Refinements to abstraction. Seeding with combinators K, I and B.
--- a/src/HOL/Tools/res_axioms.ML Fri Oct 06 03:49:36 2006 +0200
+++ b/src/HOL/Tools/res_axioms.ML Fri Oct 06 11:16:40 2006 +0200
@@ -55,12 +55,17 @@
extensionality in proofs.
FIXME! Store in theory data!!*)
+(*Populate the abstraction cache with common combinators.*)
fun seed th net =
let val (_,ct) = Thm.dest_abs NONE (Drule.crhs_of th)
- in Net.insert_term eq_thm (term_of ct, th) net end;
+ val t = Logic.legacy_varify (term_of ct)
+ in Net.insert_term eq_thm (t, th) net end;
val abstraction_cache = ref
- (seed (thm"COMBI1") (seed (thm"COMBB1") (seed (thm"COMBK1") Net.empty)));
+ (seed (thm"Reconstruction.I_simp")
+ (seed (thm"Reconstruction.B_simp")
+ (seed (thm"Reconstruction.K_simp") Net.empty)));
+
(**** Transformation of Elimination Rules into First-Order Formulas****)
@@ -286,13 +291,11 @@
val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
(*Does an existing abstraction definition have an RHS that matches the one we need now?*)
-fun match_rhs thy0 t th =
+fun match_rhs t th =
let val thy = theory_of_thm th
val _ = if !trace_abs then warning ("match_rhs: " ^ string_of_cterm (cterm_of thy t) ^
" against\n" ^ string_of_thm th) else ();
- val (tyenv,tenv) = if Context.joinable (thy0,thy) then
- Pattern.first_order_match thy (rhs_of th, t) (tyenv0,tenv0)
- else raise Pattern.MATCH
+ val (tyenv,tenv) = Pattern.first_order_match thy (rhs_of th, t) (tyenv0,tenv0)
val term_insts = map Meson.term_pair_of (Vartab.dest tenv)
val ct_pairs = if forall lambda_free (map #2 term_insts) then
map (pairself (cterm_of thy)) term_insts
@@ -325,10 +328,9 @@
val _ = if !trace_abs then warning (Int.toString (length args) ^ " arguments") else ();
val rhs = list_abs_free (map dest_Free args, abs_v_u)
(*Forms a lambda-abstraction over the formal parameters*)
- val v_rhs = Logic.varify rhs
val _ = if !trace_abs then warning ("Looking up " ^ string_of_cterm cu') else ();
val (ax,ax',thy) =
- case List.mapPartial (match_rhs thy abs_v_u) (Net.match_term (!abstraction_cache) u')
+ case List.mapPartial (match_rhs abs_v_u) (Net.match_term (!abstraction_cache) u')
of
(ax,ax')::_ =>
(if !trace_abs then warning ("Re-using axiom " ^ string_of_thm ax) else ();
@@ -351,7 +353,7 @@
val ax = get_axiom thy cdef |> freeze_thm
|> mk_object_eq |> strip_lambdas (length args)
|> mk_meta_eq |> Meson.generalize
- val (_,ax') = Option.valOf (match_rhs thy abs_v_u ax)
+ val (_,ax') = Option.valOf (match_rhs abs_v_u ax)
val _ = if !trace_abs then
(warning ("Declaring: " ^ string_of_thm ax);
warning ("Instance: " ^ string_of_thm ax'))
@@ -403,7 +405,7 @@
(*Forms a lambda-abstraction over the formal parameters*)
val rhs = term_of crhs
val (ax,ax') =
- case List.mapPartial (match_rhs thy abs_v_u)
+ case List.mapPartial (match_rhs abs_v_u)
(Net.match_term (!abstraction_cache) u') of
(ax,ax')::_ =>
(if !trace_abs then warning ("Re-using axiom " ^ string_of_thm ax) else ();
@@ -415,7 +417,7 @@
val ax = assume (Thm.capply (cterm (equals const_ty $ c)) crhs)
|> mk_object_eq |> strip_lambdas (length args)
|> mk_meta_eq |> Meson.generalize
- val (_,ax') = Option.valOf (match_rhs thy abs_v_u ax)
+ val (_,ax') = Option.valOf (match_rhs abs_v_u ax)
val _ = abstraction_cache := Net.insert_term eq_absdef (rhs,ax)
(!abstraction_cache)
handle Net.INSERT =>
@@ -645,8 +647,11 @@
fun skolem_cache (name,th) thy =
let val prop = Thm.prop_of th
in
- if lambda_free prop (*orelse monomorphic prop*)
- then thy (*monomorphic theorems can be Skolemized on demand*)
+ if lambda_free prop
+ (*orelse monomorphic prop? Monomorphic theorems can be Skolemized on demand,
+ but there are problems with re-use of abstraction functions if we don't
+ do them now, even for monomorphic theorems.*)
+ then thy
else #2 (skolem_cache_thm (name,th) thy)
end;