tuned spelling;
authorwenzelm
Sat, 26 Apr 2014 14:01:06 +0200
changeset 56749 e96d6b38649e
parent 56748 10b52ca3b4a2
child 56750 205dd4439db1
tuned spelling;
src/HOL/Hahn_Banach/Hahn_Banach.thy
src/HOL/Hahn_Banach/Normed_Space.thy
--- a/src/HOL/Hahn_Banach/Hahn_Banach.thy	Sat Apr 26 14:00:49 2014 +0200
+++ b/src/HOL/Hahn_Banach/Hahn_Banach.thy	Sat Apr 26 14:01:06 2014 +0200
@@ -391,7 +391,7 @@
     ultimately show "0 \<le> p x"  
       by (simp add: p_def zero_le_mult_iff)
 
-    txt {* @{text p} is absolutely homogenous: *}
+    txt {* @{text p} is absolutely homogeneous: *}
 
     show "p (a \<cdot> x) = \<bar>a\<bar> * p x"
     proof -
--- a/src/HOL/Hahn_Banach/Normed_Space.thy	Sat Apr 26 14:00:49 2014 +0200
+++ b/src/HOL/Hahn_Banach/Normed_Space.thy	Sat Apr 26 14:01:06 2014 +0200
@@ -13,7 +13,7 @@
 text {*
   A \emph{seminorm} @{text "\<parallel>\<cdot>\<parallel>"} is a function on a real vector space
   into the reals that has the following properties: it is positive
-  definite, absolute homogenous and subadditive.
+  definite, absolute homogeneous and subadditive.
 *}
 
 locale seminorm =