros)
+            apply(assumption)
+           apply(simp add: nrename_fresh)
+           apply(simp add: a_star_NotL)
+          apply(rule psubst_fresh_name)
+            apply(rule fresh_idn)
+            apply(simp)
+           apply(rule fresh_idc)
+           apply(simp)
+          apply(simp)
+    (* AndR *)
+         apply(simp add: fresh_idn fresh_idc)
+         apply(case_tac "findc (idc \<Delta> a) coname3")
+          apply(simp)
+          apply(simp add: a_star_AndR)
+         apply(auto)[1]
+         apply(generate_fresh "coname")
+         apply(fresh_fun_simp)
+         apply(drule idc_cmaps)
+         apply(simp)
+         apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
+          apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
+           apply(rule a_star_trans)
+            apply(rule a_starI)
+            apply(rule al_redu)
+            apply(rule better_LAxR_intro)
+            apply(rule fic.intros)
+             apply(simp add: abs_fresh)
+            apply(simp add: abs_fresh)
+           apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name crename_fresh fresh_atm fresh_prod )[1]
+           apply(rule aux3)
+            apply(rule crename.simps)
+              apply(auto simp add: fresh_prod fresh_atm)[1]
+              apply(rule psubst_fresh_coname)
+                apply(rule fresh_idn)
+                apply(simp add: fresh_prod fresh_atm)
+               apply(rule fresh_idc)
+               apply(simp)
+              apply(simp)
+             apply(auto simp add: fresh_prod fresh_atm)[1]
+             apply(rule psubst_fresh_coname)
+               apply(rule fresh_idn)
+               apply(simp add: fresh_prod fresh_atm)
+              apply(rule fresh_idc)
+              apply(simp)
+             apply(simp)
+            apply(simp)
+           apply(simp)
+           apply(simp add: crename_fresh)
+           apply(simp add: a_star_AndR)
+          apply(rule psubst_fresh_coname)
+            apply(rule fresh_idn)
+            apply(simp)
+           apply(rule fresh_idc)
+           apply(simp)
+          apply(simp)
+         apply(rule psubst_fresh_coname)
+           apply(rule fresh_idn)
+           apply(simp)
+          apply(rule fresh_idc)
+          apply(simp)
+         apply(simp)
+    (* AndL1 *)
+        apply(simp add: fresh_idn fresh_idc)
+        apply(case_tac "findn (idn \<Gamma> x) name2")
+         apply(simp)
+         apply(simp add: a_star_AndL1)
+        apply(auto)[1]
+        apply(generate_fresh "name")
+        apply(fresh_fun_simp)
+        apply(drule idn_nmaps)
+        apply(simp)
+        apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+         apply(rule a_star_trans)
+          apply(rule a_starI)
+          apply(rule al_redu)
+          apply(rule better_LAxL_intro)
+          apply(rule fin.intros)
+          apply(simp add: abs_fresh)
+         apply(rule aux3)
+          apply(rule nrename.simps)
+          apply(auto simp add: fresh_prod fresh_atm)[1]
+         apply(simp)
+         apply(simp add: nrename_fresh)
+         apply(simp add: a_star_AndL1)
+        apply(rule psubst_fresh_name)
+          apply(rule fresh_idn)
+          apply(simp)
+         apply(rule fresh_idc)
+         apply(simp)
+        apply(simp)
+    (* AndL2 *)
+       apply(simp add: fresh_idn fresh_idc)
+       apply(case_tac "findn (idn \<Gamma> x) name2")
+        apply(simp)
+        apply(simp add: a_star_AndL2)
+       apply(auto)[1]
+       apply(generate_fresh "name")
+       apply(fresh_fun_simp)
+       apply(drule idn_nmaps)
+       apply(simp)
+       apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+        apply(rule a_star_trans)
+         apply(rule a_starI)
+         apply(rule al_redu)
+         apply(rule better_LAxL_intro)
+         apply(rule fin.intros)
+         apply(simp add: abs_fresh)
+        apply(rule aux3)
+         apply(rule nrename.simps)
+         apply(auto simp add: fresh_prod fresh_atm)[1]
+        apply(simp)
+        apply(simp add: nrename_fresh)
+        apply(simp add: a_star_AndL2)
+       apply(rule psubst_fresh_name)
+         apply(rule fresh_idn)
+         apply(simp)
+        apply(rule fresh_idc)
+        apply(simp)
+       apply(simp)
+    (* OrR1 *)
+      apply(simp add: fresh_idn fresh_idc)
+      apply(case_tac "findc (idc \<Delta> a) coname2")
+       apply(simp)
+       apply(simp add: a_star_OrR1)
+      apply(auto)[1]
+      apply(generate_fresh "coname")
+      apply(fresh_fun_simp)
+      apply(drule idc_cmaps)
+      apply(simp)
+      apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+       apply(rule a_star_trans)
+        apply(rule a_starI)
+        apply(rule al_redu)
+        apply(rule better_LAxR_intro)
+        apply(rule fic.intros)
+        apply(simp add: abs_fresh)
+       apply(rule aux3)
+        apply(rule crename.simps)
+        apply(auto simp add: fresh_prod fresh_atm)[1]
+       apply(simp)
+       apply(simp add: crename_fresh)
+       apply(simp add: a_star_OrR1)
+      apply(rule psubst_fresh_coname)
+        apply(rule fresh_idn)
+        apply(simp)
+       apply(rule fresh_idc)
+       apply(simp)
+      apply(simp)
+    (* OrR2 *)
+     apply(simp add: fresh_idn fresh_idc)
+     apply(case_tac "findc (idc \<Delta> a) coname2")
+      apply(simp)
+      apply(simp add: a_star_OrR2)
+     apply(auto)[1]
+     apply(generate_fresh "coname")
+     apply(fresh_fun_simp)
+     apply(drule idc_cmaps)
+     apply(simp)
+     apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+      apply(rule a_star_trans)
+       apply(rule a_starI)
+       apply(rule al_redu)
+       apply(rule better_LAxR_intro)
+       apply(rule fic.intros)
+       apply(simp add: abs_fresh)
+      apply(rule aux3)
+       apply(rule crename.simps)
+       apply(auto simp add: fresh_prod fresh_atm)[1]
+      apply(simp)
+      apply(simp add: crename_fresh)
+      apply(simp add: a_star_OrR2)
+     apply(rule psubst_fresh_coname)
+       apply(rule fresh_idn)
+       apply(simp)
+      apply(rule fresh_idc)
+      apply(simp)
+     apply(simp)
+    (* OrL *)
+    apply(simp add: fresh_idn fresh_idc)
+    apply(case_tac "findn (idn \<Gamma> x) name3")
+     apply(simp)
+     apply(simp add: a_star_OrL)
+    apply(auto)[1]
+    apply(generate_fresh "name")
+    apply(fresh_fun_simp)
+    apply(drule idn_nmaps)
+    apply(simp)
+    apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
+     apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
+      apply(rule a_star_trans)
+       apply(rule a_starI)
+       apply(rule al_redu)
+       apply(rule better_LAxL_intro)
+       apply(rule fin.intros)
+        apply(simp add: abs_fresh)
+       apply(simp add: abs_fresh)
+      apply(rule aux3)
+       apply(rule nrename.simps)
+         apply(auto simp add: fresh_prod fresh_atm)[1]
+         apply(rule psubst_fresh_name)
+           apply(rule fresh_idn)
+           apply(simp)
+          apply(rule fresh_idc)
+          apply(simp add: fresh_prod fresh_atm)
+         apply(simp)
+        apply(auto simp add: fresh_prod fresh_atm)[1]
+        apply(rule psubst_fresh_name)
+          apply(rule fresh_idn)
+          apply(simp)
+         apply(rule fresh_idc)
+         apply(simp add: fresh_prod fresh_atm)
+        apply(simp)
+       apply(simp)
+      apply(simp)
+      apply(simp add: nrename_fresh)
+      apply(simp add: a_star_OrL)
+     apply(rule psubst_fresh_name)
+       apply(rule fresh_idn)
+       apply(simp)
+      apply(rule fresh_idc)
+      apply(simp)
+     apply(simp)
+    apply(rule psubst_fresh_name)
+      apply(rule fresh_idn)
+      apply(simp)
+     apply(rule fresh_idc)
+     apply(simp)
+    apply(simp)
+    (* ImpR *)
+   apply(simp add: fresh_idn fresh_idc)
+   apply(case_tac "findc (idc \<Delta> a) coname2")
+    apply(simp)
+    apply(simp add: a_star_ImpR)
+   apply(auto)[1]
+   apply(generate_fresh "coname")
+   apply(fresh_fun_simp)
+   apply(drule idc_cmaps)
+   apply(simp)
+   apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm>")
+    apply(rule a_star_trans)
+     apply(rule a_starI)
+     apply(rule al_redu)
+     apply(rule better_LAxR_intro)
+     apply(rule fic.intros)
+     apply(simp add: abs_fresh)
+    apply(rule aux3)
+     apply(rule crename.simps)
+     apply(auto simp add: fresh_prod fresh_atm)[1]
+    apply(simp)
+    apply(simp add: crename_fresh)
+    apply(simp add: a_star_ImpR)
+   apply(rule psubst_fresh_coname)
+     apply(rule fresh_idn)
+     apply(simp)
+    apply(rule fresh_idc)
+    apply(simp)
+   apply(simp)
+    (* ImpL *)
+  apply(simp add: fresh_idn fresh_idc)
+  apply(case_tac "findn (idn \<Gamma> x) name2")
+   apply(simp)
+   apply(simp add: a_star_ImpL)
+  apply(auto)[1]
+  apply(generate_fresh "name")
+  apply(fresh_fun_simp)
+  apply(drule idn_nmaps)
+  apply(simp)
+  apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm1>")
+   apply(subgoal_tac "c\<sharp>idn \<Gamma> x,idc \<Delta> a<trm2>")
+    apply(rule a_star_trans)
+     apply(rule a_starI)
+     apply(rule al_redu)
+     apply(rule better_LAxL_intro)
+     apply(rule fin.intros)
+      apply(simp add: abs_fresh)
+     apply(simp add: abs_fresh)
+    apply(rule aux3)
+     apply(rule nrename.simps)
+      apply(auto simp add: fresh_prod fresh_atm)[1]
+      apply(rule psubst_fresh_coname)
+        apply(rule fresh_idn)
+        apply(simp add: fresh_atm)
+       apply(rule fresh_idc)
+       apply(simp add: fresh_prod fresh_atm)
+      apply(simp)
+     apply(auto simp add: fresh_prod fresh_atm)[1]
+     apply(rule psubst_fresh_name)
+       apply(rule fresh_idn)
+       apply(simp)
+      apply(rule fresh_idc)
+      apply(simp add: fresh_prod fresh_atm)
+     apply(simp)
+    apply(simp)
+    apply(simp add: nrename_fresh)
+    apply(simp add: a_star_ImpL)
+   apply(rule psubst_fresh_name)
+     apply(rule fresh_idn)
+     apply(simp)
+    apply(rule fresh_idc)
+    apply(simp)
+   apply(simp)
+  apply(rule psubst_fresh_name)
+    apply(rule fresh_idn)
+    apply(simp)
+   apply(rule fresh_idc)
+   apply(simp)
+  apply(simp)
+  done
 
 theorem ALL_SNa:
   assumes a: "\<Gamma> \<turnstile> M \<turnstile> \<Delta>"
--- a/src/HOL/String.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/String.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -523,16 +523,16 @@
 begin
 
 qualified lift_definition less_eq_literal :: "String.literal \<Rightarrow> String.literal \<Rightarrow> bool"
-  is "ord.lexordp_eq (\<lambda>c d. of_char c < (of_char d :: nat))"
+  is "order.lexordp_eq (\<lambda>c d. of_char c < (of_char d :: nat))"
   .
 
 qualified lift_definition less_literal :: "String.literal \<Rightarrow> String.literal \<Rightarrow> bool"
-  is "ord.lexordp (\<lambda>c d. of_char c < (of_char d :: nat))"
+  is "order.lexordp (\<lambda>c d. of_char c < (of_char d :: nat))"
   .
 
 instance proof -
-  from linorder_char interpret linorder "ord.lexordp_eq (\<lambda>c d. of_char c < (of_char d :: nat))"
-    "ord.lexordp (\<lambda>c d. of_char c < (of_char d :: nat)) :: string \<Rightarrow> string \<Rightarrow> bool"
+  from linorder_char interpret linorder "order.lexordp_eq (\<lambda>c d. of_char c < (of_char d :: nat))"
+    "order.lexordp (\<lambda>c d. of_char c < (of_char d :: nat)) :: string \<Rightarrow> string \<Rightarrow> bool"
     by (rule linorder.lexordp_linorder)
   show "PROP ?thesis"
     by (standard; transfer) (simp_all add: less_le_not_le linear)
--- a/src/HOL/Wellfounded.thy	Mon Aug 17 16:26:58 2020 +0200
+++ b/src/HOL/Wellfounded.thy	Tue Aug 18 14:45:09 2020 +0100
@@ -766,9 +766,9 @@
 
 definition lex_prod :: "('a \<times>'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> (('a \<times> 'b) \<times> ('a \<times> 'b)) set"
     (infixr "<*lex*>" 80)
-    where "ra <*lex*> rb = {((a, b), (a', b')). (a, a') \<in> ra \<or> a = a' \<and> (b, b') \<in> rb}"
+    where "ra <*lex*> rb = {((a, b), (a', b')). a \<noteq> a' \<and> (a, a') \<in> ra \<or> a = a' \<and> (b, b') \<in> rb}"
 
-lemma in_lex_prod[simp]: "((a, b), (a', b')) \<in> r <*lex*> s \<longleftrightarrow> (a, a') \<in> r \<or> a = a' \<and> (b, b') \<in> s"
+lemma in_lex_prod[simp]: "((a, b), (a', b')) \<in> r <*lex*> s \<longleftrightarrow> a \<noteq> a' \<and> (a, a') \<in> r \<or> a = a' \<and> (b, b') \<in> s"
   by (auto simp:lex_prod_def)
 
 lemma wf_lex_prod [intro!]:
@@ -795,8 +795,9 @@
 qed auto
 
 text \<open>\<open><*lex*>\<close> preserves transitivity\<close>
-lemma trans_lex_prod [simp,intro!]: "trans R1 \<Longrightarrow> trans R2 \<Longrightarrow> trans (R1 <*lex*> R2)"
-  unfolding trans_def lex_prod_def by blast
+lemma trans_lex_prod [simp,intro!]: "\<lbrakk>trans R1; trans R2; antisym R1\<rbrakk> \<Longrightarrow> trans (R1 <*lex*> R2)"
+  unfolding trans_def antisym_def lex_prod_def by blast
+
 
 lemma total_on_lex_prod [simp]: "total_on A r \<Longrightarrow> total_on B s \<Longrightarrow> total_on (A \<times> B) (r <*lex*> s)"
   by (auto simp: total_on_def)