Implemented new "nominal_primrec" command for defining
authorberghofe
Mon, 27 Nov 2006 12:10:51 +0100
changeset 21541 ea881fbe0489
parent 21540 f3faed8276e6
child 21542 4462ee172ef0
Implemented new "nominal_primrec" command for defining functions on nominal datatypes.
src/HOL/Nominal/Nominal.thy
src/HOL/Nominal/nominal_primrec.ML
--- a/src/HOL/Nominal/Nominal.thy	Mon Nov 27 12:09:55 2006 +0100
+++ b/src/HOL/Nominal/Nominal.thy	Mon Nov 27 12:10:51 2006 +0100
@@ -7,6 +7,7 @@
   ("nominal_package.ML")
   ("nominal_induct.ML") 
   ("nominal_permeq.ML")
+  ("nominal_primrec.ML")
 begin 
 
 section {* Permutations *}
@@ -3009,6 +3010,10 @@
 use "nominal_permeq.ML";
 use "nominal_package.ML"
 setup "NominalAtoms.setup"
+setup "NominalPackage.setup"
+
+(** primitive recursive functions on nominal datatypes **)
+use "nominal_primrec.ML"
 
 (*****************************************)
 (* setup for induction principles method *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/nominal_primrec.ML	Mon Nov 27 12:10:51 2006 +0100
@@ -0,0 +1,445 @@
+(*  Title:      HOL/Nominal/nominal_primrec.ML
+    ID:         $Id$
+    Author:     Stefan Berghofer, TU Muenchen and Norbert Voelker, FernUni Hagen
+
+Package for defining functions on nominal datatypes by primitive recursion.
+Taken from HOL/Tools/primrec_package.ML
+*)
+
+signature NOMINAL_PRIMREC =
+sig
+  val quiet_mode: bool ref
+  val add_primrec: string -> string list option -> string option ->
+    ((bstring * string) * Attrib.src list) list -> theory -> Proof.state
+  val add_primrec_unchecked: string -> string list option -> string option ->
+    ((bstring * string) * Attrib.src list) list -> theory -> Proof.state
+  val add_primrec_i: string -> term list option -> term option ->
+    ((bstring * term) * attribute list) list -> theory -> Proof.state
+  val add_primrec_unchecked_i: string -> term list option -> term option ->
+    ((bstring * term) * attribute list) list -> theory -> Proof.state
+end;
+
+structure NominalPrimrec : NOMINAL_PRIMREC =
+struct
+
+open DatatypeAux;
+
+exception RecError of string;
+
+fun primrec_err s = error ("Nominal primrec definition error:\n" ^ s);
+fun primrec_eq_err thy s eq =
+  primrec_err (s ^ "\nin\n" ^ quote (Sign.string_of_term thy eq));
+
+
+(* messages *)
+
+val quiet_mode = ref false;
+fun message s = if ! quiet_mode then () else writeln s;
+
+
+(* preprocessing of equations *)
+
+fun process_eqn thy eq rec_fns = 
+  let
+    val (lhs, rhs) = 
+      if null (term_vars eq) then
+        HOLogic.dest_eq (HOLogic.dest_Trueprop (Logic.strip_imp_concl eq))
+        handle TERM _ => raise RecError "not a proper equation"
+      else raise RecError "illegal schematic variable(s)";
+
+    val (recfun, args) = strip_comb lhs;
+    val fnameT = dest_Const recfun handle TERM _ => 
+      raise RecError "function is not declared as constant in theory";
+
+    val (ls', rest)  = take_prefix is_Free args;
+    val (middle, rs') = take_suffix is_Free rest;
+    val rpos = length ls';
+
+    val (constr, cargs') = if null middle then raise RecError "constructor missing"
+      else strip_comb (hd middle);
+    val (cname, T) = dest_Const constr
+      handle TERM _ => raise RecError "ill-formed constructor";
+    val (tname, _) = dest_Type (body_type T) handle TYPE _ =>
+      raise RecError "cannot determine datatype associated with function"
+
+    val (ls, cargs, rs) =
+      (map dest_Free ls', map dest_Free cargs', map dest_Free rs')
+      handle TERM _ => raise RecError "illegal argument in pattern";
+    val lfrees = ls @ rs @ cargs;
+
+    fun check_vars _ [] = ()
+      | check_vars s vars = raise RecError (s ^ commas_quote (map fst vars))
+  in
+    if length middle > 1 then 
+      raise RecError "more than one non-variable in pattern"
+    else
+     (check_vars "repeated variable names in pattern: " (duplicates (op =) lfrees);
+      check_vars "extra variables on rhs: "
+        (map dest_Free (term_frees rhs) \\ lfrees);
+      case AList.lookup (op =) rec_fns fnameT of
+        NONE =>
+          (fnameT, (tname, rpos, [(cname, (ls, cargs, rs, rhs, eq))]))::rec_fns
+      | SOME (_, rpos', eqns) =>
+          if AList.defined (op =) eqns cname then
+            raise RecError "constructor already occurred as pattern"
+          else if rpos <> rpos' then
+            raise RecError "position of recursive argument inconsistent"
+          else
+            AList.update (op =) (fnameT, (tname, rpos, (cname, (ls, cargs, rs, rhs, eq))::eqns))
+              rec_fns)
+  end
+  handle RecError s => primrec_eq_err thy s eq;
+
+val param_err = "Parameters must be the same for all recursive functions";
+
+fun process_fun thy descr rec_eqns (i, fnameT as (fname, _)) (fnameTs, fnss) =
+  let
+    val (_, (tname, _, constrs)) = List.nth (descr, i);
+
+    (* substitute "fname ls x rs" by "y" for (x, (_, y)) in subs *)
+
+    fun subst [] t fs = (t, fs)
+      | subst subs (Abs (a, T, t)) fs =
+          fs
+          |> subst subs t
+          |-> (fn t' => pair (Abs (a, T, t')))
+      | subst subs (t as (_ $ _)) fs =
+          let
+            val (f, ts) = strip_comb t;
+          in
+            if is_Const f andalso dest_Const f mem map fst rec_eqns then
+              let
+                val fnameT' as (fname', _) = dest_Const f;
+                val (_, rpos, eqns) = the (AList.lookup (op =) rec_eqns fnameT');
+                val ls = Library.take (rpos, ts);
+                val rest = Library.drop (rpos, ts);
+                val (x', rs) = (hd rest, tl rest)
+                  handle Empty => raise RecError ("not enough arguments\
+                   \ in recursive application\nof function " ^ quote fname' ^ " on rhs");
+                val _ = (case eqns of
+                    (_, (ls', _, rs', _, _)) :: _ =>
+                      if ls = map Free ls' andalso rs = map Free rs' then ()
+                      else raise RecError param_err
+                  | _ => ());
+                val (x, xs) = strip_comb x'
+              in case AList.lookup (op =) subs x
+               of NONE =>
+                    fs
+                    |> fold_map (subst subs) ts
+                    |-> (fn ts' => pair (list_comb (f, ts')))
+                | SOME (i', y) =>
+                    fs
+                    |> fold_map (subst subs) xs
+                    ||> process_fun thy descr rec_eqns (i', fnameT')
+                    |-> (fn ts' => pair (list_comb (y, ts')))
+              end
+            else
+              fs
+              |> fold_map (subst subs) (f :: ts)
+              |-> (fn (f'::ts') => pair (list_comb (f', ts')))
+          end
+      | subst _ t fs = (t, fs);
+
+    (* translate rec equations into function arguments suitable for rec comb *)
+
+    fun trans eqns (cname, cargs) (fnameTs', fnss', fns) =
+      (case AList.lookup (op =) eqns cname of
+          NONE => (warning ("No equation for constructor " ^ quote cname ^
+            "\nin definition of function " ^ quote fname);
+              (fnameTs', fnss', (Const ("arbitrary", dummyT))::fns))
+        | SOME (ls, cargs', rs, rhs, eq) =>
+            let
+              val recs = filter (is_rec_type o snd) (cargs' ~~ cargs);
+              val rargs = map fst recs;
+              val subs = map (rpair dummyT o fst) 
+                (rev (rename_wrt_term rhs rargs));
+              val (rhs', (fnameTs'', fnss'')) = 
+                  (subst (map (fn ((x, y), z) =>
+                               (Free x, (body_index y, Free z)))
+                          (recs ~~ subs)) rhs (fnameTs', fnss'))
+                  handle RecError s => primrec_eq_err thy s eq
+            in (fnameTs'', fnss'', 
+                (list_abs_free (cargs' @ subs, rhs'))::fns)
+            end)
+
+  in (case AList.lookup (op =) fnameTs i of
+      NONE =>
+        if exists (equal fnameT o snd) fnameTs then
+          raise RecError ("inconsistent functions for datatype " ^ quote tname)
+        else
+          let
+            val SOME (_, _, eqns as (_, (ls, _, rs, _, _)) :: _) =
+              AList.lookup (op =) rec_eqns fnameT;
+            val (fnameTs', fnss', fns) = fold_rev (trans eqns) constrs
+              ((i, fnameT)::fnameTs, fnss, []) 
+          in
+            (fnameTs', (i, (fname, ls, rs, fns))::fnss')
+          end
+    | SOME fnameT' =>
+        if fnameT = fnameT' then (fnameTs, fnss)
+        else raise RecError ("inconsistent functions for datatype " ^ quote tname))
+  end;
+
+
+(* prepare functions needed for definitions *)
+
+fun get_fns fns ((i : int, (tname, _, constrs)), rec_name) (fs, defs) =
+  case AList.lookup (op =) fns i of
+     NONE =>
+       let
+         val dummy_fns = map (fn (_, cargs) => Const ("arbitrary",
+           replicate ((length cargs) + (length (List.filter is_rec_type cargs)))
+             dummyT ---> HOLogic.unitT)) constrs;
+         val _ = warning ("No function definition for datatype " ^ quote tname)
+       in
+         (dummy_fns @ fs, defs)
+       end
+   | SOME (fname, ls, rs, fs') => (fs' @ fs, (fname, ls, rs, rec_name, tname) :: defs);
+
+
+(* make definition *)
+
+fun make_def thy fs (fname, ls, rs, rec_name, tname) =
+  let
+    val used = map fst (fold Term.add_frees fs []);
+    val x = (Name.variant used "x", dummyT);
+    val frees = ls @ x :: rs;
+    val rhs = list_abs_free (frees,
+      list_comb (Const (rec_name, dummyT), fs @ [Free x]))
+    val defpair = (Sign.base_name fname ^ "_" ^ Sign.base_name tname ^ "_def",
+                   Logic.mk_equals (Const (fname, dummyT), rhs));
+    val defpair' as (_, _ $ _ $ t) = Theory.inferT_axm thy defpair
+  in (defpair', subst_bounds (rev (map Free frees), strip_abs_body t)) end;
+
+
+(* find datatypes which contain all datatypes in tnames' *)
+
+fun find_dts (dt_info : NominalPackage.nominal_datatype_info Symtab.table) _ [] = []
+  | find_dts dt_info tnames' (tname::tnames) =
+      (case Symtab.lookup dt_info tname of
+          NONE => primrec_err (quote tname ^ " is not a nominal datatype")
+        | SOME dt =>
+            if tnames' subset (map (#1 o snd) (#descr dt)) then
+              (tname, dt)::(find_dts dt_info tnames' tnames)
+            else find_dts dt_info tnames' tnames);
+
+fun common_prefix eq ([], _) = []
+  | common_prefix eq (_, []) = []
+  | common_prefix eq (x :: xs, y :: ys) =
+      if eq (x, y) then x :: common_prefix eq (xs, ys) else [];
+
+local
+
+fun gen_primrec_i note def alt_name invs fctxt eqns_atts thy =
+  let
+    val (eqns, atts) = split_list eqns_atts;
+    val dt_info = NominalPackage.get_nominal_datatypes thy;
+    val rec_eqns = fold_rev (process_eqn thy o snd) eqns [];
+    val lsrs :: lsrss = maps (fn (_, (_, _, eqns)) =>
+      map (fn (_, (ls, _, rs, _, _)) => ls @ rs) eqns) rec_eqns
+    val _ =
+      (if forall (curry eq_set lsrs) lsrss andalso forall
+         (fn (_, (_, _, (_, (ls, _, rs, _, _)) :: eqns)) =>
+               forall (fn (_, (ls', _, rs', _, _)) =>
+                 ls = ls' andalso rs = rs') eqns
+           | _ => true) rec_eqns
+       then () else raise RecError param_err);
+    val tnames = distinct (op =) (map (#1 o snd) rec_eqns);
+    val dts = find_dts dt_info tnames tnames;
+    val main_fns = 
+      map (fn (tname, {index, ...}) =>
+        (index, 
+          (fst o the o find_first (fn f => (#1 o snd) f = tname)) rec_eqns))
+      dts;
+    val {descr, rec_names, rec_rewrites, ...} = 
+      if null dts then
+        primrec_err ("datatypes " ^ commas_quote tnames ^ "\nare not mutually recursive")
+      else snd (hd dts);
+    val (fnameTs, fnss) =
+      fold_rev (process_fun thy descr rec_eqns) main_fns ([], []);
+    val (fs, defs) = fold_rev (get_fns fnss) (descr ~~ rec_names) ([], []);
+    val defs' = map (make_def thy fs) defs;
+    val nameTs1 = map snd fnameTs;
+    val nameTs2 = map fst rec_eqns;
+    val _ = if gen_eq_set (op =) (nameTs1, nameTs2) then ()
+            else primrec_err ("functions " ^ commas_quote (map fst nameTs2) ^
+              "\nare not mutually recursive");
+    val primrec_name =
+      if alt_name = "" then (space_implode "_" (map (Sign.base_name o #1) defs)) else alt_name;
+    val (defs_thms', thy') =
+      thy
+      |> Theory.add_path primrec_name
+      |> fold_map def (map (fn ((name, t), _) => ((name, []), t)) defs');
+    val cert = cterm_of thy';
+
+    fun mk_idx eq =
+      let
+        val Const c = head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
+          (Logic.strip_imp_concl eq))));
+        val SOME i = AList.lookup op = (map swap fnameTs) c;
+        val SOME (_, _, constrs) = AList.lookup op = descr i;
+        val SOME (_, _, eqns) = AList.lookup op = rec_eqns c;
+        val SOME (cname, (_, cargs, _, _, _)) = find_first
+          (fn (_, (_, _, _, _, eq')) => eq = eq') eqns
+      in (i, find_index (fn (cname', _) => cname = cname') constrs, cargs) end;
+
+    val rec_rewritess =
+      unflat (map (fn (_, (_, _, constrs)) => constrs) descr) rec_rewrites;
+    val fvars = rec_rewrites |> hd |> concl_of |> HOLogic.dest_Trueprop |>
+      HOLogic.dest_eq |> fst |> strip_comb |> snd |> take_prefix is_Var |> fst;
+    val (pvars, ctxtvars) = List.partition
+      (equal HOLogic.boolT o body_type o snd)
+      (fold Term.add_vars (map Logic.strip_assums_concl
+        (prems_of (hd rec_rewrites))) [] \\ map dest_Var fvars);
+    val cfs = defs' |> hd |> snd |> strip_comb |> snd |>
+      curry (List.take o swap) (length fvars) |> map cert;
+    val invs' = (case invs of
+        NONE => map (fn (i, _) =>
+          let
+            val SOME (_, T) = AList.lookup op = fnameTs i
+            val (Ts, U) = strip_type T
+          in
+            Abs ("x", List.drop (Ts, length lsrs + 1) ---> U, HOLogic.true_const)
+          end) descr
+      | SOME invs' => invs');
+    val inst = (map cert fvars ~~ cfs) @
+      (map (cert o Var) pvars ~~ map cert invs') @
+      (case ctxtvars of
+         [ctxtvar] => [(cert (Var ctxtvar), cert (the_default HOLogic.unit fctxt))]
+       | _ => []);
+    val rec_rewrites' = map (fn (_, eq) =>
+      let
+        val (i, j, cargs) = mk_idx eq
+        val th = nth (nth rec_rewritess i) j;
+        val cargs' = th |> concl_of |> HOLogic.dest_Trueprop |>
+          HOLogic.dest_eq |> fst |> strip_comb |> snd |> split_last |> snd |>
+          strip_comb |> snd
+      in (cargs, Logic.strip_imp_prems eq,
+        Drule.cterm_instantiate (inst @
+          (map (cterm_of thy') cargs' ~~ map (cterm_of thy' o Free) cargs)) th)
+      end) eqns;
+
+    val prems = foldr1 (common_prefix op aconv) (map (prems_of o #3) rec_rewrites');
+    val cprems = map cert prems;
+    val asms = map Thm.assume cprems;
+    val premss = map (fn (cargs, eprems, eqn) =>
+      map (fn t => list_all_free (cargs, Logic.list_implies (eprems, t)))
+        (List.drop (prems_of eqn, length prems))) rec_rewrites';
+    val cpremss = map (map cert) premss;
+    val asmss = map (map Thm.assume) cpremss;
+
+    fun mk_eqn ((cargs, eprems, eqn), asms') =
+      let
+        val ceprems = map cert eprems;
+        val asms'' = map Thm.assume ceprems;
+        val ccargs = map (cert o Free) cargs;
+        val asms''' = map (fn th => implies_elim_list
+          (forall_elim_list ccargs th) asms'') asms'
+      in
+        implies_elim_list eqn (asms @ asms''') |>
+        implies_intr_list ceprems |>
+        forall_intr_list ccargs
+      end;
+
+    val rule_prems = cprems @ flat cpremss;
+    val rule = implies_intr_list rule_prems
+      (foldr1 (uncurry Conjunction.intr) (map mk_eqn (rec_rewrites' ~~ asmss)));
+
+    val goals = map (fn ((cargs, _, _), (_, eqn)) =>
+      (list_all_free (cargs, eqn), [])) (rec_rewrites' ~~ eqns);
+
+  in
+    thy' |>
+    ProofContext.init |>
+    Proof.theorem_i NONE
+      (fn thss => ProofContext.theory (fn thy =>
+         let
+           val simps = flat thss;
+           val (simps', thy') =
+             fold_map note ((map fst eqns ~~ atts) ~~ map single simps) thy;
+           val simps'' = maps snd simps'
+         in
+           thy'
+           |> note (("simps", [Simplifier.simp_add]), simps'')
+           |> snd
+           |> Theory.parent_path
+         end))
+      [goals] |>
+    Proof.apply (Method.Basic (fn ctxt => Method.RAW_METHOD (fn ths =>
+      rewrite_goals_tac (map snd defs_thms') THEN
+      compose_tac (false, rule, length rule_prems) 1))) |>
+    Seq.hd
+  end;
+
+fun gen_primrec note def alt_name invs fctxt eqns thy =
+  let
+    fun readt T s = term_of (Thm.read_cterm thy (s, T));
+    val ((names, strings), srcss) = apfst split_list (split_list eqns);
+    val atts = map (map (Attrib.attribute thy)) srcss;
+    val eqn_ts = map (fn s => readt propT s
+      handle ERROR msg => cat_error msg ("The error(s) above occurred for " ^ s)) strings;
+    val rec_ts = map (fn eq => head_of (fst (HOLogic.dest_eq
+      (HOLogic.dest_Trueprop (Logic.strip_imp_concl eq))))
+      handle TERM _ => primrec_eq_err thy "not a proper equation" eq) eqn_ts;
+    val (_, eqn_ts') = OldInductivePackage.unify_consts thy rec_ts eqn_ts
+  in
+    gen_primrec_i note def alt_name
+      (Option.map (map (readt TypeInfer.logicT)) invs)
+      (Option.map (readt TypeInfer.logicT) fctxt)
+      (names ~~ eqn_ts' ~~ atts) thy
+  end;
+
+fun thy_note ((name, atts), thms) =
+  PureThy.add_thmss [((name, thms), atts)] #-> (fn [thms] => pair (name, thms));
+fun thy_def false ((name, atts), t) =
+      PureThy.add_defs_i false [((name, t), atts)] #-> (fn [thm] => pair (name, thm))
+  | thy_def true ((name, atts), t) =
+      PureThy.add_defs_unchecked_i false [((name, t), atts)] #-> (fn [thm] => pair (name, thm));
+
+in
+
+val add_primrec = gen_primrec thy_note (thy_def false);
+val add_primrec_unchecked = gen_primrec thy_note (thy_def true);
+val add_primrec_i = gen_primrec_i thy_note (thy_def false);
+val add_primrec_unchecked_i = gen_primrec_i thy_note (thy_def true);
+
+end; (*local*)
+
+
+(* outer syntax *)
+
+local structure P = OuterParse and K = OuterKeyword in
+
+val parser1 = P.$$$ "freshness_context" |-- P.$$$ ":" |-- (P.term >> SOME);
+val parser2 =
+  P.$$$ "invariant" |-- P.$$$ ":" |--
+    (Scan.repeat1 P.term >> SOME) -- Scan.optional parser1 NONE ||
+  (parser1 >> pair NONE);
+val parser3 =
+  P.name -- Scan.optional parser2 (NONE, NONE) ||
+  (parser2 >> pair "");
+val parser4 =
+  (P.$$$ "unchecked" >> K true) -- Scan.optional parser3 ("", (NONE, NONE)) ||
+  (parser3 >> pair false);
+val options =
+  Scan.optional (P.$$$ "(" |-- P.!!!
+    (parser4 --| P.$$$ ")")) (false, ("", (NONE, NONE)));
+
+val primrec_decl =
+  options -- Scan.repeat1 (P.opt_thm_name ":" -- P.prop);
+
+val primrecP =
+  OuterSyntax.command "nominal_primrec" "define primitive recursive functions on nominal datatypes" K.thy_goal
+    (primrec_decl >> (fn ((unchecked, (alt_name, (invs, fctxt))), eqns) =>
+      Toplevel.theory_to_proof
+        ((if unchecked then add_primrec_unchecked else add_primrec) alt_name invs fctxt
+          (map P.triple_swap eqns))));
+
+val _ = OuterSyntax.add_parsers [primrecP];
+val _ = OuterSyntax.add_keywords ["invariant", "freshness_context"];
+
+end;
+
+
+end;
+