--- a/src/HOL/Tools/Nitpick/nitpick_mono.ML Tue Dec 07 11:56:56 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_mono.ML Tue Dec 07 11:56:56 2010 +0100
@@ -38,23 +38,16 @@
MType of string * mtyp list |
MRec of string * typ list
-datatype mterm =
- MRaw of term * mtyp |
- MAbs of string * typ * mtyp * annotation_atom * mterm |
- MApp of mterm * mterm
-
type mdata =
{hol_ctxt: hol_context,
binarize: bool,
alpha_T: typ,
- no_harmless: bool,
max_fresh: int Unsynchronized.ref,
datatype_mcache: ((string * typ list) * mtyp) list Unsynchronized.ref,
constr_mcache: (styp * mtyp) list Unsynchronized.ref}
exception UNSOLVABLE of unit
exception MTYPE of string * mtyp list * typ list
-exception MTERM of string * mterm list
val trace = Unsynchronized.ref false
fun trace_msg msg = if !trace then tracing (msg ()) else ()
@@ -126,43 +119,9 @@
| flatten_mtype (MType (_, Ms)) = maps flatten_mtype Ms
| flatten_mtype M = [M]
-fun precedence_of_mterm (MRaw _) = no_prec
- | precedence_of_mterm (MAbs _) = 1
- | precedence_of_mterm (MApp _) = 2
-
-fun string_for_mterm ctxt =
- let
- fun mtype_annotation M = "\<^bsup>" ^ string_for_mtype M ^ "\<^esup>"
- fun aux outer_prec m =
- let
- val prec = precedence_of_mterm m
- val need_parens = (prec < outer_prec)
- in
- (if need_parens then "(" else "") ^
- (case m of
- MRaw (t, M) => Syntax.string_of_term ctxt t ^ mtype_annotation M
- | MAbs (s, _, M, aa, m) =>
- "\<lambda>" ^ s ^ mtype_annotation M ^ ".\<^bsup>" ^
- string_for_annotation_atom aa ^ "\<^esup> " ^ aux prec m
- | MApp (m1, m2) => aux prec m1 ^ " " ^ aux (prec + 1) m2) ^
- (if need_parens then ")" else "")
- end
- in aux 0 end
-
-fun mtype_of_mterm (MRaw (_, M)) = M
- | mtype_of_mterm (MAbs (_, _, M, aa, m)) = MFun (M, aa, mtype_of_mterm m)
- | mtype_of_mterm (MApp (m1, _)) =
- case mtype_of_mterm m1 of
- MFun (_, _, M12) => M12
- | M1 => raise MTYPE ("Nitpick_Mono.mtype_of_mterm", [M1], [])
-
-fun strip_mcomb (MApp (m1, m2)) = strip_mcomb m1 ||> (fn ms => append ms [m2])
- | strip_mcomb m = (m, [])
-
-fun initial_mdata hol_ctxt binarize no_harmless alpha_T =
+fun initial_mdata hol_ctxt binarize alpha_T =
({hol_ctxt = hol_ctxt, binarize = binarize, alpha_T = alpha_T,
- no_harmless = no_harmless, max_fresh = Unsynchronized.ref 0,
- datatype_mcache = Unsynchronized.ref [],
+ max_fresh = Unsynchronized.ref 0, datatype_mcache = Unsynchronized.ref [],
constr_mcache = Unsynchronized.ref []} : mdata)
fun could_exist_alpha_subtype alpha_T (T as Type (_, Ts)) =
@@ -243,7 +202,7 @@
$ (Const (@{const_name unknown}, ran_T)) $ (t0 $ t1 $ t2 $ t3)))
| fin_fun_body _ _ _ = NONE
-(* ### FIXME: make sure well-annotated! *)
+(* FIXME: make sure well-annotated *)
fun fresh_mfun_for_fun_type (mdata as {max_fresh, ...} : mdata) all_minus
T1 T2 =
@@ -306,7 +265,8 @@
| _ => MType (simple_string_of_typ T, [])
in do_type end
-val ground_and_sole_base_constrs = [] (* FIXME: [@{const_name Nil}, @{const_name None}], cf. lists_empty *)
+val ground_and_sole_base_constrs = []
+(* FIXME: [@{const_name Nil}, @{const_name None}], cf. lists_empty *)
fun prodM_factors (MPair (M1, M2)) = maps prodM_factors [M1, M2]
| prodM_factors M = [M]
@@ -644,8 +604,6 @@
{bound_Ts = bound_Ts, bound_Ms = bound_Ms, frame = frame, frees = frees,
consts = consts}
-(* FIXME: make sure tracing messages are complete *)
-
fun add_comp_frame aa cmp = fold (add_annotation_atom_comp cmp [] aa o snd)
fun add_bound_frame j frame =
@@ -691,11 +649,11 @@
[(aa1, (Eq, Fls)), (aa2, (Neq, Gen)), (res_aa, (Eq, Gen))],
[(aa1, (Eq, Fls)), (aa2, (Neq, New)), (res_aa, (Eq, Gen))]]
-val meta_conj_triple = ("\<and>", conj_clauses, @{const Pure.conjunction})
-val meta_imp_triple = ("\<implies>", imp_clauses, @{const "==>"})
-val conj_triple = ("\<and>", conj_clauses, @{const conj})
-val disj_triple = ("\<or>", disj_clauses, @{const disj})
-val imp_triple = ("\<implies>", imp_clauses, @{const implies})
+val meta_conj_spec = ("\<and>", conj_clauses)
+val meta_imp_spec = ("\<implies>", imp_clauses)
+val conj_spec = ("\<and>", conj_clauses)
+val disj_spec = ("\<or>", disj_clauses)
+val imp_spec = ("\<implies>", imp_clauses)
fun add_annotation_clause_from_quasi_clause _ NONE = NONE
| add_annotation_clause_from_quasi_clause [] accum = accum
@@ -761,19 +719,17 @@
#> fold add_arg_order1 (tl arg_frame ~~ (fst (split_last arg_frame)))
#> fold (add_app1 fun_aa) (res_frame ~~ arg_frame)
-fun consider_connective mdata (conn, mk_quasi_clauses, t0) do_t1 do_t2
+fun consider_connective mdata (conn, mk_quasi_clauses) do_t1 do_t2
(accum as ({frame, ...}, _)) =
let
- val mtype_for = fresh_mtype_for_type mdata false
val frame1 = fresh_frame mdata (SOME Tru) NONE frame
val frame2 = fresh_frame mdata (SOME Fls) NONE frame
- val (m1, accum) = accum |>> set_frame frame1 |> do_t1
- val (m2, accum) = accum |>> set_frame frame2 |> do_t2
in
- (MApp (MApp (MRaw (t0, mtype_for (fastype_of t0)), m1), m2),
- accum |>> set_frame frame
- ||> apsnd (add_connective_frames conn mk_quasi_clauses frame frame1
- frame2))
+ accum |>> set_frame frame1 |> do_t1
+ |>> set_frame frame2 |> do_t2
+ |>> set_frame frame
+ ||> apsnd (add_connective_frames conn mk_quasi_clauses frame frame1
+ frame2)
end
fun consider_term (mdata as {hol_ctxt = {thy, ctxt, stds, ...}, alpha_T,
@@ -834,8 +790,9 @@
M as MPair (a_M, b_M) =>
pair (MFun (M, A Gen, if n = 0 then a_M else b_M))
| M => raise MTYPE ("Nitpick_Mono.consider_term.do_nth_pair_sel", [M], [])
- and do_connect triple t1 t2 =
- consider_connective mdata triple (do_term t1) (do_term t2)
+ and do_connect spec t1 t2 accum =
+ (bool_M, consider_connective mdata spec (snd o do_term t1)
+ (snd o do_term t2) accum)
and do_term t
(accum as (gamma as {bound_Ts, bound_Ms, frame, frees, consts},
cset)) =
@@ -843,12 +800,10 @@
" \<turnstile> " ^ Syntax.string_of_term ctxt t ^
" : _?");
case t of
- @{const False} =>
- (MRaw (t, bool_M), accum ||> add_comp_frame (A Fls) Leq frame)
+ @{const False} => (bool_M, accum ||> add_comp_frame (A Fls) Leq frame)
| Const (@{const_name None}, T) =>
- (MRaw (t, mtype_for T), accum ||> add_comp_frame (A Fls) Leq frame)
- | @{const True} =>
- (MRaw (t, bool_M), accum ||> add_comp_frame (A Tru) Leq frame)
+ (mtype_for T, accum ||> add_comp_frame (A Fls) Leq frame)
+ | @{const True} => (bool_M, accum ||> add_comp_frame (A Tru) Leq frame)
| (t0 as Const (@{const_name HOL.eq}, _)) $ Bound 0 $ t2 =>
(* hack to exploit symmetry of equality when typing "insert" *)
(if t2 = Bound 0 then do_term @{term True}
@@ -870,7 +825,6 @@
(Abs (Name.uu, domain_type set_T,
@{const False}),
Bound 0)))) accum
- |>> mtype_of_mterm
end
| @{const_name HOL.eq} => do_equals T accum
| @{const_name The} =>
@@ -947,7 +901,6 @@
(M, ({bound_Ts = bound_Ts, bound_Ms = bound_Ms, frame = frame,
frees = frees, consts = (x, M) :: consts}, cset))
end)
- |>> curry MRaw t
||> apsnd (add_comp_frame (A Gen) Eq frame)
| Free (x as (_, T)) =>
(case AList.lookup (op =) frees x of
@@ -957,20 +910,20 @@
(M, ({bound_Ts = bound_Ts, bound_Ms = bound_Ms, frame = frame,
frees = (x, M) :: frees, consts = consts}, cset))
end)
- |>> curry MRaw t ||> apsnd (add_comp_frame (A Gen) Eq frame)
+ ||> apsnd (add_comp_frame (A Gen) Eq frame)
| Var _ => (trace_msg (K "*** Var"); raise UNSOLVABLE ())
| Bound j =>
- (MRaw (t, nth bound_Ms j),
+ (nth bound_Ms j,
accum ||> add_bound_frame (length bound_Ts - j - 1) frame)
- | Abs (s, T, t') =>
+ | Abs (_, T, t') =>
(case fin_fun_body T (fastype_of1 (T :: bound_Ts, t')) t' of
SOME t' =>
let
val M = mtype_for T
val x = Unsynchronized.inc max_fresh
- val (m', accum) = do_term t' (accum |>> push_bound (V x) T M)
+ val (M', accum) = do_term t' (accum |>> push_bound (V x) T M)
in
- (MAbs (s, T, M, V x, m'),
+ (MFun (M, V x, M'),
accum |>> pop_bound
||> add_annotation_atom_comp Leq [] (A Fls) (V x))
end
@@ -992,13 +945,13 @@
let
val M = mtype_for T
val x = Unsynchronized.inc max_fresh
- val (m', accum) =
+ val (M', accum) =
do_term t' (accum |>> push_bound (V x) T M)
- in (MAbs (s, T, M, V x, m'), accum |>> pop_bound) end))
- | @{const Not} $ t1 => do_connect imp_triple t1 @{const False} accum
- | @{const conj} $ t1 $ t2 => do_connect conj_triple t1 t2 accum
- | @{const disj} $ t1 $ t2 => do_connect disj_triple t1 t2 accum
- | @{const implies} $ t1 $ t2 => do_connect imp_triple t1 t2 accum
+ in (MFun (M, V x, M'), accum |>> pop_bound) end))
+ | @{const Not} $ t1 => do_connect imp_spec t1 @{const False} accum
+ | @{const conj} $ t1 $ t2 => do_connect conj_spec t1 t2 accum
+ | @{const disj} $ t1 $ t2 => do_connect disj_spec t1 t2 accum
+ | @{const implies} $ t1 $ t2 => do_connect imp_spec t1 t2 accum
| Const (@{const_name Let}, _) $ t1 $ t2 =>
do_term (betapply (t2, t1)) accum
| t1 $ t2 =>
@@ -1011,121 +964,106 @@
val frame2b =
frame1b |> map (apsnd (fn _ => V (Unsynchronized.inc max_fresh)))
val frame2 = frame2a @ frame2b
- val (m1, accum) = accum |>> set_frame frame1a |> do_term t1
- val (m2, accum) = accum |>> set_frame frame2 |> do_term t2
+ val (M1, accum) = accum |>> set_frame frame1a |> do_term t1
+ val (M2, accum) = accum |>> set_frame frame2 |> do_term t2
in
let
- val (M11, aa, _) = mtype_of_mterm m1 |> dest_MFun
- val M2 = mtype_of_mterm m2
+ val (M11, aa, M12) = M1 |> dest_MFun
in
- (MApp (m1, m2),
- accum |>> set_frame frame
- ||> add_is_sub_mtype M2 M11
- ||> add_app aa frame1b frame2b)
+ (M12, accum |>> set_frame frame
+ ||> add_is_sub_mtype M2 M11
+ ||> add_app aa frame1b frame2b)
end
end)
- |> tap (fn (m, (gamma, _)) =>
+ |> tap (fn (M, (gamma, _)) =>
trace_msg (fn () => " " ^ string_for_mcontext ctxt t gamma ^
" \<turnstile> " ^
- string_for_mterm ctxt m))
+ Syntax.string_of_term ctxt t ^ " : " ^
+ string_for_mtype M))
in do_term end
fun force_gen_funs 0 _ = I
| force_gen_funs n (M as MFun (M1, _, M2)) =
add_mtypes_equal M (MFun (M1, A Gen, M2)) #> force_gen_funs (n - 1) M2
| force_gen_funs _ M = raise MTYPE ("Nitpick_Mono.force_gen_funs", [M], [])
-fun consider_general_equals mdata def (x as (_, T)) t1 t2 accum =
+fun consider_general_equals mdata def t1 t2 accum =
let
- val (m1, accum) = consider_term mdata t1 accum
- val (m2, accum) = consider_term mdata t2 accum
- val M1 = mtype_of_mterm m1
- val M2 = mtype_of_mterm m2
+ val (M1, accum) = consider_term mdata t1 accum
+ val (M2, accum) = consider_term mdata t2 accum
val accum = accum ||> add_mtypes_equal M1 M2
- val body_M = fresh_mtype_for_type mdata false (nth_range_type 2 T)
- val m = MApp (MApp (MRaw (Const x,
- MFun (M1, A Gen, MFun (M2, A Gen, body_M))), m1), m2)
in
- (m, (if def then
- let val (head_m, arg_ms) = strip_mcomb m1 in
- accum ||> force_gen_funs (length arg_ms) (mtype_of_mterm head_m)
- end
- else
- accum))
+ if def then
+ let
+ val (head1, args1) = strip_comb t1
+ val (head_M1, accum) = consider_term mdata head1 accum
+ in accum ||> force_gen_funs (length args1) head_M1 end
+ else
+ accum
end
fun consider_general_formula (mdata as {hol_ctxt = {ctxt, ...}, max_fresh,
...}) =
let
val mtype_for = fresh_mtype_for_type mdata false
- val do_term = consider_term mdata
+ val do_term = snd oo consider_term mdata
fun do_formula sn t (accum as (gamma, _)) =
let
- fun do_quantifier (quant_x as (quant_s, _)) abs_s abs_T body_t =
+ fun do_quantifier quant_s abs_T body_t =
let
val abs_M = mtype_for abs_T
val x = Unsynchronized.inc max_fresh
val side_cond = ((sn = Minus) = (quant_s = @{const_name Ex}))
fun ann () = if quant_s = @{const_name Ex} then Fls else Tru
- val (body_m, accum) =
- accum ||> side_cond
- ? add_mtype_is_complete [(x, (Plus, ann ()))] abs_M
- |>> push_bound (V x) abs_T abs_M |> do_formula sn body_t
- val body_M = mtype_of_mterm body_m
in
- (MApp (MRaw (Const quant_x,
- MFun (MFun (abs_M, A Gen, body_M), A Gen, body_M)),
- MAbs (abs_s, abs_T, abs_M, A Gen, body_m)),
- accum |>> pop_bound)
+ accum ||> side_cond
+ ? add_mtype_is_complete [(x, (Plus, ann ()))] abs_M
+ |>> push_bound (V x) abs_T abs_M
+ |> do_formula sn body_t
+ |>> pop_bound
end
- fun do_connect triple neg1 t1 t2 =
- consider_connective mdata triple
+ fun do_connect spec neg1 t1 t2 =
+ consider_connective mdata spec
(do_formula (sn |> neg1 ? negate_sign) t1) (do_formula sn t2)
- fun do_equals x t1 t2 =
+ fun do_equals t1 t2 =
case sn of
Plus => do_term t accum
- | Minus => consider_general_equals mdata false x t1 t2 accum
+ | Minus => consider_general_equals mdata false t1 t2 accum
in
trace_msg (fn () => " " ^ string_for_mcontext ctxt t gamma ^
" \<turnstile> " ^ Syntax.string_of_term ctxt t ^
" : o\<^sup>" ^ string_for_sign sn ^ "?");
case t of
- Const (x as (@{const_name all}, _)) $ Abs (s1, T1, t1) =>
- do_quantifier x s1 T1 t1
- | Const (x as (@{const_name "=="}, _)) $ t1 $ t2 => do_equals x t1 t2
- | @{const Trueprop} $ t1 =>
- let val (m1, accum) = do_formula sn t1 accum in
- (MApp (MRaw (@{const Trueprop}, mtype_for (bool_T --> prop_T)), m1),
- accum)
- end
- | Const (x as (@{const_name All}, _)) $ Abs (s1, T1, t1) =>
- do_quantifier x s1 T1 t1
- | Const (x0 as (@{const_name Ex}, T0)) $ (t1 as Abs (s1, T1, t1')) =>
+ Const (s as @{const_name all}, _) $ Abs (_, T1, t1) =>
+ do_quantifier s T1 t1
+ | Const (@{const_name "=="}, _) $ t1 $ t2 => do_equals t1 t2
+ | @{const Trueprop} $ t1 => do_formula sn t1 accum
+ | Const (s as @{const_name All}, _) $ Abs (_, T1, t1) =>
+ do_quantifier s T1 t1
+ | Const (s as @{const_name Ex}, T0) $ (t1 as Abs (_, T1, t1')) =>
(case sn of
- Plus => do_quantifier x0 s1 T1 t1'
+ Plus => do_quantifier s T1 t1'
| Minus =>
- (* FIXME: Move elsewhere *)
+ (* FIXME: Needed? *)
do_term (@{const Not}
$ (HOLogic.eq_const (domain_type T0) $ t1
$ Abs (Name.uu, T1, @{const False}))) accum)
- | Const (x as (@{const_name HOL.eq}, _)) $ t1 $ t2 => do_equals x t1 t2
+ | Const (@{const_name HOL.eq}, _) $ t1 $ t2 => do_equals t1 t2
| Const (@{const_name Let}, _) $ t1 $ t2 =>
do_formula sn (betapply (t2, t1)) accum
| @{const Pure.conjunction} $ t1 $ t2 =>
- do_connect meta_conj_triple false t1 t2 accum
- | @{const "==>"} $ t1 $ t2 =>
- do_connect meta_imp_triple true t1 t2 accum
- | @{const Not} $ t1 =>
- do_connect imp_triple true t1 @{const False} accum
- | @{const conj} $ t1 $ t2 => do_connect conj_triple false t1 t2 accum
- | @{const disj} $ t1 $ t2 => do_connect disj_triple false t1 t2 accum
- | @{const implies} $ t1 $ t2 => do_connect imp_triple true t1 t2 accum
+ do_connect meta_conj_spec false t1 t2 accum
+ | @{const "==>"} $ t1 $ t2 => do_connect meta_imp_spec true t1 t2 accum
+ | @{const Not} $ t1 => do_connect imp_spec true t1 @{const False} accum
+ | @{const conj} $ t1 $ t2 => do_connect conj_spec false t1 t2 accum
+ | @{const disj} $ t1 $ t2 => do_connect disj_spec false t1 t2 accum
+ | @{const implies} $ t1 $ t2 => do_connect imp_spec true t1 t2 accum
| _ => do_term t accum
end
- |> tap (fn (m, (gamma, _)) =>
+ |> tap (fn (gamma, _) =>
trace_msg (fn () => string_for_mcontext ctxt t gamma ^
" \<turnstile> " ^
- string_for_mterm ctxt m ^ " : o\<^sup>" ^
- string_for_sign sn))
+ Syntax.string_of_term ctxt t ^
+ " : o\<^sup>" ^ string_for_sign sn))
in do_formula end
(* The harmless axiom optimization below is somewhat too aggressive in the face
@@ -1134,72 +1072,44 @@
[@{const_name ord_class.less}, @{const_name ord_class.less_eq}]
val bounteous_consts = [@{const_name bisim}]
-fun is_harmless_axiom ({no_harmless = true, ...} : mdata) _ = false
- | is_harmless_axiom {hol_ctxt = {thy, stds, ...}, ...} t =
+fun is_harmless_axiom {hol_ctxt = {thy, stds, ...}, ...} t =
Term.add_consts t []
|> filter_out (is_built_in_const thy stds)
|> (forall (member (op =) harmless_consts o original_name o fst) orf
exists (member (op =) bounteous_consts o fst))
fun consider_nondefinitional_axiom mdata t =
- if is_harmless_axiom mdata t then pair (MRaw (t, dummy_M))
+ if is_harmless_axiom mdata t then I
else consider_general_formula mdata Plus t
fun consider_definitional_axiom (mdata as {hol_ctxt = {ctxt, ...}, ...}) t =
if not (is_constr_pattern_formula ctxt t) then
consider_nondefinitional_axiom mdata t
else if is_harmless_axiom mdata t then
- pair (MRaw (t, dummy_M))
+ I
else
let
val mtype_for = fresh_mtype_for_type mdata false
- val do_term = consider_term mdata
- fun do_all quant_t abs_s abs_T body_t accum =
- let
- val abs_M = mtype_for abs_T
- val (body_m, accum) =
- accum |>> push_bound (A Gen) abs_T abs_M |> do_formula body_t
- val body_M = mtype_of_mterm body_m
- in
- (MApp (MRaw (quant_t, MFun (MFun (abs_M, A Gen, body_M), A Gen,
- body_M)),
- MAbs (abs_s, abs_T, abs_M, A Gen, body_m)),
- accum |>> pop_bound)
- end
- and do_conjunction t0 t1 t2 accum =
- let
- val (m1, accum) = do_formula t1 accum
- val (m2, accum) = do_formula t2 accum
- in
- (MApp (MApp (MRaw (t0, mtype_for (fastype_of t0)), m1), m2), accum)
- end
- and do_implies t0 t1 t2 accum =
- let
- val (m1, accum) = do_term t1 accum
- val (m2, accum) = do_formula t2 accum
- in
- (MApp (MApp (MRaw (t0, mtype_for (fastype_of t0)), m1), m2), accum)
- end
+ val do_term = snd oo consider_term mdata
+ fun do_all abs_T body_t accum =
+ accum |>> push_bound (A Gen) abs_T (mtype_for abs_T)
+ |> do_formula body_t
+ |>> pop_bound
+ and do_implies t1 t2 = do_term t1 #> do_formula t2
and do_formula t accum =
case t of
- (t0 as Const (@{const_name all}, _)) $ Abs (s1, T1, t1) =>
- do_all t0 s1 T1 t1 accum
- | @{const Trueprop} $ t1 =>
- let val (m1, accum) = do_formula t1 accum in
- (MApp (MRaw (@{const Trueprop}, mtype_for (bool_T --> prop_T)), m1),
- accum)
- end
- | Const (x as (@{const_name "=="}, _)) $ t1 $ t2 =>
- consider_general_equals mdata true x t1 t2 accum
- | (t0 as @{const "==>"}) $ t1 $ t2 => do_implies t0 t1 t2 accum
- | (t0 as @{const Pure.conjunction}) $ t1 $ t2 =>
- do_conjunction t0 t1 t2 accum
- | (t0 as Const (@{const_name All}, _)) $ Abs (s0, T1, t1) =>
- do_all t0 s0 T1 t1 accum
- | Const (x as (@{const_name HOL.eq}, _)) $ t1 $ t2 =>
- consider_general_equals mdata true x t1 t2 accum
- | (t0 as @{const conj}) $ t1 $ t2 => do_conjunction t0 t1 t2 accum
- | (t0 as @{const implies}) $ t1 $ t2 => do_implies t0 t1 t2 accum
+ Const (@{const_name all}, _) $ Abs (_, T1, t1) => do_all T1 t1 accum
+ | @{const Trueprop} $ t1 => do_formula t1 accum
+ | Const (@{const_name "=="}, _) $ t1 $ t2 =>
+ consider_general_equals mdata true t1 t2 accum
+ | @{const "==>"} $ t1 $ t2 => do_implies t1 t2 accum
+ | @{const Pure.conjunction} $ t1 $ t2 =>
+ fold (do_formula) [t1, t2] accum
+ | Const (@{const_name All}, _) $ Abs (_, T1, t1) => do_all T1 t1 accum
+ | Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>
+ consider_general_equals mdata true t1 t2 accum
+ | @{const conj} $ t1 $ t2 => fold (do_formula) [t1, t2] accum
+ | @{const implies} $ t1 $ t2 => do_implies t1 t2 accum
| _ => raise TERM ("Nitpick_Mono.consider_definitional_axiom.\
\do_formula", [t])
in do_formula t end
@@ -1213,37 +1123,26 @@
map (fn (x, M) => string_for_mtype_of_term ctxt asgs (Const x) M) consts
|> cat_lines)
-fun amass f t (ms, accum) =
- let val (m, accum) = f t accum in (m :: ms, accum) end
-
-fun infer which no_harmless (hol_ctxt as {ctxt, tac_timeout, ...}) binarize
- alpha_T (nondef_ts, def_ts) =
+fun formulas_monotonic (hol_ctxt as {ctxt, tac_timeout, ...}) binarize alpha_T
+ (nondef_ts, def_ts) =
let
- val _ = trace_msg (fn () => "****** " ^ which ^ " analysis: " ^
+ val _ = trace_msg (fn () => "****** Monotonicity analysis: " ^
string_for_mtype MAlpha ^ " is " ^
Syntax.string_of_typ ctxt alpha_T)
- val mdata as {max_fresh, constr_mcache, ...} =
- initial_mdata hol_ctxt binarize no_harmless alpha_T
- val accum = (initial_gamma, ([], []))
- val (nondef_ms, accum) =
- ([], accum) |> amass (consider_general_formula mdata Plus) (hd nondef_ts)
- |> fold (amass (consider_nondefinitional_axiom mdata))
- (tl nondef_ts)
- val (def_ms, (gamma, cset)) =
- ([], accum) |> fold (amass (consider_definitional_axiom mdata)) def_ts
+ val mdata as {max_fresh, ...} = initial_mdata hol_ctxt binarize alpha_T
+ val (gamma, cset) =
+ (initial_gamma, ([], []))
+ |> consider_general_formula mdata Plus (hd nondef_ts)
+ |> fold (consider_nondefinitional_axiom mdata) (tl nondef_ts)
+ |> fold (consider_definitional_axiom mdata) def_ts
in
case solve tac_timeout (!max_fresh) cset of
- SOME asgs => (print_mcontext ctxt asgs gamma;
- SOME (asgs, (nondef_ms, def_ms), !constr_mcache))
- | _ => NONE
+ SOME asgs => (print_mcontext ctxt asgs gamma; true)
+ | _ => false
end
- handle UNSOLVABLE () => NONE
+ handle UNSOLVABLE () => false
| MTYPE (loc, Ms, Ts) =>
raise BAD (loc, commas (map string_for_mtype Ms @
map (Syntax.string_of_typ ctxt) Ts))
- | MTERM (loc, ms) =>
- raise BAD (loc, commas (map (string_for_mterm ctxt) ms))
-
-val formulas_monotonic = is_some oooo infer "Monotonicity" false
end;