HOL-Library: added modulo/congruence for real numbers
authorManuel Eberl <eberlm@in.tum.de>
Wed, 20 Mar 2024 17:30:44 +0100
changeset 79936 eb753708e85b
parent 79935 7a7f1d5dcfe9
child 79943 b5cb8d56339f
HOL-Library: added modulo/congruence for real numbers
src/HOL/Library/Library.thy
src/HOL/Library/Real_Mod.thy
--- a/src/HOL/Library/Library.thy	Wed Mar 20 15:19:20 2024 +0100
+++ b/src/HOL/Library/Library.thy	Wed Mar 20 17:30:44 2024 +0100
@@ -78,6 +78,7 @@
   Quotient_Syntax
   Quotient_Type
   Ramsey
+  Real_Mod
   Reflection
   Rewrite
   Saturated
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Real_Mod.thy	Wed Mar 20 17:30:44 2024 +0100
@@ -0,0 +1,238 @@
+(*
+  File:     HOL/Library/Real_Mod.thy
+  Authors:  Manuel Eberl, University of Innsbruck
+*)
+section \<open>Modulo and congruence on the reals\<close>
+theory Real_Mod
+  imports Complex_Main
+begin
+
+definition rmod :: "real \<Rightarrow> real \<Rightarrow> real" (infixl "rmod" 70) where
+  "x rmod y = x - \<bar>y\<bar> * of_int \<lfloor>x / \<bar>y\<bar>\<rfloor>"
+
+lemma rmod_conv_frac: "y \<noteq> 0 \<Longrightarrow> x rmod y = frac (x / \<bar>y\<bar>) * \<bar>y\<bar>"
+  by (simp add: rmod_def frac_def algebra_simps)
+
+lemma rmod_conv_frac': "x rmod y = (if y = 0 then x else frac (x / \<bar>y\<bar>) * \<bar>y\<bar>)"
+  by (simp add: rmod_def frac_def algebra_simps)
+
+lemma rmod_rmod [simp]: "(x rmod y) rmod y = x rmod y"
+  by (simp add: rmod_conv_frac')
+
+lemma rmod_0_right [simp]: "x rmod 0 = x"
+  by (simp add: rmod_def)
+
+lemma rmod_less: "m > 0 \<Longrightarrow> x rmod m < m"
+  by (simp add: rmod_conv_frac' frac_lt_1)
+
+lemma rmod_less_abs: "m \<noteq> 0 \<Longrightarrow> x rmod m < \<bar>m\<bar>"
+  by (simp add: rmod_conv_frac' frac_lt_1)
+
+lemma rmod_le: "m > 0 \<Longrightarrow> x rmod m \<le> m"
+  by (intro less_imp_le rmod_less)
+
+lemma rmod_nonneg: "m \<noteq> 0 \<Longrightarrow> x rmod m \<ge> 0"
+  unfolding rmod_def
+  by (metis abs_le_zero_iff diff_ge_0_iff_ge floor_divide_lower linorder_not_le mult.commute)
+
+lemma rmod_unique:
+  assumes "z \<in> {0..<\<bar>y\<bar>}" "x = z + of_int n * y"
+  shows   "x rmod y = z"
+proof -
+  have "(x - z) / y = of_int n"
+    using assms by auto
+  hence "(x - z) / \<bar>y\<bar> = of_int ((if y > 0 then 1 else -1) * n)"
+    using assms(1) by (cases y "0 :: real" rule: linorder_cases) (auto split: if_splits)
+  also have "\<dots> \<in> \<int>"
+    by auto
+  finally have "frac (x / \<bar>y\<bar>) = z / \<bar>y\<bar>"
+    using assms(1) by (subst frac_unique_iff) (auto simp: field_simps)
+  thus ?thesis
+    using assms(1) by (auto simp: rmod_conv_frac')
+qed
+
+lemma rmod_0 [simp]: "0 rmod z = 0"
+  by (simp add: rmod_def)
+
+lemma rmod_add: "(x rmod z + y rmod z) rmod z = (x + y) rmod z"
+proof (cases "z = 0")
+  case [simp]: False
+  show ?thesis
+  proof (rule sym, rule rmod_unique)
+    define n where "n = (if z > 0 then 1 else -1) * (\<lfloor>x / \<bar>z\<bar>\<rfloor> + \<lfloor>y / \<bar>z\<bar>\<rfloor> +
+       \<lfloor>(x + y - (\<bar>z\<bar> * real_of_int \<lfloor>x / \<bar>z\<bar>\<rfloor> + \<bar>z\<bar> * real_of_int \<lfloor>y / \<bar>z\<bar>\<rfloor>)) / \<bar>z\<bar>\<rfloor>)"
+    show "x + y = (x rmod z + y rmod z) rmod z + real_of_int n * z"
+      by (simp add: rmod_def algebra_simps n_def)
+  qed (auto simp: rmod_less_abs rmod_nonneg)
+qed auto
+
+lemma rmod_diff: "(x rmod z - y rmod z) rmod z = (x - y) rmod z"
+proof (cases "z = 0")
+  case [simp]: False
+  show ?thesis
+  proof (rule sym, rule rmod_unique)
+    define n where "n = (if z > 0 then 1 else -1) * (\<lfloor>x / \<bar>z\<bar>\<rfloor> +
+      \<lfloor>(x + \<bar>z\<bar> * real_of_int \<lfloor>y / \<bar>z\<bar>\<rfloor> - (y + \<bar>z\<bar> * real_of_int \<lfloor>x / \<bar>z\<bar>\<rfloor>)) / \<bar>z\<bar>\<rfloor> - \<lfloor>y / \<bar>z\<bar>\<rfloor>)"
+    show "x - y = (x rmod z - y rmod z) rmod z + real_of_int n * z"
+      by (simp add: rmod_def algebra_simps n_def)
+  qed (auto simp: rmod_less_abs rmod_nonneg)
+qed auto
+
+lemma rmod_self [simp]: "x rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_self_multiple_int [simp]: "(of_int n * x) rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_self_multiple_nat [simp]: "(of_nat n * x) rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_self_multiple_numeral [simp]: "(numeral n * x) rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_self_multiple_int' [simp]: "(x * of_int n) rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_self_multiple_nat' [simp]: "(x * of_nat n) rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_self_multiple_numeral' [simp]: "(x * numeral n) rmod x = 0"
+  by (cases x "0 :: real" rule: linorder_cases) (auto simp: rmod_conv_frac)
+
+lemma rmod_idem [simp]: "x \<in> {0..<\<bar>y\<bar>} \<Longrightarrow> x rmod y = x"
+  by (rule rmod_unique[of _ _ _ 0]) auto
+
+
+
+definition rcong :: "real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> bool" (\<open>(1[_ = _] '(' rmod _'))\<close>) where
+  "[x = y] (rmod m) \<longleftrightarrow> x rmod m = y rmod m"
+
+named_theorems rcong_intros
+
+lemma rcong_0_right [simp]: "[x = y] (rmod 0) \<longleftrightarrow> x = y"
+  by (simp add: rcong_def)
+
+lemma rcong_0_iff: "[x = 0] (rmod m) \<longleftrightarrow> x rmod m = 0"
+  and rcong_0_iff': "[0 = x] (rmod m) \<longleftrightarrow> x rmod m = 0"
+  by (simp_all add: rcong_def)
+
+lemma rcong_refl [simp, intro!, rcong_intros]: "[x = x] (rmod m)"
+  by (simp add: rcong_def)
+
+lemma rcong_sym: "[y = x] (rmod m) \<Longrightarrow> [x = y] (rmod m)"
+  by (simp add: rcong_def)
+
+lemma rcong_sym_iff: "[y = x] (rmod m) \<longleftrightarrow> [x = y] (rmod m)"
+  unfolding rcong_def by (simp add: eq_commute del: rmod_idem)
+
+lemma rcong_trans [trans]: "[x = y] (rmod m) \<Longrightarrow> [y = z] (rmod m) \<Longrightarrow> [x = z] (rmod m)"
+  by (simp add: rcong_def)
+
+lemma rcong_add [rcong_intros]:
+  "[a = b] (rmod m) \<Longrightarrow> [c = d] (rmod m) \<Longrightarrow> [a + c = b + d] (rmod m)"
+  unfolding rcong_def using rmod_add by metis
+
+lemma rcong_diff [rcong_intros]:
+  "[a = b] (rmod m) \<Longrightarrow> [c = d] (rmod m) \<Longrightarrow> [a - c = b - d] (rmod m)"
+  unfolding rcong_def using rmod_diff by metis
+
+lemma rcong_uminus [rcong_intros]:
+  "[a = b] (rmod m) \<Longrightarrow> [-a = -b] (rmod m)"
+  using rcong_diff[of 0 0 m a b] by simp
+
+lemma rcong_uminus_uminus_iff [simp]: "[-x = -y] (rmod m) \<longleftrightarrow> [x = y] (rmod m)"
+  using rcong_uminus minus_minus by metis
+
+lemma rcong_uminus_left_iff: "[-x = y] (rmod m) \<longleftrightarrow> [x = -y] (rmod m)"
+  using rcong_uminus minus_minus by metis
+
+lemma rcong_add_right_cancel [simp]: "[a + c = b + c] (rmod m) \<longleftrightarrow> [a = b] (rmod m)"
+  using rcong_add[of a b m c c] rcong_add[of "a + c" "b + c" m "-c" "-c"] by auto
+
+lemma rcong_add_left_cancel [simp]: "[c + a = c + b] (rmod m) \<longleftrightarrow> [a = b] (rmod m)"
+  by (subst (1 2) add.commute) simp
+
+lemma rcong_diff_right_cancel [simp]: "[a - c = b - c] (rmod m) \<longleftrightarrow> [a = b] (rmod m)"
+  by (metis rcong_add_left_cancel uminus_add_conv_diff)
+
+lemma rcong_diff_left_cancel [simp]: "[c - a = c - b] (rmod m) \<longleftrightarrow> [a = b] (rmod m)"
+  by (metis minus_diff_eq rcong_diff_right_cancel rcong_uminus_uminus_iff)
+
+lemma rcong_rmod_right_iff [simp]: "[a = (b rmod m)] (rmod m) \<longleftrightarrow> [a = b] (rmod m)"
+  and rcong_rmod_left_iff [simp]: "[(a rmod m) = b] (rmod m) \<longleftrightarrow> [a = b] (rmod m)"
+  by (simp_all add: rcong_def)
+
+lemma rcong_rmod_left [rcong_intros]: "[a = b] (rmod m) \<Longrightarrow> [(a rmod m) = b] (rmod m)"
+  and rcong_rmod_right [rcong_intros]: "[a = b] (rmod m) \<Longrightarrow> [a = (b rmod m)] (rmod m)"
+  by simp_all
+
+lemma rcong_mult_of_int_0_left_left [rcong_intros]: "[0 = of_int n * m] (rmod m)"
+  and rcong_mult_of_int_0_right_left [rcong_intros]: "[0 = m * of_int n] (rmod m)"
+  and rcong_mult_of_int_0_left_right [rcong_intros]: "[of_int n * m = 0] (rmod m)"
+  and rcong_mult_of_int_0_right_right [rcong_intros]: "[m * of_int n = 0] (rmod m)"
+  by (simp_all add: rcong_def)
+
+lemma rcong_altdef: "[a = b] (rmod m) \<longleftrightarrow> (\<exists>n. b = a + of_int n * m)"
+proof (cases "m = 0")
+  case False
+  show ?thesis
+  proof
+    assume "[a = b] (rmod m)"
+    hence "[a - b = b - b] (rmod m)"
+      by (intro rcong_intros)
+    hence "(a - b) rmod m = 0"
+      by (simp add: rcong_def)
+    then obtain n where "of_int n = (a - b) / \<bar>m\<bar>"
+      using False by (auto simp: rmod_conv_frac elim!: Ints_cases)
+    thus "\<exists>n. b = a + of_int n * m" using False
+      by (intro exI[of _ "if m > 0 then -n else n"]) (auto simp: field_simps)
+  next
+    assume "\<exists>n. b = a + of_int n * m"
+    then obtain n where n: "b = a + of_int n * m"
+      by auto
+    have "[a + 0 = a + of_int n * m] (rmod m)"
+      by (intro rcong_intros)
+    with n show "[a = b] (rmod m)"
+      by simp
+  qed
+qed auto
+
+lemma rcong_conv_diff_rmod_eq_0: "[x = y] (rmod m) \<longleftrightarrow> (x - y) rmod m = 0"
+  by (metis cancel_comm_monoid_add_class.diff_cancel rcong_0_iff rcong_diff_right_cancel)
+
+lemma rcong_imp_eq:
+  assumes "[x = y] (rmod m)" "\<bar>x - y\<bar> < \<bar>m\<bar>"
+  shows   "x = y"
+proof -
+  from assms obtain n where n: "y = x + of_int n * m"
+    unfolding rcong_altdef by blast
+  have "of_int \<bar>n\<bar> * \<bar>m\<bar> = \<bar>x - y\<bar>"
+    by (simp add: n abs_mult)
+  also have "\<dots> < 1 * \<bar>m\<bar>"
+    using assms(2) by simp
+  finally have "n = 0"
+    by (subst (asm) mult_less_cancel_right) auto
+  with n show ?thesis
+    by simp
+qed
+
+lemma rcong_mult_modulus:
+  assumes "[a = b] (rmod (m / c))" "c \<noteq> 0"
+  shows   "[a * c = b * c] (rmod m)"
+proof -
+  from assms obtain k where k: "b = a + of_int k * (m / c)"
+    by (auto simp: rcong_altdef)
+  have "b * c = (a + of_int k * (m / c)) * c"
+    by (simp only: k)
+  also have "\<dots> = a * c + of_int k * m"
+    using assms(2) by (auto simp: divide_simps)
+  finally show ?thesis
+    unfolding rcong_altdef by blast
+qed
+
+lemma rcong_divide_modulus:
+  assumes "[a = b] (rmod (m * c))" "c \<noteq> 0"
+  shows   "[a / c = b / c] (rmod m)"
+  using rcong_mult_modulus[of a b m "1 / c"] assms by (auto simp: field_simps)
+
+end
\ No newline at end of file