major code change: refute can now handle any Isabelle term, adds certain axioms automatically, and can handle inductive datatypes (but not yet recursion over them)
authorwebertj
Wed, 26 May 2004 18:03:52 +0200
changeset 14807 e8ccb13d7774
parent 14806 b42ad431cbae
child 14808 1bf198c9828f
major code change: refute can now handle any Isabelle term, adds certain axioms automatically, and can handle inductive datatypes (but not yet recursion over them)
src/HOL/Tools/refute.ML
--- a/src/HOL/Tools/refute.ML	Wed May 26 17:43:52 2004 +0200
+++ b/src/HOL/Tools/refute.ML	Wed May 26 18:03:52 2004 +0200
@@ -6,10 +6,7 @@
 Finite model generation for HOL formulae, using a SAT solver.
 *)
 
-(* ------------------------------------------------------------------------- *)
-(* TODO: Change parameter handling so that only supported parameters can be  *)
-(*       set, and specify defaults here, rather than in HOL/Main.thy.        *)
-(* ------------------------------------------------------------------------- *)
+(* TODO: case, rec, size for IDTs are not supported yet      *)
 
 (* ------------------------------------------------------------------------- *)
 (* Declares the 'REFUTE' signature as well as a structure 'Refute'.          *)
@@ -22,22 +19,23 @@
 	exception REFUTE of string * string
 
 (* ------------------------------------------------------------------------- *)
-(* Model/interpretation related code (translation HOL -> boolean formula)    *)
+(* Model/interpretation related code (translation HOL -> propositional logic *)
 (* ------------------------------------------------------------------------- *)
 
-	exception CANNOT_INTERPRET
-
+	type params
 	type interpretation
 	type model
 	type arguments
 
-	val add_interpreter : string -> (theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option) -> theory -> theory
-	val add_printer     : string -> (theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option) -> theory -> theory
+	exception CANNOT_INTERPRET of Term.term
+	exception MAXVARS_EXCEEDED
 
-	val interpret           : theory -> model -> arguments -> Term.term -> interpretation * model * arguments  (* exception CANNOT_INTERPRET *)
-	val is_satisfying_model : model -> interpretation -> bool -> PropLogic.prop_formula
+	val add_interpreter : string -> (theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option) -> theory -> theory
+	val add_printer     : string -> (theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term option) -> theory -> theory
 
-	val print       : theory -> model -> Term.term -> interpretation -> (int -> bool) -> string
+	val interpret : theory -> model -> arguments -> Term.term -> (interpretation * model * arguments)  (* exception CANNOT_INTERPRET *)
+
+	val print       : theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term
 	val print_model : theory -> model -> (int -> bool) -> string
 
 (* ------------------------------------------------------------------------- *)
@@ -47,9 +45,9 @@
 	val set_default_param  : (string * string) -> theory -> theory
 	val get_default_param  : theory -> string -> string option
 	val get_default_params : theory -> (string * string) list
-	val actual_params      : theory -> (string * string) list -> (int * int * int * string)
+	val actual_params      : theory -> (string * string) list -> params
 
-	val find_model : theory -> (int * int * int * string) -> Term.term -> bool -> unit
+	val find_model : theory -> params -> Term.term -> bool -> unit
 
 	val satisfy_term   : theory -> (string * string) list -> Term.term -> unit  (* tries to find a model for a formula *)
 	val refute_term    : theory -> (string * string) list -> Term.term -> unit  (* tries to find a model that refutes a formula *)
@@ -69,11 +67,11 @@
 	(* 'error'.                                                          *)
 	exception REFUTE of string * string;  (* ("in function", "cause") *)
 
-(* ------------------------------------------------------------------------- *)
-(* TRANSLATION HOL -> PROPOSITIONAL LOGIC, BOOLEAN ASSIGNMENT -> MODEL       *)
-(* ------------------------------------------------------------------------- *)
+	exception CANNOT_INTERPRET of Term.term;
 
-	exception CANNOT_INTERPRET;
+	(* should be raised by an interpreter when more variables would be *)
+	(* required than allowed by 'maxvars'                              *)
+	exception MAXVARS_EXCEEDED;
 
 (* ------------------------------------------------------------------------- *)
 (* TREES                                                                     *)
@@ -115,12 +113,43 @@
 				| Node _ => raise REFUTE ("tree_pair", "trees are of different height (second tree is higher)"))
 		| Node xs =>
 			(case t2 of
-				  (* '~~' will raise an exception if the number of branches in both trees is different at the current node *)
+				  (* '~~' will raise an exception if the number of branches in   *)
+				  (* both trees is different at the current node                 *)
 				  Node ys => Node (map tree_pair (xs ~~ ys))
 				| Leaf _  => raise REFUTE ("tree_pair", "trees are of different height (first tree is higher)"));
 
 
 (* ------------------------------------------------------------------------- *)
+(* params: parameters that control the translation into a propositional      *)
+(*         formula/model generation                                          *)
+(*                                                                           *)
+(* The following parameters are supported (and required (!), except for      *)
+(* "sizes"):                                                                 *)
+(*                                                                           *)
+(* Name          Type    Description                                         *)
+(*                                                                           *)
+(* "sizes"       (string * int) list                                         *)
+(*                       Size of ground types (e.g. 'a=2), or depth of IDTs. *)
+(* "minsize"     int     If >0, minimal size of each ground type/IDT depth.  *)
+(* "maxsize"     int     If >0, maximal size of each ground type/IDT depth.  *)
+(* "maxvars"     int     If >0, use at most 'maxvars' Boolean variables      *)
+(*                       when transforming the term into a propositional     *)
+(*                       formula.                                            *)
+(* "maxtime"     int     If >0, terminate after at most 'maxtime' seconds.   *)
+(* "satsolver"   string  SAT solver to be used.                              *)
+(* ------------------------------------------------------------------------- *)
+
+	type params =
+		{
+			sizes    : (string * int) list,
+			minsize  : int,
+			maxsize  : int,
+			maxvars  : int,
+			maxtime  : int,
+			satsolver: string
+		};
+
+(* ------------------------------------------------------------------------- *)
 (* interpretation: a term's interpretation is given by a variable of type    *)
 (*                 'interpretation'                                          *)
 (* ------------------------------------------------------------------------- *)
@@ -139,9 +168,16 @@
 (* ------------------------------------------------------------------------- *)
 (* arguments: additional arguments required during interpretation of terms   *)
 (* ------------------------------------------------------------------------- *)
-	
+
 	type arguments =
-		{next_idx: int, bounds: interpretation list, wellformed: prop_formula};
+		{
+			(* just passed unchanged from 'params' *)
+			maxvars   : int,
+			(* these may change during the translation *)
+			next_idx  : int,
+			bounds    : interpretation list,
+			wellformed: prop_formula
+		};
 
 
 	structure RefuteDataArgs =
@@ -149,7 +185,7 @@
 		val name = "HOL/refute";
 		type T =
 			{interpreters: (string * (theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option)) list,
-			 printers: (string * (theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option)) list,
+			 printers: (string * (theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term option)) list,
 			 parameters: string Symtab.table};
 		val empty = {interpreters = [], printers = [], parameters = Symtab.empty};
 		val copy = I;
@@ -174,97 +210,62 @@
 (* interpret: tries to interpret the term 't' using a suitable interpreter;  *)
 (*            returns the interpretation and a (possibly extended) model     *)
 (*            that keeps track of the interpretation of subterms             *)
-(* Note: exception 'CANNOT_INTERPRETE' is raised if the term cannot be       *)
+(* Note: exception 'CANNOT_INTERPRET t' is raised if the term cannot be      *)
 (*       interpreted by any interpreter                                      *)
 (* ------------------------------------------------------------------------- *)
 
-	(* theory -> model -> arguments -> Term.term -> interpretation * model * arguments *)
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) *)
 
 	fun interpret thy model args t =
 		(case get_first (fn (_, f) => f thy model args t) (#interpreters (RefuteData.get thy)) of
-		  None =>
-			(std_output "\n"; warning ("Unable to interpret term:\n" ^ Sign.string_of_term (sign_of thy) t);
-			raise CANNOT_INTERPRET)
+		  None   => raise (CANNOT_INTERPRET t)
 		| Some x => x);
 
 (* ------------------------------------------------------------------------- *)
-(* print: tries to print the constant denoted by the term 't' using a        *)
-(*        suitable printer                                                   *)
+(* print: tries to convert the constant denoted by the term 't' into a term  *)
+(*        using a suitable printer                                           *)
 (* ------------------------------------------------------------------------- *)
 
-	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> string *)
+	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term *)
 
 	fun print thy model t intr assignment =
 		(case get_first (fn (_, f) => f thy model t intr assignment) (#printers (RefuteData.get thy)) of
-		  None => "<<no printer available>>"
-		| Some s => s);
-
-(* ------------------------------------------------------------------------- *)
-(* is_satisfying_model: returns a propositional formula that is true iff the *)
-(*      given interpretation denotes 'satisfy', and the model meets certain  *)
-(*      well-formedness properties                                           *)
-(* ------------------------------------------------------------------------- *)
-
-	(* model -> interpretation -> bool -> PropLogic.prop_formula *)
-
-	fun is_satisfying_model model intr satisfy =
-	let
-		(* prop_formula list -> prop_formula *)
-		fun oneoutoftwofalse []      = True
-		  | oneoutoftwofalse (x::xs) = SAnd (PropLogic.all (map (fn x' => SOr (SNot x, SNot x')) xs), oneoutoftwofalse xs)
-		(* prop_formula list -> prop_formula *)
-		fun exactly1true xs = SAnd (PropLogic.exists xs, oneoutoftwofalse xs)
-	(* ------------------------------------------------------------------------- *)
-	(* restrict_to_single_element: returns a propositional formula that is true  *)
-	(*      iff the interpretation denotes a single element of its corresponding *)
-	(*      type, i.e. iff at each leaf, one and only one formula is true        *)
-	(* ------------------------------------------------------------------------- *)
-		(* interpretation -> prop_formula *)
-		fun restrict_to_single_element (Leaf [BoolVar i, Not (BoolVar j)]) =
-			if (i=j) then
-				True  (* optimization for boolean variables *)
-			else
-				raise REFUTE ("is_satisfying_model", "boolean variables in leaf have different indices")
-		  | restrict_to_single_element (Leaf xs) =
-			exactly1true xs
-		  | restrict_to_single_element (Node trees) =
-			PropLogic.all (map restrict_to_single_element trees)
-	in
-		(* a term of type 'bool' is represented as a 2-element leaf, where  *)
-		(* the term is true iff the leaf's first element is true, and false *)
-		(* iff the leaf's second element is true                            *)
-		case intr of
-		  Leaf [fmT,fmF] =>
-			(* well-formedness properties and formula 'fmT'/'fmF' *)
-			SAnd (PropLogic.all (map (restrict_to_single_element o snd) (snd model)), if satisfy then fmT else fmF)
-		| _ =>
-			raise REFUTE ("is_satisfying_model", "interpretation does not denote a boolean value")
-	end;
+		  None   => Const ("<<no printer available>>", fastype_of t)
+		| Some x => x);
 
 (* ------------------------------------------------------------------------- *)
 (* print_model: turns the model into a string, using a fixed interpretation  *)
-(*              (given by an assignment for boolean variables) and suitable  *)
+(*              (given by an assignment for Boolean variables) and suitable  *)
 (*              printers                                                     *)
 (* ------------------------------------------------------------------------- *)
 
+	(* theory -> model -> (int -> bool) -> string *)
+
 	fun print_model thy model assignment =
 	let
 		val (typs, terms) = model
+		val typs_msg =
+			if null typs then
+				"empty universe (no type variables in term)\n"
+			else
+				"Size of types: " ^ commas (map (fn (T,i) => Sign.string_of_typ (sign_of thy) T ^ ": " ^ string_of_int i) typs) ^ "\n"
+		val show_consts_msg =
+			if not (!show_consts) andalso Library.exists (is_Const o fst) terms then
+				"set \"show_consts\" to show the interpretation of constants\n"
+			else
+				""
+		val terms_msg =
+			if null terms then
+				"empty interpretation (no free variables in term)\n"
+			else
+				space_implode "\n" (mapfilter (fn (t,intr) =>
+					(* print constants only if 'show_consts' is true *)
+					if (!show_consts) orelse not (is_Const t) then
+						Some (Sign.string_of_term (sign_of thy) t ^ ": " ^ Sign.string_of_term (sign_of thy) (print thy model t intr assignment))
+					else
+						None) terms) ^ "\n"
 	in
-		(if null typs then
-			"empty universe (no type variables in term)"
-		else
-			"Size of types: " ^ commas (map (fn (T,i) => Sign.string_of_typ (sign_of thy) T ^ ": " ^ string_of_int i) typs))
-		^ "\n"
-		^ (if null terms then
-			"empty interpretation (no free variables in term)"
-		  else
-			space_implode "\n" (map
-				(fn (t,intr) =>
-					Sign.string_of_term (sign_of thy) t ^ ": " ^ print thy model t intr assignment)
-				terms)
-		  )
-		^ "\n"
+		typs_msg ^ show_consts_msg ^ terms_msg
 	end;
 
 
@@ -283,7 +284,7 @@
 		| Some _ => error ("Interpreter " ^ name ^ " already declared")
 	end;
 
-	(* string -> (theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option) -> theory -> theory *)
+	(* string -> (theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term option) -> theory -> theory *)
 
 	fun add_printer name f thy =
 	let
@@ -333,25 +334,12 @@
 (* ------------------------------------------------------------------------- *)
 (* actual_params: takes a (possibly empty) list 'params' of parameters that  *)
 (*      override the default parameters currently specified in 'thy', and    *)
-(*      returns a tuple that can be passed to 'find_model'.                  *)
-(*                                                                           *)
-(* The following parameters are supported (and required!):                   *)
-(*                                                                           *)
-(* Name          Type    Description                                         *)
-(*                                                                           *)
-(* "minsize"     int     Only search for models with size at least           *)
-(*                       'minsize'.                                          *)
-(* "maxsize"     int     If >0, only search for models with size at most     *)
-(*                       'maxsize'.                                          *)
-(* "maxvars"     int     If >0, use at most 'maxvars' boolean variables      *)
-(*                       when transforming the term into a propositional     *)
-(*                       formula.                                            *)
-(* "satsolver"   string  SAT solver to be used.                              *)
+(*      returns a record that can be passed to 'find_model'.                 *)
 (* ------------------------------------------------------------------------- *)
 
-	(* theory -> (string * string) list -> (int * int * int * string) *)
+	(* theory -> (string * string) list -> params *)
 
-	fun actual_params thy params =
+	fun actual_params thy override =
 	let
 		(* (string * string) list * string -> int *)
 		fun read_int (parms, name) =
@@ -366,147 +354,591 @@
 			  Some s => s
 			| None   => error ("parameter " ^ quote name ^ " must be assigned a value")
 		(* (string * string) list *)
-		val allparams = params @ (get_default_params thy)  (* 'params' first, defaults last (to override) *)
+		val allparams = override @ (get_default_params thy)  (* 'override' first, defaults last *)
 		(* int *)
 		val minsize   = read_int (allparams, "minsize")
 		val maxsize   = read_int (allparams, "maxsize")
 		val maxvars   = read_int (allparams, "maxvars")
+      val maxtime   = read_int (allparams, "maxtime")
 		(* string *)
 		val satsolver = read_string (allparams, "satsolver")
+		(* all remaining parameters of the form "string=int" are collected in  *)
+		(* 'sizes'                                                             *)
+		(* TODO: it is currently not possible to specify a size for a type     *)
+		(*       whose name is one of the other parameters (e.g. 'maxvars')    *)
+		(* (string * int) list *)
+		val sizes     = mapfilter
+			(fn (name,value) => (case Int.fromString value of SOME i => Some (name, i) | NONE => None))
+			(filter (fn (name,_) => name<>"minsize" andalso name<>"maxsize" andalso name<>"maxvars" andalso name<>"maxtime" andalso name<>"satsolver")
+				allparams)
 	in
-		(minsize, maxsize, maxvars, satsolver)
+		{sizes=sizes, minsize=minsize, maxsize=maxsize, maxvars=maxvars, maxtime=maxtime, satsolver=satsolver}
+	end;
+
+
+(* ------------------------------------------------------------------------- *)
+(* TRANSLATION HOL -> PROPOSITIONAL LOGIC, BOOLEAN ASSIGNMENT -> MODEL       *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* collect_axioms: collects (monomorphic, universally quantified versions    *)
+(*                 of) all HOL axioms that are relevant w.r.t 't'            *)
+(* ------------------------------------------------------------------------- *)
+
+	(* TODO: to make the collection of axioms more easily extensible, this    *)
+	(*       function could be based on user-supplied "axiom collectors",     *)
+	(*       similar to 'interpret'/interpreters or 'print'/printers          *)
+
+	(* theory -> Term.term -> Term.term list *)
+
+	(* Which axioms are "relevant" for a particular term/type goes hand in    *)
+	(* hand with the interpretation of that term/type by its interpreter (see *)
+	(* way below): if the interpretation respects an axiom anyway, the axiom  *)
+	(* does not need to be added as a constraint here.                        *)
+
+	(* When an axiom is added as relevant, further axioms may need to be      *)
+	(* added as well (e.g. when a constant is defined in terms of other       *)
+	(* constants).  To avoid infinite recursion (which should not happen for  *)
+	(* constants anyway, but it could happen for "typedef"-related axioms,    *)
+	(* since they contain the type again), we use an accumulator 'axs' and    *)
+	(* add a relevant axiom only if it is not in 'axs' yet.                   *)
+
+	fun collect_axioms thy t =
+	let
+		val _ = std_output "Adding axioms..."
+		(* (string * Term.term) list *)
+		val axioms = flat (map (Symtab.dest o #axioms o Theory.rep_theory) (thy :: Theory.ancestors_of thy))
+		(* given a constant 's' of type 'T', which is a subterm of 't', where  *)
+		(* 't' has a (possibly) more general type, the schematic type          *)
+		(* variables in 't' are instantiated to match the type 'T'             *)
+		(* (string * Term.typ) * Term.term -> Term.term *)
+		fun specialize_type ((s, T), t) =
+		let
+			fun find_typeSubs (Const (s', T')) =
+				(if s=s' then
+					Some (Type.typ_match (Sign.tsig_of (sign_of thy)) (Vartab.empty, (T', T)))
+				else
+					None
+				handle Type.TYPE_MATCH => None)
+			  | find_typeSubs (Free _)           = None
+			  | find_typeSubs (Var _)            = None
+			  | find_typeSubs (Bound _)          = None
+			  | find_typeSubs (Abs (_, _, body)) = find_typeSubs body
+			  | find_typeSubs (t1 $ t2)          = (case find_typeSubs t1 of Some x => Some x | None => find_typeSubs t2)
+			val typeSubs = (case find_typeSubs t of
+				  Some x => x
+				| None   => raise REFUTE ("collect_axioms", "no type instantiation found for " ^ quote s ^ " in " ^ Sign.string_of_term (sign_of thy) t))
+		in
+			map_term_types
+				(map_type_tvar
+					(fn (v,_) =>
+						case Vartab.lookup (typeSubs, v) of
+						  None =>
+							(* schematic type variable not instantiated *)
+							raise REFUTE ("collect_axioms", "term " ^ Sign.string_of_term (sign_of thy) t ^ " still has a polymorphic type (after instantiating type of " ^ quote s ^ ")")
+						| Some typ =>
+							typ))
+					t
+		end
+		(* Term.term list * Term.typ -> Term.term list *)
+		fun collect_type_axioms (axs, T) =
+			case T of
+			(* simple types *)
+			  Type ("prop", [])      => axs
+			| Type ("fun", [T1, T2]) => collect_type_axioms (collect_type_axioms (axs, T1), T2)
+			| Type ("set", [T1])     => collect_type_axioms (axs, T1)
+			| Type (s, Ts)           =>
+				let
+					(* look up the definition of a type, as created by "typedef" *)
+					(* (string * Term.term) list -> (string * Term.term) option *)
+					fun get_typedefn [] =
+						None
+					  | get_typedefn ((axname,ax)::axms) =
+						(let
+							(* Term.term -> Term.typ option *)
+							fun type_of_type_definition (Const (s', T')) =
+								if s'="Typedef.type_definition" then
+									Some T'
+								else
+									None
+							  | type_of_type_definition (Free _)           = None
+							  | type_of_type_definition (Var _)            = None
+							  | type_of_type_definition (Bound _)          = None
+							  | type_of_type_definition (Abs (_, _, body)) = type_of_type_definition body
+							  | type_of_type_definition (t1 $ t2)          = (case type_of_type_definition t1 of Some x => Some x | None => type_of_type_definition t2)
+						in
+							case type_of_type_definition ax of
+							  Some T' =>
+								let
+									val T''      = (domain_type o domain_type) T'
+									val typeSubs = Type.typ_match (Sign.tsig_of (sign_of thy)) (Vartab.empty, (T'', T))
+									val unvar_ax = map_term_types
+										(map_type_tvar
+											(fn (v,_) =>
+												case Vartab.lookup (typeSubs, v) of
+												  None =>
+													(* schematic type variable not instantiated *)
+													raise ERROR
+												| Some typ =>
+													typ))
+										ax
+								in
+									Some (axname, unvar_ax)
+								end
+							| None =>
+								get_typedefn axms
+						end
+						handle ERROR           => get_typedefn axms
+						     | MATCH           => get_typedefn axms
+						     | Type.TYPE_MATCH => get_typedefn axms)
+				in
+					case DatatypePackage.datatype_info thy s of
+					  Some info =>  (* inductive datatype *)
+							(* only collect relevant type axioms for the argument types *)
+							foldl collect_type_axioms (axs, Ts)
+					| None =>
+						(case get_typedefn axioms of
+						  Some (axname, ax) => 
+							if mem_term (ax, axs) then
+								(* collect relevant type axioms for the argument types *)
+								foldl collect_type_axioms (axs, Ts)
+							else
+								(std_output (" " ^ axname);
+								collect_term_axioms (ax :: axs, ax))
+						| None =>
+							(* at least collect relevant type axioms for the argument types *)
+							foldl collect_type_axioms (axs, Ts))
+				end
+			(* TODO: include sort axioms *)
+			| TFree (_, sorts)       => ((*if not (null sorts) then std_output " *ignoring sorts*" else ();*) axs)
+			| TVar  (_, sorts)       => ((*if not (null sorts) then std_output " *ignoring sorts*" else ();*) axs)
+		(* Term.term list * Term.term -> Term.term list *)
+		and collect_term_axioms (axs, t) =
+			case t of
+			(* Pure *)
+			  Const ("all", _)                => axs
+			| Const ("==", _)                 => axs
+			| Const ("==>", _)                => axs
+			(* HOL *)
+			| Const ("Trueprop", _)           => axs
+			| Const ("Not", _)                => axs
+			| Const ("True", _)               => axs  (* redundant, since 'True' is also an IDT constructor *)
+			| Const ("False", _)              => axs  (* redundant, since 'False' is also an IDT constructor *)
+			| Const ("arbitrary", T)          => collect_type_axioms (axs, T)
+			| Const ("The", T)                =>
+				let
+					val ax = specialize_type (("The", T), (the o assoc) (axioms, "HOL.the_eq_trivial"))
+				in
+					if mem_term (ax, axs) then
+						collect_type_axioms (axs, T)
+					else
+						(std_output " HOL.the_eq_trivial";
+						collect_term_axioms (ax :: axs, ax))
+				end
+			| Const ("Hilbert_Choice.Eps", T) =>
+				let
+					val ax = specialize_type (("Hilbert_Choice.Eps", T), (the o assoc) (axioms, "Hilbert_Choice.someI"))
+				in
+					if mem_term (ax, axs) then
+						collect_type_axioms (axs, T)
+					else
+						(std_output " Hilbert_Choice.someI";
+						collect_term_axioms (ax :: axs, ax))
+				end
+			| Const ("All", _) $ t1           => collect_term_axioms (axs, t1)
+			| Const ("Ex", _) $ t1            => collect_term_axioms (axs, t1)
+			| Const ("op =", T)               => collect_type_axioms (axs, T)
+			| Const ("op &", _)               => axs
+			| Const ("op |", _)               => axs
+			| Const ("op -->", _)             => axs
+			(* sets *)
+			| Const ("Collect", T)            => collect_type_axioms (axs, T)
+			| Const ("op :", T)               => collect_type_axioms (axs, T)
+			(* other optimizations *)
+			| Const ("Finite_Set.card", T)    => collect_type_axioms (axs, T)
+			(* simply-typed lambda calculus *)
+			| Const (s, T)                    =>
+				let
+					(* look up the definition of a constant, as created by "constdefs" *)
+					(* string -> Term.typ -> (string * Term.term) list -> (string * Term.term) option *)
+					fun get_defn [] =
+						None
+					  | get_defn ((axname,ax)::axms) =
+						(let
+							val (lhs, _) = Logic.dest_equals ax  (* equations only *)
+							val c        = head_of lhs
+							val (s', T') = dest_Const c
+						in
+							if s=s' then
+								let
+									val typeSubs = Type.typ_match (Sign.tsig_of (sign_of thy)) (Vartab.empty, (T', T))
+									val unvar_ax = map_term_types
+										(map_type_tvar
+											(fn (v,_) =>
+												case Vartab.lookup (typeSubs, v) of
+												  None =>
+													(* schematic type variable not instantiated *)
+													raise ERROR
+												| Some typ =>
+													typ))
+										ax
+								in
+									Some (axname, unvar_ax)
+								end
+							else
+								get_defn axms
+						end
+						handle ERROR           => get_defn axms
+						     | TERM _          => get_defn axms
+						     | Type.TYPE_MATCH => get_defn axms)
+						(* unit -> bool *)
+						fun is_IDT_constructor () =
+							(case body_type T of
+							  Type (s', _) =>
+								(case DatatypePackage.constrs_of thy s' of
+								  Some constrs =>
+									Library.exists (fn c =>
+										(case c of
+										  Const (cname, ctype) =>
+											cname = s andalso Type.typ_instance (Sign.tsig_of (sign_of thy), T, ctype)
+										| _ =>
+											raise REFUTE ("collect_axioms", "IDT constructor is not a constant")))
+										constrs
+								| None =>
+									false)
+							| _  =>
+								false)
+						(* unit -> bool *)
+						fun is_IDT_recursor () =
+							(* the type of a recursion operator: [T1,...,Tn,IDT]--->TResult (where *)
+							(* the T1,...,Tn depend on the types of the datatype's constructors)   *)
+							((case last_elem (binder_types T) of
+							  Type (s', _) =>
+								(case DatatypePackage.datatype_info thy s' of
+								  Some info =>
+									(* TODO: I'm not quite sute if comparing the names is sufficient, or if *)
+									(*       we should also check the type                                  *)
+									s mem (#rec_names info)
+								| None =>  (* not an inductive datatype *)
+									false)
+							| _ =>  (* a (free or schematic) type variable *)
+								false)
+							handle LIST "last_elem" => false)  (* not even a function type *)
+				in
+					if is_IDT_constructor () orelse is_IDT_recursor () then
+						(* only collect relevant type axioms *)
+						collect_type_axioms (axs, T)
+					else
+						(case get_defn axioms of
+						  Some (axname, ax) => 
+							if mem_term (ax, axs) then
+								(* collect relevant type axioms *)
+								collect_type_axioms (axs, T)
+							else
+								(std_output (" " ^ axname);
+								collect_term_axioms (ax :: axs, ax))
+						| None =>
+							(* collect relevant type axioms *)
+							collect_type_axioms (axs, T))
+				end
+			| Free (_, T)                     => collect_type_axioms (axs, T)
+			| Var (_, T)                      => collect_type_axioms (axs, T)
+			| Bound i                         => axs
+			| Abs (_, T, body)                => collect_term_axioms (collect_type_axioms (axs, T), body)
+			| t1 $ t2                         => collect_term_axioms (collect_term_axioms (axs, t1), t2)
+		(* universal closure over schematic variables *)
+		(* Term.term -> Term.term *)
+		fun close_form t =
+		let
+			(* (Term.indexname * Term.typ) list *)
+			val vars = sort_wrt (fst o fst) (map dest_Var (term_vars t))
+		in
+			foldl
+				(fn (t', ((x,i),T)) => (Term.all T) $ Abs (x, T, abstract_over (Var((x,i),T), t')))
+				(t, vars)
+		end
+		(* Term.term list *)
+		val result = map close_form (collect_term_axioms ([], t))
+		val _ = writeln " ...done."
+	in
+		result
 	end;
 
 (* ------------------------------------------------------------------------- *)
-(* find_model: repeatedly calls 'invoke_propgen' with appropriate            *)
-(*             parameters, applies the SAT solver, and (in case a model is   *)
-(*             found) displays the model to the user                         *)
-(* thy      : the current theory                                             *)
-(* minsize  : the minimal size of the model                                  *)
-(* maxsize  : the maximal size of the model                                  *)
-(* maxvars  : the maximal number of boolean variables to be used             *)
-(* satsolver: the name of the SAT solver to be used                          *)
-(* satisfy  : if 'True', search for a model that makes 't' true; otherwise   *)
-(*            search for a model that makes 't' false                        *)
+(* ground_types: collects all ground types in a term (including argument     *)
+(*               types of other types), suppressing duplicates.  Does not    *)
+(*               return function types, set types, non-recursive IDTs, or    *)
+(*               'propT'.  For IDTs, also the argument types of constructors *)
+(*               are considered.                                             *)
+(* ------------------------------------------------------------------------- *)
+
+	(* theory -> Term.term -> Term.typ list *)
+
+	fun ground_types thy t =
+	let
+		(* Term.typ * Term.typ list -> Term.typ list *)
+		fun collect_types (T, acc) =
+			if T mem acc then
+				acc  (* prevent infinite recursion (for IDTs) *)
+			else
+				(case T of
+				  Type ("fun", [T1, T2]) => collect_types (T1, collect_types (T2, acc))
+				| Type ("prop", [])      => acc
+				| Type ("set", [T1])     => collect_types (T1, acc)
+				| Type (s, Ts)           =>
+					(case DatatypePackage.datatype_info thy s of
+					  Some info =>  (* inductive datatype *)
+						let
+							val index               = #index info
+							val descr               = #descr info
+							val (_, dtyps, constrs) = (the o assoc) (descr, index)
+							val typ_assoc           = dtyps ~~ Ts
+							(* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+							val _ = (if Library.exists (fn d =>
+									case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
+								then
+									raise REFUTE ("ground_types", "datatype argument (for type " ^ Sign.string_of_typ (sign_of thy) (Type (s, Ts)) ^ ") is not a variable")
+								else
+									())
+							(* DatatypeAux.descr -> (DatatypeAux.dtyp * Term.typ) list -> DatatypeAux.dtyp -> Term.typ *)
+							fun typ_of_dtyp descr typ_assoc (DatatypeAux.DtTFree a) =
+								(* replace a 'DtTFree' variable by the associated type *)
+								(the o assoc) (typ_assoc, DatatypeAux.DtTFree a)
+							  | typ_of_dtyp descr typ_assoc (DatatypeAux.DtRec i) =
+								let
+									val (s, ds, _) = (the o assoc) (descr, i)
+								in
+									Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+								end
+							  | typ_of_dtyp descr typ_assoc (DatatypeAux.DtType (s, ds)) =
+								Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+							(* if the current type is a recursive IDT (i.e. a depth is required), add it to 'acc' *)
+							val acc' = (if Library.exists (fn (_, ds) => Library.exists DatatypeAux.is_rec_type ds) constrs then
+									T ins acc
+								else
+									acc)
+							(* collect argument types *)
+							val acc_args = foldr collect_types (Ts, acc')
+							(* collect constructor types *)
+							val acc_constrs = foldr collect_types (flat (map (fn (_, ds) => map (typ_of_dtyp descr typ_assoc) ds) constrs), acc_args)
+						in
+							acc_constrs
+						end
+					| None =>  (* not an inductive datatype, e.g. defined via "typedef" or "typedecl" *)
+						T ins (foldr collect_types (Ts, acc)))
+				| TFree _                => T ins acc
+				| TVar _                 => T ins acc)
+	in
+		it_term_types collect_types (t, [])
+	end;
+
+(* ------------------------------------------------------------------------- *)
+(* string_of_typ: (rather naive) conversion from types to strings, used to   *)
+(*                look up the size of a type in 'sizes'.  Parameterized      *)
+(*                types with different parameters (e.g. "'a list" vs. "bool  *)
+(*                list") are identified.                                     *)
+(* ------------------------------------------------------------------------- *)
+
+	(* Term.typ -> string *)
+
+	fun string_of_typ (Type (s, _))     = s
+	  | string_of_typ (TFree (s, _))    = s
+	  | string_of_typ (TVar ((s,_), _)) = s;
+
+(* ------------------------------------------------------------------------- *)
+(* first_universe: returns the "first" (i.e. smallest) universe by assigning *)
+(*                 'minsize' to every type for which no size is specified in *)
+(*                 'sizes'                                                   *)
+(* ------------------------------------------------------------------------- *)
+
+	(* Term.typ list -> (string * int) list -> int -> (Term.typ * int) list *)
+
+	fun first_universe xs sizes minsize =
+	let
+		fun size_of_typ T =
+			case assoc (sizes, string_of_typ T) of
+			  Some n => n
+			| None   => minsize
+	in
+		map (fn T => (T, size_of_typ T)) xs
+	end;
+
+(* ------------------------------------------------------------------------- *)
+(* next_universe: enumerates all universes (i.e. assignments of sizes to     *)
+(*                types), where the minimal size of a type is given by       *)
+(*                'minsize', the maximal size is given by 'maxsize', and a   *)
+(*                type may have a fixed size given in 'sizes'                *)
 (* ------------------------------------------------------------------------- *)
 
-	(* theory ->  (int * int * int * string) -> Term.term -> bool -> unit *)
+	(* (Term.typ * int) list -> (string * int) list -> int -> int -> (Term.typ * int) list option *)
 
-	fun find_model thy (minsize, maxsize, maxvars, satsolver) t satisfy =
+	fun next_universe xs sizes minsize maxsize =
 	let
-		(* Term.typ list *)
-		val tvars  = map (fn (i,s) => TVar(i,s)) (term_tvars t)
-		val tfrees = map (fn (x,s) => TFree(x,s)) (term_tfrees t)
-		(* int -> unit *)
-		fun find_model_loop size =
-			(* 'maxsize=0' means "search for arbitrary large models" *)
-			if size>maxsize andalso maxsize<>0 then
-				writeln ("Search terminated: maxsize=" ^ string_of_int maxsize ^ " exceeded.")
+		(* int -> int list -> int list option *)
+		fun add1 _ [] =
+			None  (* overflow *)
+		  | add1 max (x::xs) =
+		 	if x<max orelse max<0 then
+				Some ((x+1)::xs)  (* add 1 to the head *)
+			else
+				apsome (fn xs' => 0 :: xs') (add1 max xs)  (* carry-over *)
+		(* int -> int list * int list -> int list option *)
+		fun shift _ (_, []) =
+			None
+		  | shift max (zeros, x::xs) =
+			if x=0 then
+				shift max (0::zeros, xs)
 			else
-			let
-				(* ------------------------------------------------------------------------- *)
-				(* make_universes: given a list 'xs' of "types" and a universe size 'size',  *)
-				(*      this function returns all possible partitions of the universe into   *)
-				(*      the "types" in 'xs' such that no "type" is empty.  If 'size' is less *)
-				(*      than 'length xs', the returned list of partitions is empty.          *)
-				(*      Otherwise, if the list 'xs' is empty, then the returned list of      *)
-				(*      partitions contains only the empty list, regardless of 'size'.       *)
-				(* ------------------------------------------------------------------------- *)
-				(* 'a list -> int -> ('a * int) list list *)
-				fun make_universes xs size =
+				apsome (fn xs' => (x-1) :: (zeros @ xs')) (add1 max xs)
+		(* creates the "first" list of length 'len', where the sum of all list *)
+		(* elements is 'sum', and the length of the list is 'len'              *)
+		(* int -> int -> int -> int list option *)
+		fun make_first 0 sum _ =
+			if sum=0 then
+				Some []
+			else
+				None
+		  | make_first len sum max =
+			if sum<=max orelse max<0 then
+				apsome (fn xs' => sum :: xs') (make_first (len-1) 0 max)
+			else
+				apsome (fn xs' => max :: xs') (make_first (len-1) (sum-max) max)
+		(* enumerates all int lists with a fixed length, where 0<=x<='max' for *)
+		(* all list elements x (unless 'max'<0)                                *)
+		(* int -> int list -> int list option *)
+		fun next max xs =
+			(case shift max ([], xs) of
+			  Some xs' =>
+				Some xs'
+			| None =>
 				let
-					(* 'a list -> int -> int -> ('a * int) list list *)
-					fun make_partitions_loop (x::xs) 0 total =
-						map (fn us => ((x,0)::us)) (make_partitions xs total)
-					  | make_partitions_loop (x::xs) first total =
-						(map (fn us => ((x,first)::us)) (make_partitions xs (total-first))) @ (make_partitions_loop (x::xs) (first-1) total)
-					  | make_partitions_loop _ _ _ =
-						raise REFUTE ("find_model", "empty list (in make_partitions_loop)")
-					and
-					(* 'a list -> int -> ('a * int) list list *)
-					make_partitions [x] size =
-						(* we must use all remaining elements on the type 'x', so there is only one partition *)
-						[[(x,size)]]
-					  | make_partitions (x::xs) 0 =
-						(* there are no elements left in the universe, so there is only one partition *)
-						[map (fn t => (t,0)) (x::xs)]
-					  | make_partitions (x::xs) size =
-						(* we assign either size, size-1, ..., 1 or 0 elements to 'x'; the remaining elements are partitioned recursively *)
-						make_partitions_loop (x::xs) size size
-					  | make_partitions _ _ =
-						raise REFUTE ("find_model", "empty list (in make_partitions)")
-					val len = length xs
+					val (len, sum) = foldl (fn ((l, s), x) => (l+1, s+x)) ((0, 0), xs)
 				in
-					if size<len then
-						(* the universe isn't big enough to make every type non-empty *)
-						[]
-					else if xs=[] then
-						(* no types: return one universe, regardless of the size *)
-						[[]]
-					else
-						(* partition into possibly empty types, then add 1 element to each type *)
-						map (fn us => map (fn (x,i) => (x,i+1)) us) (make_partitions xs (size-len))
-				end
-				(* ('a * int) list -> bool *)
-				fun find_interpretation xs =
-				let
-					val init_model          = (xs, [])
-					val init_args           = {next_idx = 1, bounds = [], wellformed = True}
-					val (intr, model, args) = interpret thy init_model init_args t
-					val fm                  = SAnd (#wellformed args, is_satisfying_model model intr satisfy)
-					val usedvars            = maxidx fm
-				in
-					(* 'maxvars=0' means "use as many variables as necessary" *)
-					if usedvars>maxvars andalso maxvars<>0 then
-						(writeln ("\nSearch terminated: " ^ string_of_int usedvars ^ " boolean variables used (only " ^ string_of_int maxvars ^ " allowed).");
-						true)
-					else
-					(
-						std_output " invoking SAT solver...";
-						case SatSolver.invoke_solver satsolver fm of
-						  None =>
-							(std_output (" error: SAT solver " ^ quote satsolver ^ " not configured.\n");
-							true)
-						| Some None =>
-							(std_output " no model found.\n";
-							false)
-						| Some (Some assignment) =>
-							(writeln ("\nModel found:\n" ^ print_model thy model assignment);
-							true)
-					)
-				end handle CANNOT_INTERPRET => true
-					(* TODO: change this to false once the ability to interpret terms depends on the universe *)
+					make_first len (sum+1) max  (* increment 'sum' by 1 *)
+				end)
+		(* only consider those types for which the size is not fixed *)
+		val mutables = filter (fn (T, _) => assoc (sizes, string_of_typ T) = None) xs
+		(* subtract 'minsize' from every size (will be added again at the end) *)
+		val diffs = map (fn (_, n) => n-minsize) mutables
+	in
+		case next (maxsize-minsize) diffs of
+		  Some diffs' =>
+			(* merge with those types for which the size is fixed *)
+			Some (snd (foldl_map (fn (ds, (T, _)) =>
+				case assoc (sizes, string_of_typ T) of
+				  Some n => (ds, (T, n))                      (* return the fixed size *)
+				| None   => (tl ds, (T, minsize + (hd ds))))  (* consume the head of 'ds', add 'minsize' *)
+				(diffs', xs)))
+		| None =>
+			None
+	end;
+
+(* ------------------------------------------------------------------------- *)
+(* toTrue: converts the interpretation of a Boolean value to a propositional *)
+(*         formula that is true iff the interpretation denotes "true"        *)
+(* ------------------------------------------------------------------------- *)
+
+	(* interpretation -> prop_formula *)
+
+	fun toTrue (Leaf [fm,_]) = fm
+	  | toTrue _             = raise REFUTE ("toTrue", "interpretation does not denote a Boolean value");
+
+(* ------------------------------------------------------------------------- *)
+(* toFalse: converts the interpretation of a Boolean value to a              *)
+(*          propositional formula that is true iff the interpretation        *)
+(*          denotes "false"                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+	(* interpretation -> prop_formula *)
+
+	fun toFalse (Leaf [_,fm]) = fm
+	  | toFalse _             = raise REFUTE ("toFalse", "interpretation does not denote a Boolean value");
+
+(* ------------------------------------------------------------------------- *)
+(* find_model: repeatedly calls 'interpret' with appropriate parameters,     *)
+(*             applies a SAT solver, and (in case a model is found) displays *)
+(*             the model to the user by calling 'print_model'                *)
+(* thy       : the current theory                                            *)
+(* {...}     : parameters that control the translation/model generation      *)
+(* t         : term to be translated into a propositional formula            *)
+(* negate    : if true, find a model that makes 't' false (rather than true) *)
+(* Note: exception 'TimeOut' is raised if the algorithm does not terminate   *)
+(*       within 'maxtime' seconds (if 'maxtime' >0)                          *)
+(* ------------------------------------------------------------------------- *)
+
+	(* theory -> params -> Term.term -> bool -> unit *)
+
+	fun find_model thy {sizes, minsize, maxsize, maxvars, maxtime, satsolver} t negate =
+	let
+		(* unit -> unit *)
+		fun wrapper () =
+		let
+			(* Term.term list *)
+			val axioms = collect_axioms thy t
+			(* Term.typ list *)
+			val types  = foldl (fn (acc, t') => acc union (ground_types thy t')) ([], t :: axioms)
+			val _      = writeln ("Ground types: "
+				^ (if null types then "none."
+				   else commas (map (Sign.string_of_typ (sign_of thy)) types)))
+			(* (Term.typ * int) list -> unit *)
+			fun find_model_loop universe =
+			(let
+				val init_model             = (universe, [])
+				val init_args              = {maxvars = maxvars, next_idx = 1, bounds = [], wellformed = True}
+				val _                      = std_output ("Translating term (sizes: " ^ commas (map (fn (_, n) => string_of_int n) universe) ^ ") ...")
+				(* translate 't' and all axioms *)
+				val ((model, args), intrs) = foldl_map (fn ((m, a), t') =>
+					let
+						val (i, m', a') = interpret thy m a t'
+					in
+						((m', a'), i)
+					end) ((init_model, init_args), t :: axioms)
+				(* make 't' either true or false, and make all axioms true, and *)
+				(* add the well-formedness side condition                       *)
+				val fm_t  = (if negate then toFalse else toTrue) (hd intrs)
+				val fm_ax = PropLogic.all (map toTrue (tl intrs))
+				val fm    = PropLogic.all [#wellformed args, fm_ax, fm_t]
 			in
-				case make_universes (tvars@tfrees) size of
-				  [] =>
-					(writeln ("Searching for a model of size " ^ string_of_int size ^ ": cannot make every type non-empty (model is too small).");
-					find_model_loop (size+1))
-				| [[]] =>
-					(std_output ("Searching for a model of size " ^ string_of_int size ^ ", translating term...");
-					if find_interpretation [] then
-						()
-					else
-						writeln ("Search terminated: no type variables in term."))
-				| us =>
-					let
-						fun loop []      =
-							find_model_loop (size+1)
-						  | loop (u::us) =
-							(std_output ("Searching for a model of size " ^ string_of_int size ^ ", translating term...");
-							if find_interpretation u then () else loop us)
-					in
-						loop us
-					end
+				std_output " invoking SAT solver...";
+				case SatSolver.invoke_solver satsolver fm of
+				  None =>
+					error ("SAT solver " ^ quote satsolver ^ " not configured.")
+				| Some None =>
+					(std_output " no model found.\n";
+					case next_universe universe sizes minsize maxsize of
+					  Some universe' => find_model_loop universe'
+					| None           => writeln "Search terminated, no larger universe within the given limits.")
+				| Some (Some assignment) =>
+					writeln ("\n*** Model found: ***\n" ^ print_model thy model assignment)
+			end handle MAXVARS_EXCEEDED =>
+				writeln ("\nSearch terminated, number of Boolean variables (" ^ string_of_int maxvars ^ " allowed) exceeded.")
+			| CANNOT_INTERPRET t' =>
+				error ("Unable to interpret term " ^ Sign.string_of_term (sign_of thy) t'))
+			in
+				find_model_loop (first_universe types sizes minsize)
 			end
-	in
-		writeln ("Trying to find a model that "
-			^ (if satisfy then "satisfies" else "refutes")
-			^ ": " ^ (Sign.string_of_term (sign_of thy) t));
-		if minsize<1 then
-			writeln "\"minsize\" is less than 1; starting search with size 1."
-		else ();
-		find_model_loop (Int.max (minsize,1))
-	end;
+		in
+			(* some parameter sanity checks *)
+			assert (minsize>=1) ("\"minsize\" is " ^ string_of_int minsize ^ ", must be at least 1");
+			assert (maxsize>=1) ("\"maxsize\" is " ^ string_of_int maxsize ^ ", must be at least 1");
+			assert (maxsize>=minsize) ("\"maxsize\" (=" ^ string_of_int maxsize ^ ") is less than \"minsize\" (=" ^ string_of_int minsize ^ ").");
+			assert (maxvars>=0) ("\"maxvars\" is " ^ string_of_int maxvars ^ ", must be at least 0");
+			assert (maxtime>=0) ("\"maxtime\" is " ^ string_of_int maxtime ^ ", must be at least 0");
+			(* enter loop with/without time limit *)
+			writeln ("Trying to find a model that " ^ (if negate then "refutes" else "satisfies") ^ ": "
+				^ Sign.string_of_term (sign_of thy) t);
+			if maxtime>0 then
+				(* TODO: this only works with SML/NJ *)
+				((*TimeLimit.timeLimit (Time.fromSeconds (Int32.fromInt maxtime))*)
+					wrapper ()
+				(*handle TimeLimit.TimeOut =>
+					writeln ("\nSearch terminated, time limit ("
+						^ string_of_int maxtime ^ " second"
+						^ (if maxtime=1 then "" else "s")
+						^ ") exceeded.")*))
+			else
+				wrapper ()
+		end;
 
 
 (* ------------------------------------------------------------------------- *)
@@ -522,7 +954,7 @@
 	(* theory -> (string * string) list -> Term.term -> unit *)
 
 	fun satisfy_term thy params t =
-		find_model thy (actual_params thy params) t true;
+		find_model thy (actual_params thy params) t false;
 
 (* ------------------------------------------------------------------------- *)
 (* refute_term: calls 'find_model' to find a model that refutes 't'          *)
@@ -534,7 +966,10 @@
 
 	fun refute_term thy params t =
 	let
-		(* disallow schematic type variables, since we cannot properly negate terms containing them *)
+		(* disallow schematic type variables, since we cannot properly negate  *)
+		(* terms containing them (their logical meaning is that there EXISTS a *)
+		(* type s.t. ...; to refute such a formula, we would have to show that *)
+		(* for ALL types, not ...)                                             *)
 		val _ = assert (null (term_tvars t)) "Term to be refuted contains schematic type variables"
 		(* existential closure over schematic variables *)
 		(* (Term.indexname * Term.typ) list *)
@@ -545,11 +980,11 @@
 			(t, vars)
 		(* If 't' is of type 'propT' (rather than 'boolT'), applying  *)
 		(* 'HOLogic.exists_const' is not type-correct.  However, this *)
-		(* isn't really a problem as long as 'find_model' still       *)
+		(* is not really a problem as long as 'find_model' still      *)
 		(* interprets the resulting term correctly, without checking  *)
 		(* its type.                                                  *)
 	in
-		find_model thy (actual_params thy params) ex_closure false
+		find_model thy (actual_params thy params) ex_closure true
 	end;
 
 (* ------------------------------------------------------------------------- *)
@@ -569,986 +1004,16 @@
 (* INTERPRETERS                                                              *)
 (* ------------------------------------------------------------------------- *)
 
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun var_typevar_interpreter thy model args t =
-	let
-		fun is_var (Free _) = true
-		  | is_var (Var _)  = true
-		  | is_var _        = false
-		fun typeof (Free (_,T)) = T
-		  | typeof (Var (_,T))  = T
-		  | typeof _            = raise REFUTE ("var_typevar_interpreter", "term is not a variable")
-		fun is_typevar (TFree _) = true
-		  | is_typevar (TVar _)  = true
-		  | is_typevar _         = false
-		val (sizes, intrs) = model
-	in
-		if is_var t andalso is_typevar (typeof t) then
-			(case assoc (intrs, t) of
-			  Some intr => Some (intr, model, args)
-			| None      =>
-				let
-					val size = (the o assoc) (sizes, typeof t)  (* the model MUST specify a size for type variables *)
-					val idx  = #next_idx args
-					val intr = (if size=2 then Leaf [BoolVar idx, Not (BoolVar idx)] else Leaf (map BoolVar (idx upto (idx+size-1))))
-					val next = (if size=2 then idx+1 else idx+size)
-				in
-					(* extend the model, increase 'next_idx' *)
-					Some (intr, (sizes, (t, intr)::intrs), {next_idx = next, bounds = #bounds args, wellformed = #wellformed args})
-				end)
-		else
-			None
-	end;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun var_funtype_interpreter thy model args t =
-	let
-		fun is_var (Free _) = true
-		  | is_var (Var _)  = true
-		  | is_var _        = false
-		fun typeof (Free (_,T)) = T
-		  | typeof (Var (_,T))  = T
-		  | typeof _            = raise REFUTE ("var_funtype_interpreter", "term is not a variable")
-		fun stringof (Free (x,_))     = x
-		  | stringof (Var ((x,_), _)) = x
-		  | stringof _                = raise REFUTE ("var_funtype_interpreter", "term is not a variable")
-		fun is_funtype (Type ("fun", [_,_])) = true
-		  | is_funtype _                     = false
-		val (sizes, intrs) = model
-	in
-		if is_var t andalso is_funtype (typeof t) then
-			(case assoc (intrs, t) of
-			  Some intr => Some (intr, model, args)
-			| None      =>
-				let
-					val T1 = domain_type (typeof t)
-					val T2 = range_type (typeof t)
-					(* we create 'size_of_interpretation (interpret (... T1))' different copies *)
-					(* of the tree for 'T2', which are then combined into a single new tree     *)
-					val (i1, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free (stringof t, T1))
-					(* power(a,b) computes a^b, for a>=0, b>=0 *)
-					(* int * int -> int *)
-					fun power (a,0) = 1
-					  | power (a,1) = a
-					  | power (a,b) = let val ab = power(a,b div 2) in ab * ab * power(a,b mod 2) end
-					fun size_of_interpretation (Leaf xs) = length xs
-					  | size_of_interpretation (Node xs) = power (size_of_interpretation (hd xs), length xs)
-					val size = size_of_interpretation i1
-					(* make fresh copies, with different variable indices *)
-					(* int -> int -> (int * interpretation list *)
-					fun make_copies idx 0 =
-						(idx, [])
-					  | make_copies idx n =
-						let
-							val (copy, _, args) = interpret thy (sizes, []) {next_idx = idx, bounds = [], wellformed=True} (Free (stringof t, T2))
-							val (next, copies)  = make_copies (#next_idx args) (n-1)
-						in
-							(next, copy :: copies)
-						end
-					val (idx, copies) = make_copies (#next_idx args) (size_of_interpretation i1)
-					(* combine copies into a single tree *)
-					val intr = Node copies
-				in
-					(* extend the model, increase 'next_idx' *)
-					Some (intr, (sizes, (t, intr)::intrs), {next_idx = idx, bounds = #bounds args, wellformed = #wellformed args})
-				end)
-		else
-			None
-	end;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun var_settype_interpreter thy model args t =
-		let
-			val (sizes, intrs) = model
-		in
-			case t of
-			  Free (x, Type ("set", [T])) =>
-				(case assoc (intrs, t) of
-				  Some intr => Some (intr, model, args)
-				| None      =>
-					let
-						val (intr, _, args') = interpret thy model args (Free (x, Type ("fun", [T, Type ("bool", [])])))
-					in
-						Some (intr, (sizes, (t, intr)::intrs), args')
-					end)
-			| Var ((x,i), Type ("set", [T])) =>
-				(case assoc (intrs, t) of
-				  Some intr => Some (intr, model, args)
-				| None      =>
-					let
-						val (intr, _, args') = interpret thy model args (Var ((x,i), Type ("fun", [T, Type ("bool", [])])))
-					in
-						Some (intr, (sizes, (t, intr)::intrs), args')
-					end)
-			| _ => None
-		end;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun boundvar_interpreter thy model args (Bound i) = Some (nth_elem (i, #bounds (args:arguments)), model, args)
-	  | boundvar_interpreter thy model args _         = None;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun abstraction_interpreter thy model args (Abs (x, T, t)) =
-		let
-			val (sizes, intrs) = model
-			(* create all constants of type T *)
-			val (i, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free (x, T))
-			(* returns a list with all unit vectors of length n *)
-			(* int -> interpretation list *)
-			fun unit_vectors n =
-			let
-				(* returns the k-th unit vector of length n *)
-				(* int * int -> interpretation *)
-				fun unit_vector (k,n) =
-					Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-				(* int -> interpretation list -> interpretation list *)
-				fun unit_vectors_acc k vs =
-					if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
-			in
-				unit_vectors_acc 1 []
-			end
-			(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
-			(* 'a -> 'a list list -> 'a list list *)
-			fun cons_list x xss =
-				map (fn xs => x::xs) xss
-			(* returns a list of lists, each one consisting of n (possibly identical) elements from 'xs' *)
-			(* int -> 'a list -> 'a list list *)
-			fun pick_all 1 xs =
-				map (fn x => [x]) xs
-			  | pick_all n xs =
-				let val rec_pick = pick_all (n-1) xs in
-					foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
-				end
-			(* interpretation -> interpretation list *)
-			fun make_constants (Leaf xs) =
-				unit_vectors (length xs)
-			  | make_constants (Node xs) =
-				map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
-			(* interpret the body 't' separately for each constant *)
-			val ((model', args'), bodies) = foldl_map
-				(fn ((m,a), c) =>
-					let
-						(* add 'c' to 'bounds' *)
-						val (i',m',a') = interpret thy m {next_idx = #next_idx a, bounds = c::(#bounds a), wellformed = #wellformed a} t
-					in
-						(* keep the new model m' and 'next_idx', but use old 'bounds' *)
-						((m',{next_idx = #next_idx a', bounds = #bounds a, wellformed = #wellformed a'}), i')
-					end)
-				((model,args), make_constants i)
-		in
-			Some (Node bodies, model', args')
-		end
-	  | abstraction_interpreter thy model args _               = None;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun apply_interpreter thy model args (t1 $ t2) =
-		let
-			(* auxiliary functions *)
-			(* interpretation * interpretation -> interpretation *)
-			fun interpretation_disjunction (tr1,tr2) =
-				tree_map (fn (xs,ys) => map (fn (x,y) => SOr(x,y)) (xs ~~ ys)) (tree_pair (tr1,tr2))
-			(* prop_formula * interpretation -> interpretation *)
-			fun prop_formula_times_interpretation (fm,tr) =
-				tree_map (map (fn x => SAnd (fm,x))) tr
-			(* prop_formula list * interpretation list -> interpretation *)
-			fun prop_formula_list_dot_product_interpretation_list ([fm],[tr]) =
-				prop_formula_times_interpretation (fm,tr)
-			  | prop_formula_list_dot_product_interpretation_list (fm::fms,tr::trees) =
-				interpretation_disjunction (prop_formula_times_interpretation (fm,tr), prop_formula_list_dot_product_interpretation_list (fms,trees))
-			  | prop_formula_list_dot_product_interpretation_list (_,_) =
-				raise REFUTE ("apply_interpreter", "empty list (in dot product)")
-			(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
-			(* 'a -> 'a list list -> 'a list list *)
-			fun cons_list x xss =
-				map (fn xs => x::xs) xss
-			(* returns a list of lists, each one consisting of one element from each element of 'xss' *)
-			(* 'a list list -> 'a list list *)
-			fun pick_all [xs] =
-				map (fn x => [x]) xs
-			  | pick_all (xs::xss) =
-				let val rec_pick = pick_all xss in
-					foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
-				end
-			  | pick_all _ =
-				raise REFUTE ("apply_interpreter", "empty list (in pick_all)")
-			(* interpretation -> prop_formula list *)
-			fun interpretation_to_prop_formula_list (Leaf xs) =
-				xs
-			  | interpretation_to_prop_formula_list (Node trees) =
-				map PropLogic.all (pick_all (map interpretation_to_prop_formula_list trees))
-			(* interpretation * interpretation -> interpretation *)
-			fun interpretation_apply (tr1,tr2) =
-				(case tr1 of
-				  Leaf _ =>
-					raise REFUTE ("apply_interpreter", "first interpretation is a leaf")
-				| Node xs =>
-					prop_formula_list_dot_product_interpretation_list (interpretation_to_prop_formula_list tr2, xs))
-			(* interpret 't1' and 't2' *)
-			val (intr1, model1, args1) = interpret thy model args t1
-			val (intr2, model2, args2) = interpret thy model1 args1 t2
-		in
-			Some (interpretation_apply (intr1,intr2), model2, args2)
-		end
-	  | apply_interpreter thy model args _         = None;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun const_unfold_interpreter thy model args t =
-		(* ------------------------------------------------------------------------- *)
-		(* We unfold constants for which a defining equation is given as an axiom.   *)
-		(* A polymorphic axiom's type variables are instantiated.  Eta-expansion is  *)
-		(* performed only if necessary; arguments in the axiom that are present as   *)
-		(* actual arguments in 't' are simply substituted.  If more actual than      *)
-		(* formal arguments are present, the constant is *not* unfolded, so that     *)
-		(* other interpreters (that may just not have looked into the term far       *)
-		(* enough yet) may be applied first (after 'apply_interpreter' gets rid of   *)
-		(* one argument).                                                            *)
-		(* ------------------------------------------------------------------------- *)
-		let
-			val (head, actuals) = strip_comb t
-			val actuals_count   = length actuals
-		in
-			case head of
-			  Const (s,T) =>
-				let
-					(* (string * Term.term) list *)
-					val axioms = flat (map (Symtab.dest o #axioms o Theory.rep_theory) (thy :: Theory.ancestors_of thy))
-					(* Term.term * Term.term list * Term.term list -> Term.term *)
-					(* term, formal arguments, actual arguments *)
-					fun normalize (t, [],    [])    = t
-					  | normalize (t, [],    y::ys) = raise REFUTE ("const_unfold_interpreter", "more actual than formal parameters")
-					  | normalize (t, x::xs, [])    = normalize (lambda x t, xs, [])                (* eta-expansion *)
-					  | normalize (t, x::xs, y::ys) = normalize (betapply (lambda x t, y), xs, ys)  (* substitution *)
-					(* string -> Term.typ -> (string * Term.term) list -> Term.term option *)
-					fun get_defn s T [] =
-						None
-					  | get_defn s T ((_,ax)::axms) =
-						(let
-							val (lhs, rhs)   = Logic.dest_equals ax  (* equations only *)
-							val (c, formals) = strip_comb lhs
-							val (s', T')     = dest_Const c
-						in
-							if (s=s') andalso (actuals_count <= length formals) then
-								let
-									val varT'      = Type.varifyT T'  (* for polymorphic definitions *)
-									val typeSubs   = Type.typ_match (Sign.tsig_of (sign_of thy)) (Vartab.empty, (varT', T))
-									val varRhs     = map_term_types Type.varifyT rhs
-									val varFormals = map (map_term_types Type.varifyT) formals
-									val rhs'       = normalize (varRhs, varFormals, actuals)
-									val unvarRhs   = map_term_types
-										(map_type_tvar
-											(fn (v,_) =>
-												case Vartab.lookup (typeSubs, v) of
-												  None =>
-													raise REFUTE ("const_unfold_interpreter", "schematic type variable " ^ (fst v) ^ "not instantiated (in definition of " ^ quote s ^ ")")
-												| Some typ =>
-													typ))
-										rhs'
-								in
-									Some unvarRhs
-								end
-							else
-								get_defn s T axms
-						end
-						handle TERM _          => get_defn s T axms
-						     | Type.TYPE_MATCH => get_defn s T axms)
-				in
-					case get_defn s T axioms of
-					  Some t' => Some (interpret thy model args t')
-					| None    => None
-				end
-			| _ => None
-		end;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun Pure_interpreter thy model args t =
-		let
-			fun toTrue (Leaf [fm,_]) = fm
-			  | toTrue _             = raise REFUTE ("Pure_interpreter", "interpretation does not denote a boolean value")
-			fun toFalse (Leaf [_,fm]) = fm
-			  | toFalse _             = raise REFUTE ("Pure_interpreter", "interpretation does not denote a boolean value")
-		in
-			case t of
-			  (*Const ("Goal", _) $ t1 =>
-				Some (interpret thy model args t1) |*)
-			  Const ("all", _) $ t1 =>
-				let
-					val (i,m,a) = (interpret thy model args t1)
-				in
-					case i of
-					  Node xs =>
-						let
-							val fmTrue  = PropLogic.all (map toTrue xs)
-							val fmFalse = PropLogic.exists (map toFalse xs)
-						in
-							Some (Leaf [fmTrue, fmFalse], m, a)
-						end
-					| _ =>
-						raise REFUTE ("Pure_interpreter", "\"all\" is not followed by a function")
-				end
-			| Const ("==", _) $ t1 $ t2 =>
-				let
-					val (i1,m1,a1) = interpret thy model args t1
-					val (i2,m2,a2) = interpret thy m1 a1 t2
-					(* interpretation * interpretation -> prop_formula *)
-					fun interpret_equal (tr1,tr2) =
-						(case tr1 of
-						  Leaf x =>
-							(case tr2 of
-							  Leaf y => PropLogic.dot_product (x,y)
-							| _      => raise REFUTE ("Pure_interpreter", "\"==\": second tree is higher"))
-						| Node xs =>
-							(case tr2 of
-							  Leaf _  => raise REFUTE ("Pure_interpreter", "\"==\": first tree is higher")
-							(* extensionality: two functions are equal iff they are equal for every element *)
-							| Node ys => PropLogic.all (map interpret_equal (xs ~~ ys))))
-					(* interpretation * interpretation -> prop_formula *)
-					fun interpret_unequal (tr1,tr2) =
-						(case tr1 of
-						  Leaf x =>
-							(case tr2 of
-							  Leaf y =>
-								let
-									fun unequal [] ([],_) =
-										False
-									  | unequal (x::xs) (y::ys1, ys2) =
-										SOr (SAnd (x, PropLogic.exists (ys1@ys2)), unequal xs (ys1, y::ys2))
-									  | unequal _ _ =
-										raise REFUTE ("Pure_interpreter", "\"==\": leafs have different width")
-								in
-									unequal x (y,[])
-								end
-							| _      => raise REFUTE ("Pure_interpreter", "\"==\": second tree is higher"))
-						| Node xs =>
-							(case tr2 of
-							  Leaf _  => raise REFUTE ("Pure_interpreter", "\"==\": first tree is higher")
-							(* extensionality: two functions are unequal iff there exist unequal elements *)
-							| Node ys => PropLogic.exists (map interpret_unequal (xs ~~ ys))))
-					val fmTrue  = interpret_equal (i1,i2)
-					val fmFalse = interpret_unequal (i1,i2)
-				in
-					Some (Leaf [fmTrue, fmFalse], m2, a2)
-				end
-			| Const ("==>", _) $ t1 $ t2 =>
-				let
-					val (i1,m1,a1) = interpret thy model args t1
-					val (i2,m2,a2) = interpret thy m1 a1 t2
-					val fmTrue     = SOr (toFalse i1, toTrue i2)
-					val fmFalse    = SAnd (toTrue i1, toFalse i2)
-				in
-					Some (Leaf [fmTrue, fmFalse], m2, a2)
-				end
-			| _ => None
-		end;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun HOLogic_interpreter thy model args t =
-	(* ------------------------------------------------------------------------- *)
-	(* Providing interpretations directly is more efficient than unfolding the   *)
-	(* logical constants; however, we need versions for constants with arguments *)
-	(* (to avoid unfolding) as well as versions for constants without arguments  *)
-	(* (since in HOL, logical constants can themselves be arguments)             *)
-	(* ------------------------------------------------------------------------- *)
-	let
-		fun eta_expand t i =
-			let
-				val Ts = binder_types (fastype_of t)
-			in
-				foldr (fn (T, t) => Abs ("<eta_expand>", T, t))
-					(take (i, Ts), list_comb (t, map Bound (i-1 downto 0)))
-			end
-		val TT = Leaf [True, False]
-		val FF = Leaf [False, True]
-		fun toTrue (Leaf [fm,_]) = fm
-		  | toTrue _             = raise REFUTE ("HOLogic_interpreter", "interpretation does not denote a boolean value")
-		fun toFalse (Leaf [_,fm]) = fm
-		  | toFalse _             = raise REFUTE ("HOLogic_interpreter", "interpretation does not denote a boolean value")
-	in
-		case t of
-		  Const ("Trueprop", _) $ t1 =>
-			Some (interpret thy model args t1)
-		| Const ("Trueprop", _) =>
-			Some (Node [TT, FF], model, args)
-		| Const ("Not", _) $ t1 =>
-			apply_interpreter thy model args t
-		| Const ("Not", _) =>
-			Some (Node [FF, TT], model, args)
-		| Const ("True", _) =>
-			Some (TT, model, args)
-		| Const ("False", _) =>
-			Some (FF, model, args)
-		| Const ("arbitrary", T) =>
-			(* treat 'arbitrary' just like a free variable of the same type *)
-			(case assoc (snd model, t) of
-			  Some intr =>
-				Some (intr, model, args)
-			| None =>
-				let
-					val (sizes, intrs) = model
-					val (intr, _, a)   = interpret thy (sizes, []) args (Free ("<arbitrary>", T))
-				in
-					Some (intr, (sizes, (t,intr)::intrs), a)
-				end)
-		| Const ("The", _) $ t1 =>
-			apply_interpreter thy model args t
-		| Const ("The", T as Type ("fun", [_, T'])) =>
-			(* treat 'The' like a free variable, but with a fixed interpretation for boolean *)
-			(* functions that map exactly one constant of type T' to True                    *)
-			(case assoc (snd model, t) of
-				Some intr =>
-					Some (intr, model, args)
-			| None =>
-				let
-					val (sizes, intrs) = model
-					val (intr, _, a)   = interpret thy (sizes, []) args (Free ("<The>", T))
-					(* create all constants of type T' => bool, ... *)
-					val (intrFun, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("<The>", Type ("fun", [T', Type ("bool",[])])))
-					(* ... and all constants of type T' *)
-					val (intrT', _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("<The>", T'))
-					(* returns a list with all unit vectors of length n *)
-					(* int -> interpretation list *)
-					fun unit_vectors n =
-					let
-						(* returns the k-th unit vector of length n *)
-						(* int * int -> interpretation *)
-						fun unit_vector (k,n) =
-							Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-						(* int -> interpretation list -> interpretation list *)
-						fun unit_vectors_acc k vs =
-							if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
-					in
-						unit_vectors_acc 1 []
-					end
-					(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
-					(* 'a -> 'a list list -> 'a list list *)
-					fun cons_list x xss =
-						map (fn xs => x::xs) xss
-					(* returns a list of lists, each one consisting of n (possibly identical) elements from 'xs' *)
-					(* int -> 'a list -> 'a list list *)
-					fun pick_all 1 xs =
-						map (fn x => [x]) xs
-					  | pick_all n xs =
-						let val rec_pick = pick_all (n-1) xs in
-							foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
-						end
-					(* interpretation -> interpretation list *)
-					fun make_constants (Leaf xs) =
-						unit_vectors (length xs)
-					  | make_constants (Node xs) =
-						map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
-					val constantsFun = make_constants intrFun
-					val constantsT'  = make_constants intrT'
-					(* interpretation -> interpretation list -> interpretation option *)
-					fun the_val (Node xs) cs =
-						let
-							val TrueCount = foldl (fn (n,x) => if toTrue x = True then n+1 else n) (0,xs)
-							fun findThe (x::xs) (c::cs) =
-								if toTrue x = True then
-									c
-								else
-									findThe xs cs
-							  | findThe _ _ =
-								raise REFUTE ("HOLogic_interpreter", "\"The\": not found")
-						in
-							if TrueCount=1 then
-								Some (findThe xs cs)
-							else
-								None
-						end
-					  | the_val _ _ =
-						raise REFUTE ("HOLogic_interpreter", "\"The\": function interpreted as a leaf")
-				in
-					case intr of
-					  Node xs =>
-						let
-							(* replace interpretation 'x' by the interpretation determined by 'f' *)
-							val intrThe = Node (map (fn (x,f) => if_none (the_val f constantsT') x) (xs ~~ constantsFun))
-						in
-							Some (intrThe, (sizes, (t,intrThe)::intrs), a)
-						end
-					| _ =>
-						raise REFUTE ("HOLogic_interpreter", "\"The\": interpretation is a leaf")
-				end)
-		| Const ("Hilbert_Choice.Eps", _) $ t1 =>
-			apply_interpreter thy model args t
-		| Const ("Hilbert_Choice.Eps", T as Type ("fun", [_, T'])) =>
-			(* treat 'The' like a free variable, but with a fixed interpretation for boolean *)
-			(* functions that map exactly one constant of type T' to True                    *)
-			(case assoc (snd model, t) of
-				Some intr =>
-					Some (intr, model, args)
-			| None =>
-				let
-					val (sizes, intrs) = model
-					val (intr, _, a)   = interpret thy (sizes, []) args (Free ("<Eps>", T))
-					(* create all constants of type T' => bool, ... *)
-					val (intrFun, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("<Eps>", Type ("fun", [T', Type ("bool",[])])))
-					(* ... and all constants of type T' *)
-					val (intrT', _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("<Eps>", T'))
-					(* returns a list with all unit vectors of length n *)
-					(* int -> interpretation list *)
-					fun unit_vectors n =
-					let
-						(* returns the k-th unit vector of length n *)
-						(* int * int -> interpretation *)
-						fun unit_vector (k,n) =
-							Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-						(* int -> interpretation list -> interpretation list *)
-						fun unit_vectors_acc k vs =
-							if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
-					in
-						unit_vectors_acc 1 []
-					end
-					(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
-					(* 'a -> 'a list list -> 'a list list *)
-					fun cons_list x xss =
-						map (fn xs => x::xs) xss
-					(* returns a list of lists, each one consisting of n (possibly identical) elements from 'xs' *)
-					(* int -> 'a list -> 'a list list *)
-					fun pick_all 1 xs =
-						map (fn x => [x]) xs
-					  | pick_all n xs =
-						let val rec_pick = pick_all (n-1) xs in
-							foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
-						end
-					(* interpretation -> interpretation list *)
-					fun make_constants (Leaf xs) =
-						unit_vectors (length xs)
-					  | make_constants (Node xs) =
-						map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
-					val constantsFun = make_constants intrFun
-					val constantsT'  = make_constants intrT'
-					(* interpretation -> interpretation list -> interpretation list *)
-					fun true_values (Node xs) cs =
-						mapfilter (fn (x,c) => if toTrue x = True then Some c else None) (xs~~cs)
-					  | true_values _ _ =
-						raise REFUTE ("HOLogic_interpreter", "\"Eps\": function interpreted as a leaf")
-				in
-					case intr of
-					  Node xs =>
-						let
-							val (wf, intrsEps) = foldl_map (fn (w,(x,f)) =>
-								case true_values f constantsT' of
-								  []  => (w, x)  (* no value mapped to true -> no restriction *)
-								| [c] => (w, c)  (* one value mapped to true -> that's the one *)
-								| cs  =>
-									let
-										(* interpretation * interpretation -> prop_formula *)
-										fun interpret_equal (tr1,tr2) =
-											(case tr1 of
-											  Leaf x =>
-												(case tr2 of
-												  Leaf y => PropLogic.dot_product (x,y)
-												| _      => raise REFUTE ("HOLogic_interpreter", "\"Eps\": second tree is higher"))
-												| Node xs =>
-												(case tr2 of
-												  Leaf _  => raise REFUTE ("HOLogic_interpreter", "\"Eps\": first tree is higher")
-												(* extensionality: two functions are equal iff they are equal for every element *)
-												| Node ys => PropLogic.all (map interpret_equal (xs ~~ ys))))
-									in
-										(SAnd (w, PropLogic.exists (map (fn c => interpret_equal (x,c)) cs)), x)  (* impose restrictions on x *)
-									end
-								)
-								(#wellformed a, xs ~~ constantsFun)
-							val intrEps = Node intrsEps
-						in
-							Some (intrEps, (sizes, (t,intrEps)::intrs), {next_idx = #next_idx a, bounds = #bounds a, wellformed = wf})
-						end
-					| _ =>
-						raise REFUTE ("HOLogic_interpreter", "\"Eps\": interpretation is a leaf")
-				end)
-		| Const ("All", _) $ t1 =>
-			let
-				val (i,m,a) = interpret thy model args t1
-			in
-				case i of
-				  Node xs =>
-					let
-						val fmTrue  = PropLogic.all (map toTrue xs)
-						val fmFalse = PropLogic.exists (map toFalse xs)
-					in
-						Some (Leaf [fmTrue, fmFalse], m, a)
-					end
-				| _ =>
-					raise REFUTE ("HOLogic_interpreter", "\"All\" is not followed by a function")
-			end
-		| Const ("All", _) =>
-			Some (interpret thy model args (eta_expand t 1))
-		| Const ("Ex", _) $ t1 =>
-			let
-				val (i,m,a) = interpret thy model args t1
-			in
-				case i of
-				  Node xs =>
-					let
-						val fmTrue  = PropLogic.exists (map toTrue xs)
-						val fmFalse = PropLogic.all (map toFalse xs)
-					in
-						Some (Leaf [fmTrue, fmFalse], m, a)
-					end
-				| _ =>
-					raise REFUTE ("HOLogic_interpreter", "\"Ex\" is not followed by a function")
-			end
-		| Const ("Ex", _) =>
-			Some (interpret thy model args (eta_expand t 1))
-		| Const ("Ex1", _) $ t1 =>
-			let
-				val (i,m,a) = interpret thy model args t1
-			in
-				case i of
-				  Node xs =>
-					let
-						(* interpretation list -> prop_formula *)
-						fun allfalse []      = True
-						  | allfalse (x::xs) = SAnd (toFalse x, allfalse xs)
-						(* interpretation list -> prop_formula *)
-						fun exactly1true []      = False
-						  | exactly1true (x::xs) = SOr (SAnd (toTrue x, allfalse xs), SAnd (toFalse x, exactly1true xs))
-						(* interpretation list -> prop_formula *)
-						fun atleast2true []      = False
-						  | atleast2true (x::xs) = SOr (SAnd (toTrue x, PropLogic.exists (map toTrue xs)), atleast2true xs)
-						val fmTrue  = exactly1true xs
-						val fmFalse = SOr (allfalse xs, atleast2true xs)
-					in
-						Some (Leaf [fmTrue, fmFalse], m, a)
-					end
-				| _ =>
-					raise REFUTE ("HOLogic_interpreter", "\"Ex1\" is not followed by a function")
-			end
-		| Const ("Ex1", _) =>
-			Some (interpret thy model args (eta_expand t 1))
-		| Const ("op =", _) $ t1 $ t2 =>
-				let
-					val (i1,m1,a1) = interpret thy model args t1
-					val (i2,m2,a2) = interpret thy m1 a1 t2
-					(* interpretation * interpretation -> prop_formula *)
-					fun interpret_equal (tr1,tr2) =
-						(case tr1 of
-						  Leaf x =>
-							(case tr2 of
-							  Leaf y => PropLogic.dot_product (x,y)
-							| _      => raise REFUTE ("HOLogic_interpreter", "\"==\": second tree is higher"))
-						| Node xs =>
-							(case tr2 of
-							  Leaf _  => raise REFUTE ("HOLogic_interpreter", "\"==\": first tree is higher")
-							(* extensionality: two functions are equal iff they are equal for every element *)
-							| Node ys => PropLogic.all (map interpret_equal (xs ~~ ys))))
-					(* interpretation * interpretation -> prop_formula *)
-					fun interpret_unequal (tr1,tr2) =
-						(case tr1 of
-						  Leaf x =>
-							(case tr2 of
-							  Leaf y =>
-								let
-									fun unequal [] ([],_) =
-										False
-									  | unequal (x::xs) (y::ys1, ys2) =
-										SOr (SAnd (x, PropLogic.exists (ys1@ys2)), unequal xs (ys1, y::ys2))
-									  | unequal _ _ =
-										raise REFUTE ("HOLogic_interpreter", "\"==\": leafs have different width")
-								in
-									unequal x (y,[])
-								end
-							| _      => raise REFUTE ("HOLogic_interpreter", "\"==\": second tree is higher"))
-						| Node xs =>
-							(case tr2 of
-							  Leaf _  => raise REFUTE ("HOLogic_interpreter", "\"==\": first tree is higher")
-							(* extensionality: two functions are unequal iff there exist unequal elements *)
-							| Node ys => PropLogic.exists (map interpret_unequal (xs ~~ ys))))
-					val fmTrue  = interpret_equal (i1,i2)
-					val fmFalse = interpret_unequal (i1,i2)
-				in
-					Some (Leaf [fmTrue, fmFalse], m2, a2)
-				end
-		| Const ("op =", _) $ t1 =>
-			Some (interpret thy model args (eta_expand t 1))
-		| Const ("op =", _) =>
-			Some (interpret thy model args (eta_expand t 2))
-		| Const ("op &", _) $ t1 $ t2 =>
-			apply_interpreter thy model args t
-		| Const ("op &", _) $ t1 =>
-			apply_interpreter thy model args t
-		| Const ("op &", _) =>
-			Some (Node [Node [TT, FF], Node [FF, FF]], model, args)
-		| Const ("op |", _) $ t1 $ t2 =>
-			apply_interpreter thy model args t
-		| Const ("op |", _) $ t1 =>
-			apply_interpreter thy model args t
-		| Const ("op |", _) =>
-			Some (Node [Node [TT, TT], Node [TT, FF]], model, args)
-		| Const ("op -->", _) $ t1 $ t2 =>
-			apply_interpreter thy model args t
-		| Const ("op -->", _) $ t1 =>
-			apply_interpreter thy model args t
-		| Const ("op -->", _) =>
-			Some (Node [Node [TT, FF], Node [TT, TT]], model, args)
-		| Const ("Collect", _) $ t1 =>
-			(* Collect == identity *)
-			Some (interpret thy model args t1)
-		| Const ("Collect", _) =>
-			Some (interpret thy model args (eta_expand t 1))
-		| Const ("op :", _) $ t1 $ t2 =>
-			(* op: == application *)
-			Some (interpret thy model args (t2 $ t1))
-		| Const ("op :", _) $ t1 =>
-			Some (interpret thy model args (eta_expand t 1))
-		| Const ("op :", _) =>
-			Some (interpret thy model args (eta_expand t 2))
-		| _ => None
-	end;
-
-	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
-
-	fun IDT_interpreter thy model args t =
-	let
-		fun is_var (Free _) = true
-		  | is_var (Var _)  = true
-		  | is_var _        = false
-		fun typeof (Free (_,T)) = T
-		  | typeof (Var (_,T))  = T
-		  | typeof _            = raise REFUTE ("var_IDT_interpreter", "term is not a variable")
-		val (sizes, intrs) = model
-		(* power(a,b) computes a^b, for a>=0, b>=0 *)
-		(* int * int -> int *)
-		fun power (a,0) = 1
-		  | power (a,1) = a
-		  | power (a,b) = let val ab = power(a,b div 2) in ab * ab * power(a,b mod 2) end
-		(* interpretation -> int *)
-		fun size_of_interpretation (Leaf xs) = length xs
-		  | size_of_interpretation (Node xs) = power (size_of_interpretation (hd xs), length xs)
-		(* Term.typ -> int *)
-		fun size_of_type T =
-			let
-				val (i,_,_) = interpret thy model args (Free ("<IDT>", T))
-			in
-				size_of_interpretation i
-			end
-		(* int list -> int *)
-		fun sum xs = foldl op+ (0, xs)
-		(* int list -> int *)
-		fun product xs = foldl op* (1, xs)
-		(* DatatypeAux.dtyp * Term.typ -> DatatypeAux.dtyp -> Term.typ *)
-		fun typ_of_dtyp typ_assoc (DatatypeAux.DtTFree a) =
-			the (assoc (typ_assoc, DatatypeAux.DtTFree a))
-		  | typ_of_dtyp typ_assoc (DatatypeAux.DtRec i) =
-			raise REFUTE ("var_IDT_interpreter", "recursive datatype")
-		  | typ_of_dtyp typ_assoc (DatatypeAux.DtType (s, ds)) =
-			Type (s, map (typ_of_dtyp typ_assoc) ds)
-	in
-		if is_var t then
-			(case typeof t of
-			  Type (s, Ts) =>
-				(case DatatypePackage.datatype_info thy s of
-				  Some info =>  (* inductive datatype *)
-					let
-						val index               = #index info
-						val descr               = #descr info
-						val (_, dtyps, constrs) = the (assoc (descr, index))
-					in
-						if Library.exists (fn d => case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps then
-							raise REFUTE ("var_IDT_interpreter", "recursive datatype argument")
-						else if Library.exists (fn (_,ds) => Library.exists DatatypeAux.is_rec_type ds) constrs then
-							None  (* recursive datatype (requires an infinite model) *)
-						else
-							case assoc (intrs, t) of
-							  Some intr => Some (intr, model, args)
-							| None      =>
-								let
-									val typ_assoc = dtyps ~~ Ts
-									val size = sum (map (fn (_,ds) =>
-										product (map (fn d => size_of_type (typ_of_dtyp typ_assoc d)) ds)) constrs)
-									val idx  = #next_idx args
-									(* for us, an IDT has no "internal structure" -- its interpretation is just a leaf *)
-									val intr = (if size=2 then Leaf [BoolVar idx, Not (BoolVar idx)] else Leaf (map BoolVar (idx upto (idx+size-1))))
-									val next = (if size=2 then idx+1 else idx+size)
-								in
-									(* extend the model, increase 'next_idx' *)
-									Some (intr, (sizes, (t, intr)::intrs), {next_idx = next, bounds = #bounds args, wellformed = #wellformed args})
-								end
-					end
-				| None => None)
-			| _ => None)
-		else
-		let
-			val (head, params) = strip_comb t  (* look into applications to avoid unfolding *)
-		in
-			(case head of
-			  Const (c, T) =>
-				(case body_type T of
-				  Type (s, Ts) =>
-					(case DatatypePackage.datatype_info thy s of
-					  Some info =>  (* inductive datatype *)
-						let
-							val index               = #index info
-							val descr               = #descr info
-							val (_, dtyps, constrs) = the (assoc (descr, index))
-						in
-							if Library.exists (fn d => case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps then
-								raise REFUTE ("var_IDT_interpreter", "recursive datatype argument")
-							else if Library.exists (fn (_,ds) => Library.exists DatatypeAux.is_rec_type ds) constrs then
-								None  (* recursive datatype (requires an infinite model) *)
-							else
-								(case take_prefix (fn (c',_) => c' <> c) constrs of
-								  (_, []) =>
-									None (* unknown constructor *)
-								| (prevs, _) =>
-									if null params then
-									let
-										val typ_assoc = dtyps ~~ Ts
-										val offset = sum (map (fn (_,ds) =>
-											product (map (fn d => size_of_type (typ_of_dtyp typ_assoc d)) ds)) prevs)
-										val (i,_,_) = interpret thy model args (Free ("<IDT>", T))
-										(* int * interpretation  -> int * interpretation *)
-										fun replace (offset, Leaf xs) =
-											(* replace the offset-th element by True, all others by False, inc. offset by 1 *)
-											(offset+1, Leaf (snd (foldl_map (fn (n,_) => (n+1, if n=offset then True else False)) (0, xs))))
-										  | replace (offset, Node xs) =
-											let
-												val (offset', xs') = foldl_map replace (offset, xs)
-											in
-												(offset', Node xs')
-											end
-										val (_,intr) = replace (offset, i)
-									in
-										Some (intr, model, args)
-									end
-									else
-										apply_interpreter thy model args t)  (* avoid unfolding by calling 'apply_interpreter' directly *)
-						end
-					| None => None)
-				| _ => None)
-			| _ => None)
-		end
-	end;
-
-
 (* ------------------------------------------------------------------------- *)
-(* PRINTERS                                                                  *)
+(* make_constants: returns all interpretations that have the same tree       *)
+(*                 structure as 'intr', but consist of unit vectors with     *)
+(*                 'True'/'False' only (no Boolean variables)                *)
 (* ------------------------------------------------------------------------- *)
 
-	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option *)
+	(* interpretation -> interpretation list *)
 
-	fun var_typevar_printer thy model t intr assignment =
-	let
-		fun is_var (Free _) = true
-		  | is_var (Var _)  = true
-		  | is_var _        = false
-		fun typeof (Free (_,T)) = T
-		  | typeof (Var (_,T))  = T
-		  | typeof _            = raise REFUTE ("var_typevar_printer", "term is not a variable")
-		fun is_typevar (TFree _) = true
-		  | is_typevar (TVar _)  = true
-		  | is_typevar _         = false
-	in
-		if is_var t andalso is_typevar (typeof t) then
-			let
-				(* interpretation -> int *)
-				fun index_from_interpretation (Leaf xs) =
-					let
-						val idx = find_index (PropLogic.eval assignment) xs
-					in
-						if idx<0 then
-							raise REFUTE ("var_typevar_printer", "illegal interpretation: no value assigned")
-						else
-							idx
-					end
-				  | index_from_interpretation _ =
-					raise REFUTE ("var_typevar_printer", "interpretation is not a leaf")
-				(* string -> string *)
-				fun strip_leading_quote s =
-					(implode o (fn (x::xs) => if x="'" then xs else (x::xs)) o explode) s
-				(* Term.typ -> string *)
-				fun string_of_typ (TFree (x,_))    = strip_leading_quote x
-				  | string_of_typ (TVar ((x,i),_)) = strip_leading_quote x ^ string_of_int i
-				  | string_of_typ _                = raise REFUTE ("var_typevar_printer", "type is not a type variable")
-			in
-				Some (string_of_typ (typeof t) ^ string_of_int (index_from_interpretation intr))
-			end
-		else
-			None
-	end;
-
-	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option *)
-
-	fun var_funtype_printer thy model t intr assignment =
+	fun make_constants intr =
 	let
-		fun is_var (Free _) = true
-		  | is_var (Var _)  = true
-		  | is_var _        = false
-		fun typeof (Free (_,T)) = T
-		  | typeof (Var (_,T))  = T
-		  | typeof _            = raise REFUTE ("var_funtype_printer", "term is not a variable")
-		fun is_funtype (Type ("fun", [_,_])) = true
-		  | is_funtype _                     = false
-	in
-		if is_var t andalso is_funtype (typeof t) then
-			let
-				val T1         = domain_type (typeof t)
-				val T2         = range_type (typeof t)
-				val (sizes, _) = model
-				(* create all constants of type T1 *)
-				val (i, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("var_funtype_printer", T1))
-				(* returns a list with all unit vectors of length n *)
-				(* int -> interpretation list *)
-				fun unit_vectors n =
-				let
-					(* returns the k-th unit vector of length n *)
-					(* int * int -> interpretation *)
-					fun unit_vector (k,n) =
-						Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-					(* int -> interpretation list -> interpretation list *)
-					fun unit_vectors_acc k vs =
-						if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
-				in
-					unit_vectors_acc 1 []
-				end
-				(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
-				(* 'a -> 'a list list -> 'a list list *)
-				fun cons_list x xss =
-					map (fn xs => x::xs) xss
-				(* returns a list of lists, each one consisting of n (possibly identical) elements from 'xs' *)
-				(* int -> 'a list -> 'a list list *)
-				fun pick_all 1 xs =
-					map (fn x => [x]) xs
-				  | pick_all n xs =
-					let val rec_pick = pick_all (n-1) xs in
-						foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
-					end
-				(* interpretation -> interpretation list *)
-				fun make_constants (Leaf xs) =
-					unit_vectors (length xs)
-				  | make_constants (Node xs) =
-					map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
-				(* interpretation list *)
-				val results = (case intr of
-					  Node xs => xs
-					| _       => raise REFUTE ("var_funtype_printer", "interpretation is a leaf"))
-				(* string list *)
-				val strings = map
-					(fn (argi,resulti) => print thy model (Free ("var_funtype_printer", T1)) argi assignment
-						^ "\\<mapsto>"
-						^ print thy model (Free ("var_funtype_printer", T2)) resulti assignment)
-					((make_constants i) ~~ results)
-			in
-				Some (enclose "(" ")" (commas strings))
-			end
-		else
-			None
-	end;
-
-	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option *)
-
-	fun var_settype_printer thy model t intr assignment =
-	let
-		val (sizes, _) = model
 		(* returns a list with all unit vectors of length n *)
 		(* int -> interpretation list *)
 		fun unit_vectors n =
@@ -1575,205 +1040,875 @@
 			let val rec_pick = pick_all (n-1) xs in
 				foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
 			end
-		(* interpretation -> interpretation list *)
-		fun make_constants (Leaf xs) =
-			unit_vectors (length xs)
-		  | make_constants (Node xs) =
-			map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
+	in
+		case intr of
+		  Leaf xs => unit_vectors (length xs)
+		| Node xs => map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
+	end;
+
+(* ------------------------------------------------------------------------- *)
+(* size_of_type: returns the number of constants in a type (i.e. 'length     *)
+(*               (make_constants intr)', but implemented more efficiently)   *)
+(* ------------------------------------------------------------------------- *)
+
+	(* interpretation -> int *)
+
+	fun size_of_type intr =
+	let
+		(* power(a,b) computes a^b, for a>=0, b>=0 *)
+		(* int * int -> int *)
+		fun power (a,0) = 1
+		  | power (a,1) = a
+		  | power (a,b) = let val ab = power(a,b div 2) in ab * ab * power(a,b mod 2) end
+	in
+		case intr of
+		  Leaf xs => length xs
+		| Node xs => power (size_of_type (hd xs), length xs)
+	end;
+
+(* ------------------------------------------------------------------------- *)
+(* TT/FF: interpretations that denote "true" or "false", respectively        *)
+(* ------------------------------------------------------------------------- *)
+
+	(* interpretation *)
+
+	val TT = Leaf [True, False];
+
+	val FF = Leaf [False, True];
+
+(* ------------------------------------------------------------------------- *)
+(* make_equality: returns an interpretation that denotes (extensional)       *)
+(*                equality of two interpretations                            *)
+(* ------------------------------------------------------------------------- *)
+
+	(* We could in principle represent '=' on a type T by a particular        *)
+	(* interpretation.  However, the size of that interpretation is quadratic *)
+	(* in the size of T.  Therefore comparing the interpretations 'i1' and    *)
+	(* 'i2' directly is more efficient than constructing the interpretation   *)
+	(* for equality on T first, and "applying" this interpretation to 'i1'    *)
+	(* and 'i2' in the usual way (cf. 'interpretation_apply') then.           *)
+
+	(* interpretation * interpretation -> interpretation *)
+
+	fun make_equality (i1, i2) =
+	let
+		(* interpretation * interpretation -> prop_formula *)
+		fun equal (i1, i2) =
+			(case i1 of
+			  Leaf xs =>
+				(case i2 of
+				  Leaf ys => PropLogic.dot_product (xs, ys)
+				| Node _  => raise REFUTE ("make_equality", "second interpretation is higher"))
+			| Node xs =>
+				(case i2 of
+				  Leaf _  => raise REFUTE ("make_equality", "first interpretation is higher")
+				| Node ys => PropLogic.all (map equal (xs ~~ ys))))
+		(* interpretation * interpretation -> prop_formula *)
+		fun not_equal (i1, i2) =
+			(case i1 of
+			  Leaf xs =>
+				(case i2 of
+				  Leaf ys => PropLogic.all ((PropLogic.exists xs) :: (PropLogic.exists ys) ::
+					(map (fn (x,y) => SOr (SNot x, SNot y)) (xs ~~ ys)))  (* defined and not equal *)
+				| Node _  => raise REFUTE ("make_equality", "second interpretation is higher"))
+			| Node xs =>
+				(case i2 of
+				  Leaf _  => raise REFUTE ("make_equality", "first interpretation is higher")
+				| Node ys => PropLogic.exists (map not_equal (xs ~~ ys))))
 	in
+		(* a value may be undefined; therefore 'not_equal' is not just the     *)
+		(* negation of 'equal':                                                *)
+		(* - two interpretations are 'equal' iff they are both defined and     *)
+		(*   denote the same value                                             *)
+		(* - two interpretations are 'not_equal' iff they are both defined at  *)
+		(*   least partially, and a defined part denotes different values      *)
+		(* - an undefined interpretation is neither 'equal' nor 'not_equal' to *)
+		(*   another value                                                     *)
+		Leaf [equal (i1, i2), not_equal (i1, i2)]
+	end;
+
+
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
+
+	(* simply typed lambda calculus: Isabelle's basic term syntax, with type  *)
+	(* variables, function types, and propT                                   *)
+
+	fun stlc_interpreter thy model args t =
+	let
+		val (typs, terms)                           = model
+		val {maxvars, next_idx, bounds, wellformed} = args
+		(* Term.typ -> (interpretation * model * arguments) option *)
+		fun interpret_groundterm T =
+		let
+			(* unit -> (interpretation * model * arguments) option *)
+			fun interpret_groundtype () =
+			let
+				val size = (if T = Term.propT then 2 else (the o assoc) (typs, T))  (* the model MUST specify a size for ground types *)
+				val next = (if size=2 then next_idx+1 else next_idx+size)  (* optimization for types with size 2 *)
+				val _    = (if next-1>maxvars andalso maxvars>0 then raise MAXVARS_EXCEEDED else ())  (* check if 'maxvars' is large enough *)
+				(* prop_formula list *)
+				val fms  = (if size=2 then [BoolVar next_idx, Not (BoolVar next_idx)]
+					else (map BoolVar (next_idx upto (next_idx+size-1))))
+				(* interpretation *)
+				val intr = Leaf fms
+				(* prop_formula list -> prop_formula *)
+				fun one_of_two_false []      = True
+				  | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' => SOr (SNot x, SNot x')) xs), one_of_two_false xs)
+				(* prop_formula list -> prop_formula *)
+				fun exactly_one_true xs = SAnd (PropLogic.exists xs, one_of_two_false xs)
+				(* prop_formula *)
+				val wf   = (if size=2 then True else exactly_one_true fms)
+			in
+				(* extend the model, increase 'next_idx', add well-formedness condition *)
+				Some (intr, (typs, (t, intr)::terms), {maxvars = maxvars, next_idx = next, bounds = bounds, wellformed = SAnd (wellformed, wf)})
+			end
+		in
+			case T of
+			  Type ("fun", [T1, T2]) =>
+				let
+					(* we create 'size_of_type (interpret (... T1))' different copies *)
+					(* of the interpretation for 'T2', which are then combined into a *)
+					(* single new interpretation                                      *)
+					val (i1, _, _) =
+						(interpret thy model {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T1))
+						handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+					(* make fresh copies, with different variable indices *)
+					(* 'idx': next variable index                         *)
+					(* 'n'  : number of copies                            *)
+					(* int -> int -> (int * interpretation list * prop_formula *)
+					fun make_copies idx 0 =
+						(idx, [], True)
+					  | make_copies idx n =
+						let
+							val (copy, _, new_args) =
+								(interpret thy (typs, []) {maxvars = maxvars, next_idx = idx, bounds = [], wellformed = True} (Free ("dummy", T2))
+								handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+							val (idx', copies, wf') = make_copies (#next_idx new_args) (n-1)
+						in
+							(idx', copy :: copies, SAnd (#wellformed new_args, wf'))
+						end
+					val (next, copies, wf) = make_copies next_idx (size_of_type i1)
+					(* combine copies into a single interpretation *)
+					val intr = Node copies
+				in
+					(* extend the model, increase 'next_idx', add well-formedness condition *)
+					Some (intr, (typs, (t, intr)::terms), {maxvars = maxvars, next_idx = next, bounds = bounds, wellformed = SAnd (wellformed, wf)})
+				end
+			| Type _  => interpret_groundtype ()
+			| TFree _ => interpret_groundtype ()
+			| TVar  _ => interpret_groundtype ()
+		end
+	in
+		case assoc (terms, t) of
+		  Some intr =>
+			(* return an existing interpretation *)
+			Some (intr, model, args)
+		| None =>
+			(case t of
+			  Const (_, T)     =>
+				interpret_groundterm T
+			| Free (_, T)      =>
+				interpret_groundterm T
+			| Var (_, T)       =>
+				interpret_groundterm T
+			| Bound i          =>
+				Some (nth_elem (i, #bounds args), model, args)
+			| Abs (x, T, body) =>
+				let
+					(* create all constants of type 'T' *)
+					val (i, _, _) =
+						(interpret thy model {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+						handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+					val constants = make_constants i
+					(* interpret the 'body' separately for each constant *)
+					val ((model', args'), bodies) = foldl_map
+						(fn ((m,a), c) =>
+							let
+								(* add 'c' to 'bounds' *)
+								val (i', m', a') = interpret thy m {maxvars = #maxvars a, next_idx = #next_idx a, bounds = (c :: #bounds a), wellformed = #wellformed a} body
+							in
+								(* keep the new model m' and 'next_idx' and 'wellformed', but use old 'bounds' *)
+								((m', {maxvars = maxvars, next_idx = #next_idx a', bounds = bounds, wellformed = #wellformed a'}), i')
+							end)
+						((model, args), constants)
+				in
+					Some (Node bodies, model', args')
+				end
+			| t1 $ t2          =>
+				let
+					(* auxiliary functions *)
+					(* interpretation * interpretation -> interpretation *)
+					fun interpretation_disjunction (tr1,tr2) =
+						tree_map (fn (xs,ys) => map (fn (x,y) => SOr(x,y)) (xs ~~ ys)) (tree_pair (tr1,tr2))
+					(* prop_formula * interpretation -> interpretation *)
+					fun prop_formula_times_interpretation (fm,tr) =
+						tree_map (map (fn x => SAnd (fm,x))) tr
+					(* prop_formula list * interpretation list -> interpretation *)
+					fun prop_formula_list_dot_product_interpretation_list ([fm],[tr]) =
+						prop_formula_times_interpretation (fm,tr)
+					  | prop_formula_list_dot_product_interpretation_list (fm::fms,tr::trees) =
+						interpretation_disjunction (prop_formula_times_interpretation (fm,tr), prop_formula_list_dot_product_interpretation_list (fms,trees))
+					  | prop_formula_list_dot_product_interpretation_list (_,_) =
+						raise REFUTE ("stlc_interpreter", "empty list (in dot product)")
+					(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
+					(* 'a -> 'a list list -> 'a list list *)
+					fun cons_list x xss =
+						map (fn xs => x::xs) xss
+					(* returns a list of lists, each one consisting of one element from each element of 'xss' *)
+					(* 'a list list -> 'a list list *)
+					fun pick_all [xs] =
+						map (fn x => [x]) xs
+					  | pick_all (xs::xss) =
+						let val rec_pick = pick_all xss in
+							foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
+						end
+					  | pick_all _ =
+						raise REFUTE ("stlc_interpreter", "empty list (in pick_all)")
+					(* interpretation -> prop_formula list *)
+					fun interpretation_to_prop_formula_list (Leaf xs) =
+						xs
+					  | interpretation_to_prop_formula_list (Node trees) =
+						map PropLogic.all (pick_all (map interpretation_to_prop_formula_list trees))
+					(* interpretation * interpretation -> interpretation *)
+					fun interpretation_apply (tr1,tr2) =
+						(case tr1 of
+						  Leaf _ =>
+							raise REFUTE ("stlc_interpreter", "first interpretation is a leaf")
+						| Node xs =>
+							prop_formula_list_dot_product_interpretation_list (interpretation_to_prop_formula_list tr2, xs))
+					(* interpret 't1' and 't2' separately *)
+					val (intr1, model1, args1) = interpret thy model args t1
+					val (intr2, model2, args2) = interpret thy model1 args1 t2
+				in
+					Some (interpretation_apply (intr1,intr2), model2, args2)
+				end)
+	end;
+
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
+
+	fun Pure_interpreter thy model args t =
 		case t of
-		  Free (x, Type ("set", [T])) =>
+		  Const ("all", _) $ t1 =>  (* in the meta-logic, 'all' MUST be followed by an argument term *)
+			let
+				val (i, m, a) = interpret thy model args t1
+			in
+				case i of
+				  Node xs =>
+					let
+						val fmTrue  = PropLogic.all (map toTrue xs)
+						val fmFalse = PropLogic.exists (map toFalse xs)
+					in
+						Some (Leaf [fmTrue, fmFalse], m, a)
+					end
+				| _ =>
+					raise REFUTE ("Pure_interpreter", "\"all\" is not followed by a function")
+			end
+		| Const ("==", _) $ t1 $ t2 =>
+			let
+				val (i1, m1, a1) = interpret thy model args t1
+				val (i2, m2, a2) = interpret thy m1 a1 t2
+			in
+				Some (make_equality (i1, i2), m2, a2)
+			end
+		| Const ("==>", _) =>  (* simpler than translating 'Const ("==>", _) $ t1 $ t2' *)
+			Some (Node [Node [TT, FF], Node [TT, TT]], model, args)
+		| _ => None;
+
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
+
+	fun HOLogic_interpreter thy model args t =
+	let
+		(* Term.term -> int -> Term.term *)
+		fun eta_expand t i =
+		let
+			val Ts = binder_types (fastype_of t)
+		in
+			foldr (fn (T, t) => Abs ("<eta_expand>", T, t))
+				(take (i, Ts), list_comb (t, map Bound (i-1 downto 0)))
+		end
+	in
+	(* ------------------------------------------------------------------------- *)
+	(* Providing interpretations directly is more efficient than unfolding the   *)
+	(* logical constants.  IN HOL however, logical constants can themselves be   *)
+	(* arguments.  "All" and "Ex" are then translated just like any other        *)
+	(* constant, with the relevant axiom being added by 'collect_axioms'.        *)
+	(* ------------------------------------------------------------------------- *)
+		case t of
+		  Const ("Trueprop", _) =>
+			Some (Node [TT, FF], model, args)
+		| Const ("Not", _) =>
+			Some (Node [FF, TT], model, args)
+		| Const ("True", _) =>  (* redundant, since 'True' is also an IDT constructor *)
+			Some (TT, model, args)
+		| Const ("False", _) =>  (* redundant, since 'False' is also an IDT constructor *)
+			Some (FF, model, args)
+		| Const ("All", _) $ t1 =>
 			let
-				(* interpretation list *)
-				val results = (case intr of
-				  Node xs => xs
-					| _       => raise REFUTE ("var_settype_printer", "interpretation is a leaf"))
-				(* create all constants of type T *)
-				val (i, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("var_settype_printer", T))
-				(* string list *)
-				val strings = mapfilter
-					(fn (argi,Leaf [fmTrue,fmFalse]) =>
-						if PropLogic.eval assignment fmTrue then
-							Some (print thy model (Free ("x", T)) argi assignment)
-						else if PropLogic.eval assignment fmFalse then
-							None
+				val (i, m, a) = interpret thy model args t1
+			in
+				case i of
+				  Node xs =>
+					let
+						val fmTrue  = PropLogic.all (map toTrue xs)
+						val fmFalse = PropLogic.exists (map toFalse xs)
+					in
+						Some (Leaf [fmTrue, fmFalse], m, a)
+					end
+				| _ =>
+					raise REFUTE ("HOLogic_interpreter", "\"All\" is not followed by a function")
+			end
+		| Const ("Ex", _) $ t1 =>
+			let
+				val (i, m, a) = interpret thy model args t1
+			in
+				case i of
+				  Node xs =>
+					let
+						val fmTrue  = PropLogic.exists (map toTrue xs)
+						val fmFalse = PropLogic.all (map toFalse xs)
+					in
+						Some (Leaf [fmTrue, fmFalse], m, a)
+					end
+				| _ =>
+					raise REFUTE ("HOLogic_interpreter", "\"Ex\" is not followed by a function")
+			end
+		| Const ("op =", _) $ t1 $ t2 =>
+			let
+				val (i1, m1, a1) = interpret thy model args t1
+				val (i2, m2, a2) = interpret thy m1 a1 t2
+			in
+				Some (make_equality (i1, i2), m2, a2)
+			end
+		| Const ("op =", _) $ t1 =>
+			(Some (interpret thy model args (eta_expand t 1)) handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+		| Const ("op =", _) =>
+			(Some (interpret thy model args (eta_expand t 2)) handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+		| Const ("op &", _) =>
+			Some (Node [Node [TT, FF], Node [FF, FF]], model, args)
+		| Const ("op |", _) =>
+			Some (Node [Node [TT, TT], Node [TT, FF]], model, args)
+		| Const ("op -->", _) =>
+			Some (Node [Node [TT, FF], Node [TT, TT]], model, args)
+		| _ => None
+	end;
+
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
+
+	fun set_interpreter thy model args t =
+	(* "T set" is isomorphic to "T --> bool" *)
+	let
+		val (typs, terms) = model
+		(* Term.term -> int -> Term.term *)
+		fun eta_expand t i =
+		let
+			val Ts = binder_types (fastype_of t)
+		in
+			foldr (fn (T, t) => Abs ("<eta_expand>", T, t))
+				(take (i, Ts), list_comb (t, map Bound (i-1 downto 0)))
+		end
+	in
+		case assoc (terms, t) of
+		  Some intr =>
+			(* return an existing interpretation *)
+			Some (intr, model, args)
+		| None =>
+			(case t of
+			  Free (x, Type ("set", [T])) =>
+				(let
+					val (intr, _, args') = interpret thy (typs, []) args (Free (x, T --> HOLogic.boolT))
+				in
+					Some (intr, (typs, (t, intr)::terms), args')
+				end handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+			| Var ((x,i), Type ("set", [T])) =>
+				(let
+					val (intr, _, args') = interpret thy (typs, []) args (Var ((x,i), T --> HOLogic.boolT))
+				in
+					Some (intr, (typs, (t, intr)::terms), args')
+				end handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+			| Const (s, Type ("set", [T])) =>
+				(let
+					val (intr, _, args') = interpret thy (typs, []) args (Const (s, T --> HOLogic.boolT))
+				in
+					Some (intr, (typs, (t, intr)::terms), args')
+				end handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+			(* 'Collect' == identity *)
+			| Const ("Collect", _) $ t1 =>
+				Some (interpret thy model args t1)
+			| Const ("Collect", _) =>
+				(Some (interpret thy model args (eta_expand t 1)) handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+			(* 'op :' == application *)
+			| Const ("op :", _) $ t1 $ t2 =>
+				Some (interpret thy model args (t2 $ t1))
+			| Const ("op :", _) $ t1 =>
+				(Some (interpret thy model args (eta_expand t 1)) handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+			| Const ("op :", _) =>
+				(Some (interpret thy model args (eta_expand t 2)) handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+			| _ => None)
+	end;
+
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
+
+	fun IDT_interpreter thy model args t =
+	let
+		val (typs, terms) = model
+		(* DatatypeAux.descr -> (DatatypeAux.dtyp * Term.typ) list -> DatatypeAux.dtyp -> Term.typ *)
+		fun typ_of_dtyp descr typ_assoc (DatatypeAux.DtTFree a) =
+			(* replace a 'DtTFree' variable by the associated type *)
+			(the o assoc) (typ_assoc, DatatypeAux.DtTFree a)
+		  | typ_of_dtyp descr typ_assoc (DatatypeAux.DtRec i) =
+			let
+				val (s, ds, _) = (the o assoc) (descr, i)
+			in
+				Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+			end
+		  | typ_of_dtyp descr typ_assoc (DatatypeAux.DtType (s, ds)) =
+			Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+		(* int list -> int *)
+		fun sum xs = foldl op+ (0, xs)
+		(* int list -> int *)
+		fun product xs = foldl op* (1, xs)
+		(* the size of an IDT is the sum (over its constructors) of the        *)
+		(* product (over their arguments) of the size of the argument type     *)
+		(* (Term.typ * int) list -> DatatypeAux.descr -> (DatatypeAux.dtyp * Term.typ) list -> (string * DatatypeAux.dtyp list) list -> int *)
+		fun size_of_dtyp typs descr typ_assoc constrs =
+			sum (map (fn (_, ds) =>
+				product (map (fn d =>
+					let
+						val T         = typ_of_dtyp descr typ_assoc d
+						val (i, _, _) =
+							(interpret thy (typs, []) {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+							handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+					in
+						size_of_type i
+					end) ds)) constrs)
+		(* Term.typ -> (interpretation * model * arguments) option *)
+		fun interpret_variable (Type (s, Ts)) =
+			(case DatatypePackage.datatype_info thy s of
+			  Some info =>  (* inductive datatype *)
+				let
+					val (typs, terms) = model
+					(* int option -- only recursive IDTs have an associated depth *)
+					val depth         = assoc (typs, Type (s, Ts))
+				in
+					if depth = (Some 0) then  (* termination condition to avoid infinite recursion *)
+						(* return a leaf of size 0 *)
+						Some (Leaf [], model, args)
+					else
+						let
+							val index               = #index info
+							val descr               = #descr info
+							val (_, dtyps, constrs) = (the o assoc) (descr, index)
+							val typ_assoc           = dtyps ~~ Ts
+							(* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+							val _ = (if Library.exists (fn d =>
+									case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
+								then
+									raise REFUTE ("IDT_interpreter", "datatype argument (for type " ^ Sign.string_of_typ (sign_of thy) (Type (s, Ts)) ^ ") is not a variable")
+								else
+									())
+							(* if the model specifies a depth for the current type, decrement it to avoid infinite recursion *)
+							val typs'    = (case depth of None => typs | Some n => overwrite (typs, (Type (s, Ts), n-1)))
+							(* recursively compute the size of the datatype *)
+							val size     = size_of_dtyp typs' descr typ_assoc constrs
+							val next_idx = #next_idx args
+							val next     = (if size=2 then next_idx+1 else next_idx+size)  (* optimization for types with size 2 *)
+							val _        = (if next-1>(#maxvars args) andalso (#maxvars args)>0 then raise MAXVARS_EXCEEDED else ())  (* check if 'maxvars' is large enough *)
+							(* prop_formula list *)
+							val fms      = (if size=2 then [BoolVar next_idx, Not (BoolVar next_idx)]
+								else (map BoolVar (next_idx upto (next_idx+size-1))))
+							(* interpretation *)
+							val intr     = Leaf fms
+							(* prop_formula list -> prop_formula *)
+							fun one_of_two_false []      = True
+							  | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' => SOr (SNot x, SNot x')) xs), one_of_two_false xs)
+							(* prop_formula list -> prop_formula *)
+							fun exactly_one_true xs = SAnd (PropLogic.exists xs, one_of_two_false xs)
+							(* prop_formula *)
+							val wf       = (if size=2 then True else exactly_one_true fms)
+						in
+							(* extend the model, increase 'next_idx', add well-formedness condition *)
+							Some (intr, (typs, (t, intr)::terms), {maxvars = #maxvars args, next_idx = next, bounds = #bounds args, wellformed = SAnd (#wellformed args, wf)})
+						end
+				end
+			| None =>  (* not an inductive datatype *)
+				None)
+		  | interpret_variable _ =  (* a (free or schematic) type variable *)
+			None
+	in
+		case assoc (terms, t) of
+		  Some intr =>
+			(* return an existing interpretation *)
+			Some (intr, model, args)
+		| None =>
+			(case t of
+			  Free (_, T)  => interpret_variable T
+			| Var (_, T)   => interpret_variable T
+			| Const (s, T) =>
+				(* TODO: case, recursion, size *)
+				let
+					(* unit -> (interpretation * model * arguments) option *)
+					fun interpret_constructor () =
+						(case body_type T of
+						  Type (s', Ts') =>
+							(case DatatypePackage.datatype_info thy s' of
+							  Some info =>  (* body type is an inductive datatype *)
+								let
+									val index               = #index info
+									val descr               = #descr info
+									val (_, dtyps, constrs) = (the o assoc) (descr, index)
+									val typ_assoc           = dtyps ~~ Ts'
+									(* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+									val _ = (if Library.exists (fn d =>
+											case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
+										then
+											raise REFUTE ("IDT_interpreter", "datatype argument (for type " ^ Sign.string_of_typ (sign_of thy) (Type (s', Ts')) ^ ") is not a variable")
+										else
+											())
+									(* split the constructors into those occuring before/after 'Const (s, T)' *)
+									val (constrs1, constrs2) = take_prefix (fn (cname, ctypes) =>
+										not (cname = s andalso Type.typ_instance (Sign.tsig_of (sign_of thy), T,
+											map (typ_of_dtyp descr typ_assoc) ctypes ---> Type (s', Ts')))) constrs
+								in
+									case constrs2 of
+									  [] =>
+										(* 'Const (s, T)' is not a constructor of this datatype *)
+										None
+									| c::cs =>
+										let
+											(* int option -- only recursive IDTs have an associated depth *)
+											val depth = assoc (typs, Type (s', Ts'))
+											val typs' = (case depth of None => typs | Some n => overwrite (typs, (Type (s', Ts'), n-1)))
+											(* constructors before 'Const (s, T)' generate elements of the datatype *)
+											val offset  = size_of_dtyp typs' descr typ_assoc constrs1
+											(* 'Const (s, T)' and constructors after it generate elements of the datatype *)
+											val total   = offset + (size_of_dtyp typs' descr typ_assoc constrs2)
+											(* create an interpretation that corresponds to the constructor 'Const (s, T)' *)
+											(* by recursion over its argument types                                        *)
+											(* DatatypeAux.dtyp list -> interpretation *)
+											fun make_partial [] =
+												(* all entries of the leaf are 'False' *)
+												Leaf (replicate total False)
+											  | make_partial (d::ds) =
+												let
+													(* compute the "new" size of the type 'd' *)
+													val T         = typ_of_dtyp descr typ_assoc d
+													val (i, _, _) =
+														(interpret thy (typs, []) {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+														handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+												in
+													(* all entries of the whole subtree are 'False' *)
+													Node (replicate (size_of_type i) (make_partial ds))
+												end
+											(* int * DatatypeAux.dtyp list -> int * interpretation *)
+											fun make_constr (offset, []) =
+												if offset<total then
+													(offset+1, Leaf ((replicate offset False) @ True :: (replicate (total-offset-1) False)))
+												else
+													raise REFUTE ("IDT_interpreter", "internal error: offset >= total")
+											  | make_constr (offset, d::ds) =
+												let
+													(* compute the "new" and "old" size of the type 'd' *)
+													val T         = typ_of_dtyp descr typ_assoc d
+													val (i, _, _) =
+														(interpret thy (typs, []) {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+														handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+													val (i', _, _) =
+														(interpret thy (typs', []) {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+														handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+													val size  = size_of_type i
+													val size' = size_of_type i'
+													val _ = if size<size' then
+															raise REFUTE ("IDT_interpreter", "internal error: new size < old size")
+														else
+															()
+													val (new_offset, intrs) = foldl_map make_constr (offset, replicate size' ds)
+												in
+													(* the first size' elements of the type actually yield a result *)
+													(* element, while the remaining size-size' elements don't       *)
+													(new_offset, Node (intrs @ (replicate (size-size') (make_partial ds))))
+												end
+										in
+											Some ((snd o make_constr) (offset, snd c), model, args)
+										end
+								end
+							| None =>  (* body type is not an inductive datatype *)
+								None)
+						| _ =>  (* body type is a (free or schematic) type variable *)
+							None)
+				in
+					case interpret_constructor () of
+					  Some x => Some x
+					| None   => interpret_variable T
+				end
+			| _ => None)
+	end;
+
+	(* theory -> model -> arguments -> Term.term -> (interpretation * model * arguments) option *)
+
+	(* only an optimization: 'card' could in principle be interpreted with    *)
+	(* interpreters available already (using its definition), but the code    *)
+	(* below is much more efficient                                           *)
+
+	fun Finite_Set_card_interpreter thy model args t =
+		case t of
+		  Const ("Finite_Set.card", Type ("fun", [Type ("set", [T]), Type ("nat", [])])) =>
+			let
+				val (i_nat, _, _) =
+					(interpret thy model {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", Type ("nat", [])))
+						handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+				val size_nat      = size_of_type i_nat
+				val (i_set, _, _) =
+					(interpret thy model {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", Type ("set", [T])))
+						handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+				val constants     = make_constants i_set
+				(* interpretation -> int *)
+				fun number_of_elements (Node xs) =
+					foldl (fn (n, x) =>
+						if x=TT then n+1 else if x=FF then n else raise REFUTE ("Finite_Set_card_interpreter", "interpretation for set type does not yield a Boolean")) (0, xs)
+				  | number_of_elements (Leaf _) =
+					raise REFUTE ("Finite_Set_card_interpreter", "interpretation for set type is a leaf")
+				(* takes an interpretation for a set and returns an interpretation for a 'nat' *)
+				(* interpretation -> interpretation *)
+				fun card i =
+					let
+						val n = number_of_elements i
+					in
+						if n<size_nat then
+							Leaf ((replicate n False) @ True :: (replicate (size_nat-n-1) False))
 						else
-							raise REFUTE ("var_settype_printer", "illegal interpretation: no value assigned"))
-					((make_constants i) ~~ results)
+							Leaf (replicate size_nat False)
+					end
 			in
-				Some (enclose "{" "}" (commas strings))
+				Some (Node (map card constants), model, args)
 			end
-		| Var ((x,i), Type ("set", [T])) =>
+		| _ =>
+			None;
+
+
+(* ------------------------------------------------------------------------- *)
+(* PRINTERS                                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term option *)
+
+	fun stlc_printer thy model t intr assignment =
+	let
+		(* Term.term -> Term.typ option *)
+		fun typeof (Free (_, T))  = Some T
+		  | typeof (Var (_, T))   = Some T
+		  | typeof (Const (_, T)) = Some T
+		  | typeof _              = None
+		(* string -> string *)
+		fun strip_leading_quote s =
+			(implode o (fn ss => case ss of [] => [] | x::xs => if x="'" then xs else ss) o explode) s
+		(* Term.typ -> string *)
+		fun string_of_typ (Type (s, _))     = s
+		  | string_of_typ (TFree (x, _))    = strip_leading_quote x
+		  | string_of_typ (TVar ((x,i), _)) = strip_leading_quote x ^ string_of_int i
+		(* interpretation -> int *)
+		fun index_from_interpretation (Leaf xs) =
 			let
-				(* interpretation list *)
-				val results = (case intr of
-				  Node xs => xs
-					| _       => raise REFUTE ("var_settype_printer", "interpretation is a leaf"))
-				(* create all constants of type T *)
-				val (i, _, _) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("var_settype_printer", T))
-				(* string list *)
-				val strings = mapfilter
-					(fn (argi,Leaf [fmTrue,fmFalse]) =>
-						if PropLogic.eval assignment fmTrue then
-							Some (print thy model (Free ("var_settype_printer", T)) argi assignment)
-						else if PropLogic.eval assignment fmTrue then
-							None
-						else
-							raise REFUTE ("var_settype_printer", "illegal interpretation: no value assigned"))
-					((make_constants i) ~~ results)
+				val idx = find_index (PropLogic.eval assignment) xs
 			in
-				Some (enclose "{" "}" (commas strings))
+				if idx<0 then
+					raise REFUTE ("stlc_printer", "illegal interpretation: no value assigned (SAT solver unsound?)")
+				else
+					idx
 			end
-		| _ => None
+		  | index_from_interpretation _ =
+			raise REFUTE ("stlc_printer", "interpretation for ground type is not a leaf")
+	in
+		case typeof t of
+		  Some T =>
+			(case T of
+			  Type ("fun", [T1, T2]) =>
+				(let
+					(* create all constants of type 'T1' *)
+					val (i, _, _) = interpret thy model {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T1))
+					val constants = make_constants i
+					(* interpretation list *)
+					val results = (case intr of
+						  Node xs => xs
+						| _       => raise REFUTE ("stlc_printer", "interpretation for function type is a leaf"))
+					(* Term.term list *)
+					val pairs = map (fn (arg, result) =>
+						HOLogic.mk_prod
+							(print thy model (Free ("dummy", T1)) arg assignment,
+							 print thy model (Free ("dummy", T2)) result assignment))
+						(constants ~~ results)
+					(* Term.typ *)
+					val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
+					val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
+					(* Term.term *)
+					val HOLogic_empty_set = Const ("{}", HOLogic_setT)
+					val HOLogic_insert    = Const ("insert", HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
+				in
+					Some (foldr (fn (pair, acc) => HOLogic_insert $ pair $ acc) (pairs, HOLogic_empty_set))
+				end handle CANNOT_INTERPRET _ => None)
+			| Type ("prop", [])      =>
+				(case index_from_interpretation intr of
+				  0 => Some (HOLogic.mk_Trueprop HOLogic.true_const)
+				| 1 => Some (HOLogic.mk_Trueprop HOLogic.false_const)
+				| _ => raise REFUTE ("stlc_interpreter", "illegal interpretation for a propositional value"))
+			| Type _  => Some (Const (string_of_typ T ^ string_of_int (index_from_interpretation intr), T))
+			| TFree _ => Some (Const (string_of_typ T ^ string_of_int (index_from_interpretation intr), T))
+			| TVar _  => Some (Const (string_of_typ T ^ string_of_int (index_from_interpretation intr), T)))
+		| None =>
+			None
 	end;
 
 	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option *)
 
-	fun HOLogic_printer thy model t intr assignment =
-		case t of
-		(* 'arbitrary', 'The', 'Hilbert_Choice.Eps' are printed like free variables of the same type *)
-		  Const ("arbitrary", T) =>
-			Some (print thy model (Free ("<arbitrary>", T)) intr assignment)
-		| Const ("The", T) =>
-			Some (print thy model (Free ("<The>", T)) intr assignment)
-		| Const ("Hilbert_Choice.Eps", T) =>
-			Some (print thy model (Free ("<Eps>", T)) intr assignment)
+	fun set_printer thy model t intr assignment =
+	let
+		(* Term.term -> Term.typ option *)
+		fun typeof (Free (_, T))  = Some T
+		  | typeof (Var (_, T))   = Some T
+		  | typeof (Const (_, T)) = Some T
+		  | typeof _              = None
+	in
+		case typeof t of
+		  Some (Type ("set", [T])) =>
+			(let
+				(* create all constants of type 'T' *)
+				val (i, _, _) = interpret thy model {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+				val constants = make_constants i
+				(* interpretation list *)
+				val results = (case intr of
+					  Node xs => xs
+					| _       => raise REFUTE ("set_printer", "interpretation for set type is a leaf"))
+				(* Term.term list *)
+				val elements = mapfilter (fn (arg, result) =>
+					case result of
+					  Leaf [fmTrue, fmFalse] =>
+						if PropLogic.eval assignment fmTrue then
+							Some (print thy model (Free ("dummy", T)) arg assignment)
+						else if PropLogic.eval assignment fmFalse then
+							None
+						else
+							raise REFUTE ("set_printer", "illegal interpretation: no value assigned (SAT solver unsound?)")
+					| _ =>
+						raise REFUTE ("set_printer", "illegal interpretation for a Boolean value"))
+					(constants ~~ results)
+				(* Term.typ *)
+				val HOLogic_setT  = HOLogic.mk_setT T
+				(* Term.term *)
+				val HOLogic_empty_set = Const ("{}", HOLogic_setT)
+				val HOLogic_insert    = Const ("insert", T --> HOLogic_setT --> HOLogic_setT)
+			in
+				Some (foldl (fn (acc, elem) => HOLogic_insert $ elem $ acc) (HOLogic_empty_set, elements))
+			end handle CANNOT_INTERPRET _ => None)
 		| _ =>
-			None;
+			None
+	end;
 
-	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> string option *)
+	(* theory -> model -> Term.term -> interpretation -> (int -> bool) -> Term.term option *)
 
-	fun var_IDT_printer thy model t intr assignment =
+	fun IDT_printer thy model t intr assignment =
 	let
-		fun is_var (Free _) = true
-		  | is_var (Var _)  = true
-		  | is_var _        = false
-		fun typeof (Free (_,T)) = T
-		  | typeof (Var (_,T))  = T
-		  | typeof _            = raise REFUTE ("var_IDT_printer", "term is not a variable")
+		(* Term.term -> Term.typ option *)
+		fun typeof (Free (_, T))  = Some T
+		  | typeof (Var (_, T))   = Some T
+		  | typeof (Const (_, T)) = Some T
+		  | typeof _              = None
 	in
-		if is_var t then
-			(case typeof t of
-			  Type (s, Ts) =>
-				(case DatatypePackage.datatype_info thy s of
-				  Some info =>  (* inductive datatype *)
-					let
-						val index               = #index info
-						val descr               = #descr info
-						val (_, dtyps, constrs) = the (assoc (descr, index))
+		case typeof t of
+		  Some (Type (s, Ts)) =>
+			(case DatatypePackage.datatype_info thy s of
+			  Some info =>  (* inductive datatype *)
+				let
+					val (typs, _)           = model
+					val index               = #index info
+					val descr               = #descr info
+					val (_, dtyps, constrs) = (the o assoc) (descr, index)
+					val typ_assoc           = dtyps ~~ Ts
+					(* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+					val _ = (if Library.exists (fn d =>
+							case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
+						then
+							raise REFUTE ("IDT_printer", "datatype argument (for type " ^ Sign.string_of_typ (sign_of thy) (Type (s, Ts)) ^ ") is not a variable")
+						else
+							())
+					(* the index of the element in the datatype *)
+					val element = (case intr of
+						  Leaf xs => find_index (PropLogic.eval assignment) xs
+						| Node _  => raise REFUTE ("IDT_printer", "interpretation is not a leaf"))
+					val _ = (if element<0 then raise REFUTE ("IDT_printer", "invalid interpretation (no value assigned)") else ())
+					(* int option -- only recursive IDTs have an associated depth *)
+					val depth = assoc (typs, Type (s, Ts))
+					val typs' = (case depth of None => typs | Some n => overwrite (typs, (Type (s, Ts), n-1)))
+					(* DatatypeAux.descr -> (DatatypeAux.dtyp * Term.typ) list -> DatatypeAux.dtyp -> Term.typ *)
+					fun typ_of_dtyp descr typ_assoc (DatatypeAux.DtTFree a) =
+						(* replace a 'DtTFree' variable by the associated type *)
+						(the o assoc) (typ_assoc, DatatypeAux.DtTFree a)
+					  | typ_of_dtyp descr typ_assoc (DatatypeAux.DtRec i) =
+						let
+							val (s, ds, _) = (the o assoc) (descr, i)
+						in
+							Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+						end
+					  | typ_of_dtyp descr typ_assoc (DatatypeAux.DtType (s, ds)) =
+						Type (s, map (typ_of_dtyp descr typ_assoc) ds)
+					(* int list -> int *)
+					fun sum xs = foldl op+ (0, xs)
+					(* int list -> int *)
+					fun product xs = foldl op* (1, xs)
+					(* the size of an IDT is the sum (over its constructors) of the        *)
+					(* product (over their arguments) of the size of the argument type     *)
+					(* (Term.typ * int) list -> DatatypeAux.descr -> (DatatypeAux.dtyp * Term.typ) list -> (string * DatatypeAux.dtyp list) list -> int *)
+					fun size_of_dtyp typs descr typ_assoc xs =
+						sum (map (fn (_, ds) =>
+							product (map (fn d =>
+								let
+									val T         = typ_of_dtyp descr typ_assoc d
+									val (i, _, _) =
+										(interpret thy (typs, []) {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
+										handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
 					in
-						if Library.exists (fn d => case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps then
-							raise REFUTE ("var_IDT_printer", "recursive datatype argument")
-						else if Library.exists (fn (_,ds) => Library.exists DatatypeAux.is_rec_type ds) constrs then
-							None  (* recursive datatype (requires an infinite model) *)
+						size_of_type i
+					end) ds)) xs)
+					(* int -> DatatypeAux.dtyp list -> Term.term list *)
+					fun make_args n [] =
+						if n<>0 then
+							raise REFUTE ("IDT_printer", "error computing the element: remainder is not 0")
 						else
+							[]
+					  | make_args n (d::ds) =
 						let
-							val (sizes, _) = model
-							val typ_assoc  = dtyps ~~ Ts
-							(* interpretation -> int *)
-							fun index_from_interpretation (Leaf xs) =
+							val dT        = typ_of_dtyp descr typ_assoc d
+							val (i, _, _) =
+								(interpret thy (typs', []) {maxvars=0, next_idx=1, bounds=[], wellformed=True} (Free ("dummy", dT))
+								handle CANNOT_INTERPRET _ => raise CANNOT_INTERPRET t)
+							val size      = size_of_type i
+							val consts    = make_constants i  (* we only need the (n mod size)-th element of *)
+								(* this list, so there might be a more efficient implementation that does not *)
+								(* generate all constants                                                     *)
+						in
+							(print thy (typs', []) (Free ("dummy", dT)) (nth_elem (n mod size, consts)) assignment)::(make_args (n div size) ds)
+						end
+					(* int -> (string * DatatypeAux.dtyp list) list -> Term.term *)
+					fun make_term _ [] =
+						raise REFUTE ("IDT_printer", "invalid interpretation (value too large - not enough constructors)")
+					  | make_term n (c::cs) =
+						let
+							val c_size = size_of_dtyp typs' descr typ_assoc [c]
+						in
+							if n<c_size then
 								let
-									val idx = find_index (PropLogic.eval assignment) xs
+									val (cname, cargs) = c
+									val c_term = Const (cname, (map (typ_of_dtyp descr typ_assoc) cargs) ---> Type (s, Ts))
 								in
-									if idx<0 then
-										raise REFUTE ("var_IDT_printer", "illegal interpretation: no value assigned")
-									else
-										idx
+									foldl op$ (c_term, rev (make_args n (rev cargs)))
 								end
-							  | index_from_interpretation _ =
-								raise REFUTE ("var_IDT_printer", "interpretation is not a leaf")
-							(* string -> string *)
-							fun unqualify s =
-								implode (snd (take_suffix (fn c => c <> ".") (explode s)))
-							(* DatatypeAux.dtyp -> Term.typ *)
-							fun typ_of_dtyp (DatatypeAux.DtTFree a) =
-								the (assoc (typ_assoc, DatatypeAux.DtTFree a))
-							  | typ_of_dtyp (DatatypeAux.DtRec i) =
-								raise REFUTE ("var_IDT_printer", "recursive datatype")
-							  | typ_of_dtyp (DatatypeAux.DtType (s, ds)) =
-								Type (s, map typ_of_dtyp ds)
-							fun sum xs     = foldl op+ (0, xs)
-							fun product xs = foldl op* (1, xs)
-							(* power(a,b) computes a^b, for a>=0, b>=0 *)
-							(* int * int -> int *)
-							fun power (a,0) = 1
-							  | power (a,1) = a
-							  | power (a,b) = let val ab = power(a,b div 2) in ab * ab * power(a,b mod 2) end
-							fun size_of_interpretation (Leaf xs) = length xs
-							  | size_of_interpretation (Node xs) = power (size_of_interpretation (hd xs), length xs)
-							fun size_of_type T =
-								let
-									val (i,_,_) = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("<IDT>", T))
-								in
-									size_of_interpretation i
-								end
-							(* returns a list with all unit vectors of length n *)
-							(* int -> interpretation list *)
-							fun unit_vectors n =
-							let
-								(* returns the k-th unit vector of length n *)
-								(* int * int -> interpretation *)
-								fun unit_vector (k,n) =
-									Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-								(* int -> interpretation list -> interpretation list *)
-								fun unit_vectors_acc k vs =
-									if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
-							in
-								unit_vectors_acc 1 []
-							end
-							(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
-							(* 'a -> 'a list list -> 'a list list *)
-							fun cons_list x xss =
-								map (fn xs => x::xs) xss
-							(* returns a list of lists, each one consisting of n (possibly identical) elements from 'xs' *)
-							(* int -> 'a list -> 'a list list *)
-							fun pick_all 1 xs =
-								map (fn x => [x]) xs
-							  | pick_all n xs =
-								let val rec_pick = pick_all (n-1) xs in
-									foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
-								end
-							(* interpretation -> interpretation list *)
-							fun make_constants (Leaf xs) =
-								unit_vectors (length xs)
-							  | make_constants (Node xs) =
-								map (fn xs' => Node xs') (pick_all (length xs) (make_constants (hd xs)))
-							(* DatatypeAux.dtyp list -> int -> string *)
-							fun string_of_inductive_type_cargs [] n =
-								if n<>0 then
-									raise REFUTE ("var_IDT_printer", "internal error computing the element index for an inductive type")
-								else
-									""
-							  | string_of_inductive_type_cargs (d::ds) n =
-								let
-									val size_ds   = product (map (fn d => size_of_type (typ_of_dtyp d)) ds)
-									val T         = typ_of_dtyp d
-									val (i,_,_)   = interpret thy (sizes, []) {next_idx=1, bounds=[], wellformed=True} (Free ("<IDT>", T))
-									val constants = make_constants i
-								in
-									" "
-									^ (print thy model (Free ("<IDT>", T)) (nth_elem (n div size_ds, constants)) assignment)
-									^ (string_of_inductive_type_cargs ds (n mod size_ds))
-								end
-							(* (string * DatatypeAux.dtyp list) list -> int -> string *)
-							fun string_of_inductive_type_constrs [] n =
-								raise REFUTE ("var_IDT_printer", "inductive type has fewer elements than needed")
-							  | string_of_inductive_type_constrs ((c,ds)::cs) n =
-								let
-									val size = product (map (fn d => size_of_type (typ_of_dtyp d)) ds)
-								in
-									if n < size then
-										(unqualify c) ^ (string_of_inductive_type_cargs ds n)
-									else
-										string_of_inductive_type_constrs cs (n - size)
-								end
-						in
-							Some (string_of_inductive_type_constrs constrs (index_from_interpretation intr))
+							else
+								make_term (n-c_size) cs
 						end
-					end
-				| None => None)
-			| _ => None)
-		else
+				in
+					Some (make_term element constrs)
+				end
+			| None =>  (* not an inductive datatype *)
+				None)
+		| _ =>  (* a (free or schematic) type variable *)
 			None
 	end;
 
@@ -1786,27 +1921,22 @@
 (* ------------------------------------------------------------------------- *)
 (* Note: the interpreters and printers are used in reverse order; however,   *)
 (*       an interpreter that can handle non-atomic terms ends up being       *)
-(*       applied before other interpreters are applied to subterms!          *)
+(*       applied before the 'stlc_interpreter' breaks the term apart into    *)
+(*       subterms that are then passed to other interpreters!                *)
 (* ------------------------------------------------------------------------- *)
 
 	(* (theory -> theory) list *)
 
 	val setup =
 		[RefuteData.init,
-		 add_interpreter "var_typevar"   var_typevar_interpreter,
-		 add_interpreter "var_funtype"   var_funtype_interpreter,
-		 add_interpreter "var_settype"   var_settype_interpreter,
-		 add_interpreter "boundvar"      boundvar_interpreter,
-		 add_interpreter "abstraction"   abstraction_interpreter,
-		 add_interpreter "apply"         apply_interpreter,
-		 add_interpreter "const_unfold"  const_unfold_interpreter,
-		 add_interpreter "Pure"          Pure_interpreter,
-		 add_interpreter "HOLogic"       HOLogic_interpreter,
-		 add_interpreter "IDT"           IDT_interpreter,
-		 add_printer "var_typevar"   var_typevar_printer,
-		 add_printer "var_funtype"   var_funtype_printer,
-		 add_printer "var_settype"   var_settype_printer,
-		 add_printer "HOLogic"       HOLogic_printer,
-		 add_printer "var_IDT"       var_IDT_printer];
+		 add_interpreter "stlc"            stlc_interpreter,
+		 add_interpreter "Pure"            Pure_interpreter,
+		 add_interpreter "HOLogic"         HOLogic_interpreter,
+		 add_interpreter "set"             set_interpreter,
+		 add_interpreter "IDT"             IDT_interpreter,
+		 add_interpreter "Finite_Set.card" Finite_Set_card_interpreter,
+		 add_printer "stlc" stlc_printer,
+		 add_printer "set"  set_printer,
+		 add_printer "IDT"  IDT_printer];
 
 end