mods due to reorienting and renaming of real_minus_mult_eq1/2
authornipkow
Wed, 12 Dec 2001 19:21:02 +0100
changeset 12481 ea5d6da573c5
parent 12480 32e67277a4b9
child 12482 d2848ccc9757
mods due to reorienting and renaming of real_minus_mult_eq1/2
src/HOL/Hyperreal/Lim.ML
src/HOL/Hyperreal/Poly.ML
src/HOL/Hyperreal/Series.ML
src/HOL/Hyperreal/Transcendental.ML
src/HOL/Real/HahnBanach/Aux.thy
--- a/src/HOL/Hyperreal/Lim.ML	Wed Dec 12 19:19:59 2001 +0100
+++ b/src/HOL/Hyperreal/Lim.ML	Wed Dec 12 19:21:02 2001 +0100
@@ -1050,7 +1050,7 @@
 by (asm_full_simp_tac 
     (simpset() addsimps [real_times_divide1_eq RS sym, NSDERIV_NSLIM_iff,
                          real_minus_mult_eq2, real_add_mult_distrib2 RS sym] 
-             delsimps [real_times_divide1_eq, real_minus_mult_eq2 RS sym]) 1);
+             delsimps [real_times_divide1_eq, real_mult_minus_eq2]) 1);
 by (etac (NSLIM_const RS NSLIM_mult) 1);
 qed "NSDERIV_cmult";
 
@@ -1063,7 +1063,7 @@
 by (asm_full_simp_tac 
     (simpset() addsimps [real_times_divide1_eq RS sym, NSDERIV_NSLIM_iff,
                          real_minus_mult_eq2, real_add_mult_distrib2 RS sym] 
-             delsimps [real_times_divide1_eq, real_minus_mult_eq2 RS sym]) 1);
+             delsimps [real_times_divide1_eq, real_mult_minus_eq2]) 1);
 by (etac (LIM_const RS LIM_mult2) 1);
 qed "DERIV_cmult";
 
@@ -1074,7 +1074,7 @@
 by (asm_full_simp_tac (simpset() addsimps [NSDERIV_NSLIM_iff]) 1);
 by (res_inst_tac [("t","f x")] (real_minus_minus RS subst) 1);
 by (asm_simp_tac (simpset() addsimps [real_minus_add_distrib RS sym,
-                                      real_minus_mult_eq1 RS sym] 
+                                      real_mult_minus_eq1] 
                    delsimps [real_minus_add_distrib, real_minus_minus]) 1);
 by (etac NSLIM_minus 1);
 qed "NSDERIV_minus";
@@ -1354,8 +1354,7 @@
 \     ==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))";
 by (rtac (real_mult_commute RS subst) 1);
 by (asm_simp_tac (simpset() addsimps [real_minus_mult_eq1,
-    realpow_inverse] delsimps [realpow_Suc, 
-    real_minus_mult_eq1 RS sym]) 1);
+    realpow_inverse] delsimps [realpow_Suc, real_mult_minus_eq1]) 1);
 by (fold_goals_tac [o_def]);
 by (blast_tac (claset() addSIs [DERIV_chain,DERIV_inverse]) 1);
 qed "DERIV_inverse_fun";
@@ -1377,8 +1376,7 @@
 by (asm_full_simp_tac
     (simpset() addsimps [real_divide_def, real_add_mult_distrib2,
                          realpow_inverse,real_minus_mult_eq1] @ real_mult_ac 
-       delsimps [realpow_Suc, real_minus_mult_eq1 RS sym,
-                 real_minus_mult_eq2 RS sym]) 1);
+       delsimps [realpow_Suc, real_mult_minus_eq1, real_mult_minus_eq2]) 1);
 qed "DERIV_quotient";
 
 Goal "[| NSDERIV f x :> d; DERIV g x :> e; g(x) \\<noteq> 0 |] \
@@ -2135,8 +2133,7 @@
 by (auto_tac (claset() addDs [DERIV_isCont,DERIV_unique],simpset() addsimps 
     [differentiable_def]));
 by (auto_tac (claset() addDs [DERIV_unique],
-       simpset() addsimps [real_add_mult_distrib, real_diff_def,
-                           real_minus_mult_eq1 RS sym]));
+       simpset() addsimps [real_add_mult_distrib, real_diff_def]));
 qed "DERIV_const_ratio_const";
 
 Goal "[|a \\<noteq> b; \\<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b - a) = k";
--- a/src/HOL/Hyperreal/Poly.ML	Wed Dec 12 19:19:59 2001 +0100
+++ b/src/HOL/Hyperreal/Poly.ML	Wed Dec 12 19:21:02 2001 +0100
@@ -361,7 +361,7 @@
 by (res_inst_tac [("x","r#q")] exI 1);
 by (res_inst_tac [("x","a*r + h")] exI 1);
 by (case_tac "q" 1);
-by (auto_tac (claset(),simpset() addsimps [real_minus_mult_eq1 RS sym]));
+by (Auto_tac);
 qed "lemma_poly_linear_rem";
 
 Goal "EX q r. h#t = [r] +++ [-a, 1] *** q";
@@ -741,7 +741,7 @@
 by Auto_tac;
 by (res_inst_tac [("x","qaa +++ -- qa")] exI 1);
 by (auto_tac (claset(),simpset() addsimps [poly_add,fun_eq,poly_mult,
-    poly_minus,real_add_mult_distrib2,real_minus_mult_eq2 RS sym,
+    poly_minus,real_add_mult_distrib2,
     ARITH_PROVE "(x = y + -z) = (z + x = (y::real))"]));
 qed "poly_divides_diff";
 
@@ -800,8 +800,7 @@
 by (induct_tac "n" 1);
 by (asm_full_simp_tac (simpset() delsimps [pmult_Cons,pexp_Suc]) 1);
 by (eres_inst_tac [("Pa","poly q a = 0")] swap 1);
-by (asm_full_simp_tac (simpset() addsimps [poly_add,poly_cmult,
-    real_minus_mult_eq1 RS sym]) 1);
+by (asm_full_simp_tac (simpset() addsimps [poly_add,poly_cmult]) 1);
 by (rtac (pexp_Suc RS ssubst) 1);
 by (rtac ccontr 1);
 by (asm_full_simp_tac (simpset() addsimps [poly_mult_left_cancel,
@@ -1014,8 +1013,8 @@
      real_mult_ac) RS ssubst) 1);
 by (rotate_tac 2 1);
 by (dres_inst_tac [("x","xa")] spec 1);
-by (asm_full_simp_tac (simpset() addsimps [real_add_mult_distrib,
-    real_minus_mult_eq1 RS sym] @ real_mult_ac
+by (asm_full_simp_tac (simpset()
+    addsimps [real_add_mult_distrib] @ real_mult_ac
     delsimps [pmult_Cons]) 1);
 qed_spec_mp "lemma_order_pderiv";
 
--- a/src/HOL/Hyperreal/Series.ML	Wed Dec 12 19:19:59 2001 +0100
+++ b/src/HOL/Hyperreal/Series.ML	Wed Dec 12 19:21:02 2001 +0100
@@ -86,7 +86,7 @@
 
 Goal "sumr 0 n f + -(real n * r) = sumr 0 n (%i. f i + -r)";
 by (full_simp_tac (simpset() addsimps [sumr_add RS sym,
-    real_minus_mult_eq2] delsimps [real_minus_mult_eq2 RS sym]) 1);
+    real_minus_mult_eq2] delsimps [real_mult_minus_eq2]) 1);
 qed "sumr_add_mult_const";
 
 Goalw [real_diff_def] 
--- a/src/HOL/Hyperreal/Transcendental.ML	Wed Dec 12 19:19:59 2001 +0100
+++ b/src/HOL/Hyperreal/Transcendental.ML	Wed Dec 12 19:21:02 2001 +0100
@@ -2089,7 +2089,6 @@
 by (auto_tac (claset() addSIs [sin_gt_zero2,cos_gt_zero_pi]
     addSIs [real_mult_order,
     real_inverse_gt_0],simpset()));
-by (rtac (CLAIM "-x < y ==> -y < (x::real)") 1 THEN Auto_tac);
 qed "tan_gt_zero";
 
 Goal "[| - pi/2 < x; x < 0 |] ==> tan x < 0";
@@ -2170,7 +2169,6 @@
 by (Step_tac 1);
 by (res_inst_tac [("x","-x")] exI 2);
 by (auto_tac (claset() addSIs [exI],simpset()));
-by (rtac (CLAIM "-x < y ==> -y < (x::real)") 1 THEN Auto_tac);
 qed "lemma_tan_total1";
 
 Goal "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y";
--- a/src/HOL/Real/HahnBanach/Aux.thy	Wed Dec 12 19:19:59 2001 +0100
+++ b/src/HOL/Real/HahnBanach/Aux.thy	Wed Dec 12 19:21:02 2001 +0100
@@ -74,7 +74,7 @@
   hence "x * (- z) \<le> y * (- z)"
     by (rule real_mult_le_le_mono2)
   hence  "- (x * z) \<le> - (y * z)"
-    by (simp only: real_minus_mult_eq2)
+    by (simp only: real_mult_minus_eq2)
   thus ?thesis by (simp only: real_mult_commute)
 qed