--- a/src/HOL/Library/Tree.thy Tue Jan 19 07:59:29 2016 +0100
+++ b/src/HOL/Library/Tree.thy Tue Jan 19 11:36:02 2016 +0100
@@ -58,6 +58,27 @@
lemma height_map_tree[simp]: "height (map_tree f t) = height t"
by (induction t) auto
+lemma size1_height: "size t + 1 \<le> 2 ^ height (t::'a tree)"
+proof(induction t)
+ case (Node l a r)
+ show ?case
+ proof (cases "height l \<le> height r")
+ case True
+ have "size(Node l a r) + 1 = (size l + 1) + (size r + 1)" by simp
+ also have "size l + 1 \<le> 2 ^ height l" by(rule Node.IH(1))
+ also have "size r + 1 \<le> 2 ^ height r" by(rule Node.IH(2))
+ also have "(2::nat) ^ height l \<le> 2 ^ height r" using True by simp
+ finally show ?thesis using True by (auto simp: max_def mult_2)
+ next
+ case False
+ have "size(Node l a r) + 1 = (size l + 1) + (size r + 1)" by simp
+ also have "size l + 1 \<le> 2 ^ height l" by(rule Node.IH(1))
+ also have "size r + 1 \<le> 2 ^ height r" by(rule Node.IH(2))
+ also have "(2::nat) ^ height r \<le> 2 ^ height l" using False by simp
+ finally show ?thesis using False by (auto simp: max_def mult_2)
+ qed
+qed simp
+
subsection "The set of subtrees"