replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
--- a/src/HOL/HOLCF/Algebraic.thy Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/Algebraic.thy Sun Dec 19 09:52:33 2010 -0800
@@ -215,4 +215,66 @@
lemma cast_strict2 [simp]: "cast\<cdot>A\<cdot>\<bottom> = \<bottom>"
by (rule cast.below [THEN UU_I])
+subsection {* Deflation combinators *}
+
+definition
+ "defl_fun1 e p f =
+ defl.basis_fun (\<lambda>a.
+ defl_principal (Abs_fin_defl
+ (e oo f\<cdot>(Rep_fin_defl a) oo p)))"
+
+definition
+ "defl_fun2 e p f =
+ defl.basis_fun (\<lambda>a.
+ defl.basis_fun (\<lambda>b.
+ defl_principal (Abs_fin_defl
+ (e oo f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo p))))"
+
+lemma cast_defl_fun1:
+ assumes ep: "ep_pair e p"
+ assumes f: "\<And>a. finite_deflation a \<Longrightarrow> finite_deflation (f\<cdot>a)"
+ shows "cast\<cdot>(defl_fun1 e p f\<cdot>A) = e oo f\<cdot>(cast\<cdot>A) oo p"
+proof -
+ have 1: "\<And>a. finite_deflation (e oo f\<cdot>(Rep_fin_defl a) oo p)"
+ apply (rule ep_pair.finite_deflation_e_d_p [OF ep])
+ apply (rule f, rule finite_deflation_Rep_fin_defl)
+ done
+ show ?thesis
+ by (induct A rule: defl.principal_induct, simp)
+ (simp only: defl_fun1_def
+ defl.basis_fun_principal
+ defl.basis_fun_mono
+ defl.principal_mono
+ Abs_fin_defl_mono [OF 1 1]
+ monofun_cfun below_refl
+ Rep_fin_defl_mono
+ cast_defl_principal
+ Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
+qed
+
+lemma cast_defl_fun2:
+ assumes ep: "ep_pair e p"
+ assumes f: "\<And>a b. finite_deflation a \<Longrightarrow> finite_deflation b \<Longrightarrow>
+ finite_deflation (f\<cdot>a\<cdot>b)"
+ shows "cast\<cdot>(defl_fun2 e p f\<cdot>A\<cdot>B) = e oo f\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo p"
+proof -
+ have 1: "\<And>a b. finite_deflation
+ (e oo f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo p)"
+ apply (rule ep_pair.finite_deflation_e_d_p [OF ep])
+ apply (rule f, (rule finite_deflation_Rep_fin_defl)+)
+ done
+ show ?thesis
+ apply (induct A rule: defl.principal_induct, simp)
+ apply (induct B rule: defl.principal_induct, simp)
+ by (simp only: defl_fun2_def
+ defl.basis_fun_principal
+ defl.basis_fun_mono
+ defl.principal_mono
+ Abs_fin_defl_mono [OF 1 1]
+ monofun_cfun below_refl
+ Rep_fin_defl_mono
+ cast_defl_principal
+ Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
+qed
+
end
--- a/src/HOL/HOLCF/Domain.thy Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/Domain.thy Sun Dec 19 09:52:33 2010 -0800
@@ -103,8 +103,8 @@
assumes emb: "emb \<equiv> (\<Lambda> x. Rep x)"
assumes prj: "prj \<equiv> (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
assumes defl: "defl \<equiv> (\<lambda> a::'a itself. t)"
- assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) \<equiv> udom_emb u_approx oo u_map\<cdot>emb"
- assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) \<equiv> u_map\<cdot>prj oo udom_prj u_approx"
+ assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
+ assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) \<equiv> u_map\<cdot>prj oo u_prj"
assumes liftdefl: "(liftdefl :: 'a itself \<Rightarrow> _) \<equiv> (\<lambda>t. u_defl\<cdot>DEFL('a))"
shows "OFCLASS('a, liftdomain_class)"
using liftemb [THEN meta_eq_to_obj_eq]
--- a/src/HOL/HOLCF/Library/Defl_Bifinite.thy Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/Library/Defl_Bifinite.thy Sun Dec 19 09:52:33 2010 -0800
@@ -651,10 +651,10 @@
(\<Squnion>i. defl_principal (Abs_fin_defl (emb oo defl_approx i oo prj)))"
definition
- "(liftemb :: 'a defl u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a defl u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a defl u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a defl u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::'a defl itself) = u_defl\<cdot>DEFL('a defl)"
--- a/src/HOL/HOLCF/Powerdomains.thy Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/Powerdomains.thy Sun Dec 19 09:52:33 2010 -0800
@@ -10,54 +10,51 @@
subsection {* Universal domain embeddings *}
-definition upper_approx :: "nat \<Rightarrow> udom upper_pd \<rightarrow> udom upper_pd"
- where "upper_approx = (\<lambda>i. upper_map\<cdot>(udom_approx i))"
+definition "upper_emb = udom_emb (\<lambda>i. upper_map\<cdot>(udom_approx i))"
+definition "upper_prj = udom_prj (\<lambda>i. upper_map\<cdot>(udom_approx i))"
-definition lower_approx :: "nat \<Rightarrow> udom lower_pd \<rightarrow> udom lower_pd"
- where "lower_approx = (\<lambda>i. lower_map\<cdot>(udom_approx i))"
+definition "lower_emb = udom_emb (\<lambda>i. lower_map\<cdot>(udom_approx i))"
+definition "lower_prj = udom_prj (\<lambda>i. lower_map\<cdot>(udom_approx i))"
-definition convex_approx :: "nat \<Rightarrow> udom convex_pd \<rightarrow> udom convex_pd"
- where "convex_approx = (\<lambda>i. convex_map\<cdot>(udom_approx i))"
+definition "convex_emb = udom_emb (\<lambda>i. convex_map\<cdot>(udom_approx i))"
+definition "convex_prj = udom_prj (\<lambda>i. convex_map\<cdot>(udom_approx i))"
-lemma upper_approx: "approx_chain upper_approx"
- using upper_map_ID finite_deflation_upper_map
- unfolding upper_approx_def by (rule approx_chain_lemma1)
+lemma ep_pair_upper: "ep_pair upper_emb upper_prj"
+ unfolding upper_emb_def upper_prj_def
+ by (simp add: ep_pair_udom approx_chain_upper_map)
-lemma lower_approx: "approx_chain lower_approx"
- using lower_map_ID finite_deflation_lower_map
- unfolding lower_approx_def by (rule approx_chain_lemma1)
+lemma ep_pair_lower: "ep_pair lower_emb lower_prj"
+ unfolding lower_emb_def lower_prj_def
+ by (simp add: ep_pair_udom approx_chain_lower_map)
-lemma convex_approx: "approx_chain convex_approx"
- using convex_map_ID finite_deflation_convex_map
- unfolding convex_approx_def by (rule approx_chain_lemma1)
+lemma ep_pair_convex: "ep_pair convex_emb convex_prj"
+ unfolding convex_emb_def convex_prj_def
+ by (simp add: ep_pair_udom approx_chain_convex_map)
subsection {* Deflation combinators *}
definition upper_defl :: "udom defl \<rightarrow> udom defl"
- where "upper_defl = defl_fun1 upper_approx upper_map"
+ where "upper_defl = defl_fun1 upper_emb upper_prj upper_map"
definition lower_defl :: "udom defl \<rightarrow> udom defl"
- where "lower_defl = defl_fun1 lower_approx lower_map"
+ where "lower_defl = defl_fun1 lower_emb lower_prj lower_map"
definition convex_defl :: "udom defl \<rightarrow> udom defl"
- where "convex_defl = defl_fun1 convex_approx convex_map"
+ where "convex_defl = defl_fun1 convex_emb convex_prj convex_map"
lemma cast_upper_defl:
- "cast\<cdot>(upper_defl\<cdot>A) =
- udom_emb upper_approx oo upper_map\<cdot>(cast\<cdot>A) oo udom_prj upper_approx"
-using upper_approx finite_deflation_upper_map
+ "cast\<cdot>(upper_defl\<cdot>A) = upper_emb oo upper_map\<cdot>(cast\<cdot>A) oo upper_prj"
+using ep_pair_upper finite_deflation_upper_map
unfolding upper_defl_def by (rule cast_defl_fun1)
lemma cast_lower_defl:
- "cast\<cdot>(lower_defl\<cdot>A) =
- udom_emb lower_approx oo lower_map\<cdot>(cast\<cdot>A) oo udom_prj lower_approx"
-using lower_approx finite_deflation_lower_map
+ "cast\<cdot>(lower_defl\<cdot>A) = lower_emb oo lower_map\<cdot>(cast\<cdot>A) oo lower_prj"
+using ep_pair_lower finite_deflation_lower_map
unfolding lower_defl_def by (rule cast_defl_fun1)
lemma cast_convex_defl:
- "cast\<cdot>(convex_defl\<cdot>A) =
- udom_emb convex_approx oo convex_map\<cdot>(cast\<cdot>A) oo udom_prj convex_approx"
-using convex_approx finite_deflation_convex_map
+ "cast\<cdot>(convex_defl\<cdot>A) = convex_emb oo convex_map\<cdot>(cast\<cdot>A) oo convex_prj"
+using ep_pair_convex finite_deflation_convex_map
unfolding convex_defl_def by (rule cast_defl_fun1)
subsection {* Domain class instances *}
@@ -66,19 +63,19 @@
begin
definition
- "emb = udom_emb upper_approx oo upper_map\<cdot>emb"
+ "emb = upper_emb oo upper_map\<cdot>emb"
definition
- "prj = upper_map\<cdot>prj oo udom_prj upper_approx"
+ "prj = upper_map\<cdot>prj oo upper_prj"
definition
"defl (t::'a upper_pd itself) = upper_defl\<cdot>DEFL('a)"
definition
- "(liftemb :: 'a upper_pd u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a upper_pd u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a upper_pd u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a upper_pd u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::'a upper_pd itself) = u_defl\<cdot>DEFL('a upper_pd)"
@@ -88,8 +85,7 @@
proof (rule liftdomain_class_intro)
show "ep_pair emb (prj :: udom \<rightarrow> 'a upper_pd)"
unfolding emb_upper_pd_def prj_upper_pd_def
- using ep_pair_udom [OF upper_approx]
- by (intro ep_pair_comp ep_pair_upper_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_upper ep_pair_upper_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a upper_pd) = emb oo (prj :: udom \<rightarrow> 'a upper_pd)"
unfolding emb_upper_pd_def prj_upper_pd_def defl_upper_pd_def cast_upper_defl
@@ -102,19 +98,19 @@
begin
definition
- "emb = udom_emb lower_approx oo lower_map\<cdot>emb"
+ "emb = lower_emb oo lower_map\<cdot>emb"
definition
- "prj = lower_map\<cdot>prj oo udom_prj lower_approx"
+ "prj = lower_map\<cdot>prj oo lower_prj"
definition
"defl (t::'a lower_pd itself) = lower_defl\<cdot>DEFL('a)"
definition
- "(liftemb :: 'a lower_pd u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a lower_pd u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a lower_pd u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a lower_pd u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::'a lower_pd itself) = u_defl\<cdot>DEFL('a lower_pd)"
@@ -124,8 +120,7 @@
proof (rule liftdomain_class_intro)
show "ep_pair emb (prj :: udom \<rightarrow> 'a lower_pd)"
unfolding emb_lower_pd_def prj_lower_pd_def
- using ep_pair_udom [OF lower_approx]
- by (intro ep_pair_comp ep_pair_lower_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_lower ep_pair_lower_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a lower_pd) = emb oo (prj :: udom \<rightarrow> 'a lower_pd)"
unfolding emb_lower_pd_def prj_lower_pd_def defl_lower_pd_def cast_lower_defl
@@ -138,19 +133,19 @@
begin
definition
- "emb = udom_emb convex_approx oo convex_map\<cdot>emb"
+ "emb = convex_emb oo convex_map\<cdot>emb"
definition
- "prj = convex_map\<cdot>prj oo udom_prj convex_approx"
+ "prj = convex_map\<cdot>prj oo convex_prj"
definition
"defl (t::'a convex_pd itself) = convex_defl\<cdot>DEFL('a)"
definition
- "(liftemb :: 'a convex_pd u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a convex_pd u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a convex_pd u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a convex_pd u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::'a convex_pd itself) = u_defl\<cdot>DEFL('a convex_pd)"
@@ -160,8 +155,7 @@
proof (rule liftdomain_class_intro)
show "ep_pair emb (prj :: udom \<rightarrow> 'a convex_pd)"
unfolding emb_convex_pd_def prj_convex_pd_def
- using ep_pair_udom [OF convex_approx]
- by (intro ep_pair_comp ep_pair_convex_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_convex ep_pair_convex_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a convex_pd) = emb oo (prj :: udom \<rightarrow> 'a convex_pd)"
unfolding emb_convex_pd_def prj_convex_pd_def defl_convex_pd_def cast_convex_defl
--- a/src/HOL/HOLCF/Representable.thy Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/Representable.thy Sun Dec 19 09:52:33 2010 -0800
@@ -86,180 +86,89 @@
instance predomain \<subseteq> profinite
by default (rule approx_chain_ep_cast [OF predomain_ep cast_liftdefl])
-subsection {* Chains of approx functions *}
-
-definition u_approx :: "nat \<Rightarrow> udom\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>"
- where "u_approx = (\<lambda>i. u_map\<cdot>(udom_approx i))"
+subsection {* Universal domain ep-pairs *}
-definition sfun_approx :: "nat \<Rightarrow> (udom \<rightarrow>! udom) \<rightarrow> (udom \<rightarrow>! udom)"
- where "sfun_approx = (\<lambda>i. sfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "u_emb = udom_emb (\<lambda>i. u_map\<cdot>(udom_approx i))"
+definition "u_prj = udom_prj (\<lambda>i. u_map\<cdot>(udom_approx i))"
-definition prod_approx :: "nat \<Rightarrow> udom \<times> udom \<rightarrow> udom \<times> udom"
- where "prod_approx = (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "prod_emb = udom_emb (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "prod_prj = udom_prj (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-definition sprod_approx :: "nat \<Rightarrow> udom \<otimes> udom \<rightarrow> udom \<otimes> udom"
- where "sprod_approx = (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-
-definition ssum_approx :: "nat \<Rightarrow> udom \<oplus> udom \<rightarrow> udom \<oplus> udom"
- where "ssum_approx = (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "sprod_emb = udom_emb (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "sprod_prj = udom_prj (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-lemma approx_chain_lemma1:
- assumes "m\<cdot>ID = ID"
- assumes "\<And>d. finite_deflation d \<Longrightarrow> finite_deflation (m\<cdot>d)"
- shows "approx_chain (\<lambda>i. m\<cdot>(udom_approx i))"
-by (rule approx_chain.intro)
- (simp_all add: lub_distribs finite_deflation_udom_approx assms)
+definition "ssum_emb = udom_emb (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "ssum_prj = udom_prj (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+
+definition "sfun_emb = udom_emb (\<lambda>i. sfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+definition "sfun_prj = udom_prj (\<lambda>i. sfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-lemma approx_chain_lemma2:
- assumes "m\<cdot>ID\<cdot>ID = ID"
- assumes "\<And>a b. \<lbrakk>finite_deflation a; finite_deflation b\<rbrakk>
- \<Longrightarrow> finite_deflation (m\<cdot>a\<cdot>b)"
- shows "approx_chain (\<lambda>i. m\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-by (rule approx_chain.intro)
- (simp_all add: lub_distribs finite_deflation_udom_approx assms)
+lemma ep_pair_u: "ep_pair u_emb u_prj"
+ unfolding u_emb_def u_prj_def
+ by (simp add: ep_pair_udom approx_chain_u_map)
-lemma u_approx: "approx_chain u_approx"
-using u_map_ID finite_deflation_u_map
-unfolding u_approx_def by (rule approx_chain_lemma1)
+lemma ep_pair_prod: "ep_pair prod_emb prod_prj"
+ unfolding prod_emb_def prod_prj_def
+ by (simp add: ep_pair_udom approx_chain_cprod_map)
-lemma sfun_approx: "approx_chain sfun_approx"
-using sfun_map_ID finite_deflation_sfun_map
-unfolding sfun_approx_def by (rule approx_chain_lemma2)
-
-lemma prod_approx: "approx_chain prod_approx"
-using cprod_map_ID finite_deflation_cprod_map
-unfolding prod_approx_def by (rule approx_chain_lemma2)
+lemma ep_pair_sprod: "ep_pair sprod_emb sprod_prj"
+ unfolding sprod_emb_def sprod_prj_def
+ by (simp add: ep_pair_udom approx_chain_sprod_map)
-lemma sprod_approx: "approx_chain sprod_approx"
-using sprod_map_ID finite_deflation_sprod_map
-unfolding sprod_approx_def by (rule approx_chain_lemma2)
+lemma ep_pair_ssum: "ep_pair ssum_emb ssum_prj"
+ unfolding ssum_emb_def ssum_prj_def
+ by (simp add: ep_pair_udom approx_chain_ssum_map)
-lemma ssum_approx: "approx_chain ssum_approx"
-using ssum_map_ID finite_deflation_ssum_map
-unfolding ssum_approx_def by (rule approx_chain_lemma2)
+lemma ep_pair_sfun: "ep_pair sfun_emb sfun_prj"
+ unfolding sfun_emb_def sfun_prj_def
+ by (simp add: ep_pair_udom approx_chain_sfun_map)
subsection {* Type combinators *}
-default_sort bifinite
-
-definition
- defl_fun1 ::
- "(nat \<Rightarrow> 'a \<rightarrow> 'a) \<Rightarrow> ((udom \<rightarrow> udom) \<rightarrow> ('a \<rightarrow> 'a)) \<Rightarrow> (udom defl \<rightarrow> udom defl)"
-where
- "defl_fun1 approx f =
- defl.basis_fun (\<lambda>a.
- defl_principal (Abs_fin_defl
- (udom_emb approx oo f\<cdot>(Rep_fin_defl a) oo udom_prj approx)))"
+definition u_defl :: "udom defl \<rightarrow> udom defl"
+ where "u_defl = defl_fun1 u_emb u_prj u_map"
-definition
- defl_fun2 ::
- "(nat \<Rightarrow> 'a \<rightarrow> 'a) \<Rightarrow> ((udom \<rightarrow> udom) \<rightarrow> (udom \<rightarrow> udom) \<rightarrow> ('a \<rightarrow> 'a))
- \<Rightarrow> (udom defl \<rightarrow> udom defl \<rightarrow> udom defl)"
-where
- "defl_fun2 approx f =
- defl.basis_fun (\<lambda>a.
- defl.basis_fun (\<lambda>b.
- defl_principal (Abs_fin_defl
- (udom_emb approx oo
- f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo udom_prj approx))))"
+definition prod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
+ where "prod_defl = defl_fun2 prod_emb prod_prj cprod_map"
-lemma cast_defl_fun1:
- assumes approx: "approx_chain approx"
- assumes f: "\<And>a. finite_deflation a \<Longrightarrow> finite_deflation (f\<cdot>a)"
- shows "cast\<cdot>(defl_fun1 approx f\<cdot>A) = udom_emb approx oo f\<cdot>(cast\<cdot>A) oo udom_prj approx"
-proof -
- have 1: "\<And>a. finite_deflation
- (udom_emb approx oo f\<cdot>(Rep_fin_defl a) oo udom_prj approx)"
- apply (rule ep_pair.finite_deflation_e_d_p)
- apply (rule ep_pair_udom [OF approx])
- apply (rule f, rule finite_deflation_Rep_fin_defl)
- done
- show ?thesis
- by (induct A rule: defl.principal_induct, simp)
- (simp only: defl_fun1_def
- defl.basis_fun_principal
- defl.basis_fun_mono
- defl.principal_mono
- Abs_fin_defl_mono [OF 1 1]
- monofun_cfun below_refl
- Rep_fin_defl_mono
- cast_defl_principal
- Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
-qed
+definition sprod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
+ where "sprod_defl = defl_fun2 sprod_emb sprod_prj sprod_map"
-lemma cast_defl_fun2:
- assumes approx: "approx_chain approx"
- assumes f: "\<And>a b. finite_deflation a \<Longrightarrow> finite_deflation b \<Longrightarrow>
- finite_deflation (f\<cdot>a\<cdot>b)"
- shows "cast\<cdot>(defl_fun2 approx f\<cdot>A\<cdot>B) =
- udom_emb approx oo f\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj approx"
-proof -
- have 1: "\<And>a b. finite_deflation (udom_emb approx oo
- f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo udom_prj approx)"
- apply (rule ep_pair.finite_deflation_e_d_p)
- apply (rule ep_pair_udom [OF approx])
- apply (rule f, (rule finite_deflation_Rep_fin_defl)+)
- done
- show ?thesis
- by (induct A B rule: defl.principal_induct2, simp, simp)
- (simp only: defl_fun2_def
- defl.basis_fun_principal
- defl.basis_fun_mono
- defl.principal_mono
- Abs_fin_defl_mono [OF 1 1]
- monofun_cfun below_refl
- Rep_fin_defl_mono
- cast_defl_principal
- Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
-qed
-
-definition u_defl :: "udom defl \<rightarrow> udom defl"
- where "u_defl = defl_fun1 u_approx u_map"
+definition ssum_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
+where "ssum_defl = defl_fun2 ssum_emb ssum_prj ssum_map"
definition sfun_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
- where "sfun_defl = defl_fun2 sfun_approx sfun_map"
-
-definition prod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
- where "prod_defl = defl_fun2 prod_approx cprod_map"
-
-definition sprod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
- where "sprod_defl = defl_fun2 sprod_approx sprod_map"
-
-definition ssum_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl"
-where "ssum_defl = defl_fun2 ssum_approx ssum_map"
+ where "sfun_defl = defl_fun2 sfun_emb sfun_prj sfun_map"
lemma cast_u_defl:
- "cast\<cdot>(u_defl\<cdot>A) =
- udom_emb u_approx oo u_map\<cdot>(cast\<cdot>A) oo udom_prj u_approx"
-using u_approx finite_deflation_u_map
+ "cast\<cdot>(u_defl\<cdot>A) = u_emb oo u_map\<cdot>(cast\<cdot>A) oo u_prj"
+using ep_pair_u finite_deflation_u_map
unfolding u_defl_def by (rule cast_defl_fun1)
-lemma cast_sfun_defl:
- "cast\<cdot>(sfun_defl\<cdot>A\<cdot>B) =
- udom_emb sfun_approx oo sfun_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj sfun_approx"
-using sfun_approx finite_deflation_sfun_map
-unfolding sfun_defl_def by (rule cast_defl_fun2)
-
lemma cast_prod_defl:
- "cast\<cdot>(prod_defl\<cdot>A\<cdot>B) = udom_emb prod_approx oo
- cprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj prod_approx"
-using prod_approx finite_deflation_cprod_map
+ "cast\<cdot>(prod_defl\<cdot>A\<cdot>B) =
+ prod_emb oo cprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo prod_prj"
+using ep_pair_prod finite_deflation_cprod_map
unfolding prod_defl_def by (rule cast_defl_fun2)
lemma cast_sprod_defl:
"cast\<cdot>(sprod_defl\<cdot>A\<cdot>B) =
- udom_emb sprod_approx oo
- sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo
- udom_prj sprod_approx"
-using sprod_approx finite_deflation_sprod_map
+ sprod_emb oo sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo sprod_prj"
+using ep_pair_sprod finite_deflation_sprod_map
unfolding sprod_defl_def by (rule cast_defl_fun2)
lemma cast_ssum_defl:
"cast\<cdot>(ssum_defl\<cdot>A\<cdot>B) =
- udom_emb ssum_approx oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj ssum_approx"
-using ssum_approx finite_deflation_ssum_map
+ ssum_emb oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo ssum_prj"
+using ep_pair_ssum finite_deflation_ssum_map
unfolding ssum_defl_def by (rule cast_defl_fun2)
+lemma cast_sfun_defl:
+ "cast\<cdot>(sfun_defl\<cdot>A\<cdot>B) =
+ sfun_emb oo sfun_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo sfun_prj"
+using ep_pair_sfun finite_deflation_sfun_map
+unfolding sfun_defl_def by (rule cast_defl_fun2)
+
subsection {* Lemma for proving domain instances *}
text {*
@@ -268,8 +177,8 @@
*}
class liftdomain = "domain" +
- assumes liftemb_eq: "liftemb = udom_emb u_approx oo u_map\<cdot>emb"
- assumes liftprj_eq: "liftprj = u_map\<cdot>prj oo udom_prj u_approx"
+ assumes liftemb_eq: "liftemb = u_emb oo u_map\<cdot>emb"
+ assumes liftprj_eq: "liftprj = u_map\<cdot>prj oo u_prj"
assumes liftdefl_eq: "liftdefl TYPE('a::cpo) = u_defl\<cdot>DEFL('a)"
text {* Temporarily relax type constraints. *}
@@ -287,8 +196,8 @@
default_sort pcpo
lemma liftdomain_class_intro:
- assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
- assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) = u_map\<cdot>prj oo udom_prj u_approx"
+ assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
+ assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) = u_map\<cdot>prj oo u_prj"
assumes liftdefl: "liftdefl TYPE('a) = u_defl\<cdot>DEFL('a)"
assumes ep_pair: "ep_pair emb (prj :: udom \<rightarrow> 'a)"
assumes cast_defl: "cast\<cdot>DEFL('a) = emb oo (prj :: udom \<rightarrow> 'a)"
@@ -296,7 +205,7 @@
proof
show "ep_pair liftemb (liftprj :: udom \<rightarrow> 'a u)"
unfolding liftemb liftprj
- by (intro ep_pair_comp ep_pair_u_map ep_pair ep_pair_udom u_approx)
+ by (intro ep_pair_comp ep_pair_u_map ep_pair ep_pair_u)
show "cast\<cdot>LIFTDEFL('a) = liftemb oo (liftprj :: udom \<rightarrow> 'a u)"
unfolding liftemb liftprj liftdefl
by (simp add: cfcomp1 cast_u_defl cast_defl u_map_map)
@@ -332,10 +241,10 @@
"defl (t::udom itself) = (\<Squnion>i. defl_principal (Abs_fin_defl (udom_approx i)))"
definition
- "(liftemb :: udom u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: udom u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> udom u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> udom u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::udom itself) = u_defl\<cdot>DEFL(udom)"
@@ -376,10 +285,10 @@
"defl (t::'a u itself) = LIFTDEFL('a)"
definition
- "(liftemb :: 'a u u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a u u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a u u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a u u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::'a u itself) = u_defl\<cdot>DEFL('a u)"
@@ -406,19 +315,19 @@
begin
definition
- "emb = udom_emb sfun_approx oo sfun_map\<cdot>prj\<cdot>emb"
+ "emb = sfun_emb oo sfun_map\<cdot>prj\<cdot>emb"
definition
- "prj = sfun_map\<cdot>emb\<cdot>prj oo udom_prj sfun_approx"
+ "prj = sfun_map\<cdot>emb\<cdot>prj oo sfun_prj"
definition
"defl (t::('a \<rightarrow>! 'b) itself) = sfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
definition
- "(liftemb :: ('a \<rightarrow>! 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: ('a \<rightarrow>! 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> ('a \<rightarrow>! 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> ('a \<rightarrow>! 'b) u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::('a \<rightarrow>! 'b) itself) = u_defl\<cdot>DEFL('a \<rightarrow>! 'b)"
@@ -428,8 +337,7 @@
proof (rule liftdomain_class_intro)
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow>! 'b)"
unfolding emb_sfun_def prj_sfun_def
- using ep_pair_udom [OF sfun_approx]
- by (intro ep_pair_comp ep_pair_sfun_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_sfun ep_pair_sfun_map ep_pair_emb_prj)
show "cast\<cdot>DEFL('a \<rightarrow>! 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow>! 'b)"
unfolding emb_sfun_def prj_sfun_def defl_sfun_def cast_sfun_defl
by (simp add: cast_DEFL oo_def sfun_eq_iff sfun_map_map)
@@ -456,10 +364,10 @@
"defl (t::('a \<rightarrow> 'b) itself) = DEFL('a u \<rightarrow>! 'b)"
definition
- "(liftemb :: ('a \<rightarrow> 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: ('a \<rightarrow> 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> ('a \<rightarrow> 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> ('a \<rightarrow> 'b) u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::('a \<rightarrow> 'b) itself) = u_defl\<cdot>DEFL('a \<rightarrow> 'b)"
@@ -489,19 +397,19 @@
begin
definition
- "emb = udom_emb sprod_approx oo sprod_map\<cdot>emb\<cdot>emb"
+ "emb = sprod_emb oo sprod_map\<cdot>emb\<cdot>emb"
definition
- "prj = sprod_map\<cdot>prj\<cdot>prj oo udom_prj sprod_approx"
+ "prj = sprod_map\<cdot>prj\<cdot>prj oo sprod_prj"
definition
"defl (t::('a \<otimes> 'b) itself) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
definition
- "(liftemb :: ('a \<otimes> 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: ('a \<otimes> 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> ('a \<otimes> 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> ('a \<otimes> 'b) u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::('a \<otimes> 'b) itself) = u_defl\<cdot>DEFL('a \<otimes> 'b)"
@@ -511,8 +419,7 @@
proof (rule liftdomain_class_intro)
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
unfolding emb_sprod_def prj_sprod_def
- using ep_pair_udom [OF sprod_approx]
- by (intro ep_pair_comp ep_pair_sprod_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_sprod ep_pair_sprod_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
unfolding emb_sprod_def prj_sprod_def defl_sprod_def cast_sprod_defl
@@ -556,10 +463,10 @@
begin
definition
- "emb = udom_emb prod_approx oo cprod_map\<cdot>emb\<cdot>emb"
+ "emb = prod_emb oo cprod_map\<cdot>emb\<cdot>emb"
definition
- "prj = cprod_map\<cdot>prj\<cdot>prj oo udom_prj prod_approx"
+ "prj = cprod_map\<cdot>prj\<cdot>prj oo prod_prj"
definition
"defl (t::('a \<times> 'b) itself) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
@@ -567,8 +474,7 @@
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
unfolding emb_prod_def prj_prod_def
- using ep_pair_udom [OF prod_approx]
- by (intro ep_pair_comp ep_pair_cprod_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_prod ep_pair_cprod_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
unfolding emb_prod_def prj_prod_def defl_prod_def cast_prod_defl
@@ -600,10 +506,10 @@
"defl (t::unit itself) = \<bottom>"
definition
- "(liftemb :: unit u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: unit u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> unit u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> unit u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::unit itself) = u_defl\<cdot>DEFL(unit)"
@@ -668,19 +574,19 @@
begin
definition
- "emb = udom_emb ssum_approx oo ssum_map\<cdot>emb\<cdot>emb"
+ "emb = ssum_emb oo ssum_map\<cdot>emb\<cdot>emb"
definition
- "prj = ssum_map\<cdot>prj\<cdot>prj oo udom_prj ssum_approx"
+ "prj = ssum_map\<cdot>prj\<cdot>prj oo ssum_prj"
definition
"defl (t::('a \<oplus> 'b) itself) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
definition
- "(liftemb :: ('a \<oplus> 'b) u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: ('a \<oplus> 'b) u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> ('a \<oplus> 'b) u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> ('a \<oplus> 'b) u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::('a \<oplus> 'b) itself) = u_defl\<cdot>DEFL('a \<oplus> 'b)"
@@ -690,8 +596,7 @@
proof (rule liftdomain_class_intro)
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
unfolding emb_ssum_def prj_ssum_def
- using ep_pair_udom [OF ssum_approx]
- by (intro ep_pair_comp ep_pair_ssum_map ep_pair_emb_prj)
+ by (intro ep_pair_comp ep_pair_ssum ep_pair_ssum_map ep_pair_emb_prj)
show "cast\<cdot>DEFL('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
unfolding emb_ssum_def prj_ssum_def defl_ssum_def cast_ssum_defl
by (simp add: cast_DEFL oo_def cfun_eq_iff ssum_map_map)
@@ -718,10 +623,10 @@
"defl (t::'a lift itself) = DEFL('a discr u)"
definition
- "(liftemb :: 'a lift u \<rightarrow> udom) = udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a lift u \<rightarrow> udom) = u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a lift u) = u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a lift u) = u_map\<cdot>prj oo u_prj"
definition
"liftdefl (t::'a lift itself) = u_defl\<cdot>DEFL('a lift)"
--- a/src/HOL/HOLCF/Tools/domaindef.ML Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/Tools/domaindef.ML Sun Dec 19 09:52:33 2010 -0800
@@ -130,10 +130,10 @@
Abs ("x", Term.itselfT newT, defl))
val liftemb_eqn =
Logic.mk_equals (liftemb_const newT,
- mk_cfcomp (@{term "udom_emb u_approx"}, mk_u_map (emb_const newT)))
+ mk_cfcomp (@{const u_emb}, mk_u_map (emb_const newT)))
val liftprj_eqn =
Logic.mk_equals (liftprj_const newT,
- mk_cfcomp (mk_u_map (prj_const newT), @{term "udom_prj u_approx"}))
+ mk_cfcomp (mk_u_map (prj_const newT), @{const u_prj}))
val liftdefl_eqn =
Logic.mk_equals (liftdefl_const newT,
Abs ("t", Term.itselfT newT,
--- a/src/HOL/HOLCF/ex/Domain_Proofs.thy Sun Dec 19 06:59:01 2010 -0800
+++ b/src/HOL/HOLCF/ex/Domain_Proofs.thy Sun Dec 19 09:52:33 2010 -0800
@@ -107,10 +107,10 @@
where "defl_foo \<equiv> \<lambda>a. foo_defl\<cdot>LIFTDEFL('a)"
definition
- "(liftemb :: 'a foo u \<rightarrow> udom) \<equiv> udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a foo u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a foo u) \<equiv> u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a foo u) \<equiv> u_map\<cdot>prj oo u_prj"
definition
"liftdefl \<equiv> \<lambda>(t::'a foo itself). u_defl\<cdot>DEFL('a foo)"
@@ -142,10 +142,10 @@
where "defl_bar \<equiv> \<lambda>a. bar_defl\<cdot>LIFTDEFL('a)"
definition
- "(liftemb :: 'a bar u \<rightarrow> udom) \<equiv> udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a bar u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a bar u) \<equiv> u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a bar u) \<equiv> u_map\<cdot>prj oo u_prj"
definition
"liftdefl \<equiv> \<lambda>(t::'a bar itself). u_defl\<cdot>DEFL('a bar)"
@@ -177,10 +177,10 @@
where "defl_baz \<equiv> \<lambda>a. baz_defl\<cdot>LIFTDEFL('a)"
definition
- "(liftemb :: 'a baz u \<rightarrow> udom) \<equiv> udom_emb u_approx oo u_map\<cdot>emb"
+ "(liftemb :: 'a baz u \<rightarrow> udom) \<equiv> u_emb oo u_map\<cdot>emb"
definition
- "(liftprj :: udom \<rightarrow> 'a baz u) \<equiv> u_map\<cdot>prj oo udom_prj u_approx"
+ "(liftprj :: udom \<rightarrow> 'a baz u) \<equiv> u_map\<cdot>prj oo u_prj"
definition
"liftdefl \<equiv> \<lambda>(t::'a baz itself). u_defl\<cdot>DEFL('a baz)"