--- a/src/HOL/Library/Library.thy Wed Oct 22 21:25:00 2008 +0200
+++ b/src/HOL/Library/Library.thy Thu Oct 23 00:24:31 2008 +0200
@@ -33,6 +33,7 @@
OptionalSugar
Option_ord
Permutation
+ Pocklington
Primes
Quicksort
Quotient
--- a/src/HOL/Library/Pocklington.thy Wed Oct 22 21:25:00 2008 +0200
+++ b/src/HOL/Library/Pocklington.thy Thu Oct 23 00:24:31 2008 +0200
@@ -1273,7 +1273,7 @@
with eq0 have "a^ (n - 1) = (n*s)^p"
by (simp add: power_mult[symmetric])
hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp
- also have "\<dots> = 0" by (simp add: mult_assoc mod_mult_self_is_0)
+ also have "\<dots> = 0" by (simp add: mult_assoc)
finally have False by simp }
then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto
have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)"