rename 'correspondence' method to 'transfer_prover'
authorhuffman
Fri, 20 Apr 2012 22:49:40 +0200
changeset 47635 ebb79474262c
parent 47634 091bcd569441
child 47636 b786388b4b3a
rename 'correspondence' method to 'transfer_prover'
src/HOL/Library/Quotient_Option.thy
src/HOL/Library/Quotient_Product.thy
src/HOL/Library/Quotient_Sum.thy
src/HOL/Tools/transfer.ML
src/HOL/Transfer.thy
--- a/src/HOL/Library/Quotient_Option.thy	Fri Apr 20 18:29:21 2012 +0200
+++ b/src/HOL/Library/Quotient_Option.thy	Fri Apr 20 22:49:40 2012 +0200
@@ -78,7 +78,7 @@
   "bi_unique R \<Longrightarrow> bi_unique (option_rel R)"
   unfolding bi_unique_def split_option_all by simp
 
-subsection {* Correspondence rules for transfer package *}
+subsection {* Transfer rules for transfer package *}
 
 lemma None_transfer [transfer_rule]: "(option_rel A) None None"
   by simp
@@ -92,7 +92,7 @@
 
 lemma option_map_transfer [transfer_rule]:
   "((A ===> B) ===> option_rel A ===> option_rel B) Option.map Option.map"
-  unfolding Option.map_def by correspondence
+  unfolding Option.map_def by transfer_prover
 
 lemma option_bind_transfer [transfer_rule]:
   "(option_rel A ===> (A ===> option_rel B) ===> option_rel B)
--- a/src/HOL/Library/Quotient_Product.thy	Fri Apr 20 18:29:21 2012 +0200
+++ b/src/HOL/Library/Quotient_Product.thy	Fri Apr 20 22:49:40 2012 +0200
@@ -53,7 +53,7 @@
   shows "bi_unique (prod_rel R1 R2)"
   using assms unfolding bi_unique_def prod_rel_def by auto
 
-subsection {* Correspondence rules for transfer package *}
+subsection {* Transfer rules for transfer package *}
 
 lemma Pair_transfer [transfer_rule]: "(A ===> B ===> prod_rel A B) Pair Pair"
   unfolding fun_rel_def prod_rel_def by simp
@@ -70,12 +70,12 @@
 
 lemma curry_transfer [transfer_rule]:
   "((prod_rel A B ===> C) ===> A ===> B ===> C) curry curry"
-  unfolding curry_def by correspondence
+  unfolding curry_def by transfer_prover
 
 lemma map_pair_transfer [transfer_rule]:
   "((A ===> C) ===> (B ===> D) ===> prod_rel A B ===> prod_rel C D)
     map_pair map_pair"
-  unfolding map_pair_def [abs_def] by correspondence
+  unfolding map_pair_def [abs_def] by transfer_prover
 
 lemma prod_rel_transfer [transfer_rule]:
   "((A ===> B ===> op =) ===> (C ===> D ===> op =) ===>
--- a/src/HOL/Library/Quotient_Sum.thy	Fri Apr 20 18:29:21 2012 +0200
+++ b/src/HOL/Library/Quotient_Sum.thy	Fri Apr 20 22:49:40 2012 +0200
@@ -78,7 +78,7 @@
   "bi_unique R1 \<Longrightarrow> bi_unique R2 \<Longrightarrow> bi_unique (sum_rel R1 R2)"
   using assms unfolding bi_unique_def split_sum_all by simp
 
-subsection {* Correspondence rules for transfer package *}
+subsection {* Transfer rules for transfer package *}
 
 lemma Inl_transfer [transfer_rule]: "(A ===> sum_rel A B) Inl Inl"
   unfolding fun_rel_def by simp
--- a/src/HOL/Tools/transfer.ML	Fri Apr 20 18:29:21 2012 +0200
+++ b/src/HOL/Tools/transfer.ML	Fri Apr 20 22:49:40 2012 +0200
@@ -12,7 +12,7 @@
   val transfer_add: attribute
   val transfer_del: attribute
   val transfer_tac: Proof.context -> int -> tactic
-  val correspondence_tac: Proof.context -> int -> tactic
+  val transfer_prover_tac: Proof.context -> int -> tactic
   val setup: theory -> theory
   val abs_tac: int -> tactic
 end
@@ -23,7 +23,7 @@
 structure Data = Named_Thms
 (
   val name = @{binding transfer_raw}
-  val description = "raw correspondence rule for transfer method"
+  val description = "raw transfer rule for transfer method"
 )
 
 structure Relator_Eq = Named_Thms
@@ -71,7 +71,7 @@
       else_conv
       Conv.all_conv) ct
 
-(* Conversion to preprocess a correspondence rule *)
+(* Conversion to preprocess a transfer rule *)
 fun prep_conv ct = (
       Conv.implies_conv Conv.all_conv prep_conv
       else_conv
@@ -79,11 +79,11 @@
       else_conv
       Conv.all_conv) ct
 
-(* Conversion to prep a proof goal containing a correspondence rule *)
-fun correspond_conv ctxt ct = (
-      Conv.forall_conv (correspond_conv o snd) ctxt
+(* Conversion to prep a proof goal containing a transfer rule *)
+fun transfer_goal_conv ctxt ct = (
+      Conv.forall_conv (transfer_goal_conv o snd) ctxt
       else_conv
-      Conv.implies_conv Conv.all_conv (correspond_conv ctxt)
+      Conv.implies_conv Conv.all_conv (transfer_goal_conv ctxt)
       else_conv
       Trueprop_conv
       (Conv.combination_conv (Conv.fun_conv Rel_conv) (fo_conv ctxt))
@@ -149,13 +149,13 @@
        rtac @{thm _} i]
   end)
 
-fun correspondence_tac ctxt i =
+fun transfer_prover_tac ctxt i =
   let
     val rules = @{thms Rel_App Rel_Abs} @ Data.get ctxt
   in
     EVERY
-      [CONVERSION (correspond_conv ctxt) i,
-       rtac @{thm correspondence_start} i,
+      [CONVERSION (transfer_goal_conv ctxt) i,
+       rtac @{thm transfer_prover_start} i,
        REPEAT_ALL_NEW
          (resolve_tac rules ORELSE' atac ORELSE' eq_tac ctxt) (i+1),
        rewrite_goal_tac @{thms App_def Abs_def} i,
@@ -172,10 +172,10 @@
   fixing >> (fn vs => fn ctxt =>
     SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac ctxt))
 
-val correspondence_method : (Proof.context -> Method.method) context_parser =
-  Scan.succeed (fn ctxt => SIMPLE_METHOD' (correspondence_tac ctxt))
+val transfer_prover_method : (Proof.context -> Method.method) context_parser =
+  Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt))
 
-(* Attribute for correspondence rules *)
+(* Attribute for transfer rules *)
 
 val prep_rule = Conv.fconv_rule prep_conv
 
@@ -194,10 +194,10 @@
   Data.setup
   #> Relator_Eq.setup
   #> Attrib.setup @{binding transfer_rule} transfer_attribute
-     "correspondence rule for transfer method"
+     "transfer rule for transfer method"
   #> Method.setup @{binding transfer} transfer_method
      "generic theorem transfer method"
-  #> Method.setup @{binding correspondence} correspondence_method
-     "for proving correspondence rules"
+  #> Method.setup @{binding transfer_prover} transfer_prover_method
+     "for proving transfer rules"
 
 end
--- a/src/HOL/Transfer.thy	Fri Apr 20 18:29:21 2012 +0200
+++ b/src/HOL/Transfer.thy	Fri Apr 20 22:49:40 2012 +0200
@@ -81,7 +81,7 @@
 lemma transfer_start': "\<lbrakk>Rel (op \<longrightarrow>) P Q; P\<rbrakk> \<Longrightarrow> Q"
   unfolding Rel_def by simp
 
-lemma correspondence_start: "\<lbrakk>x = x'; Rel R x' y\<rbrakk> \<Longrightarrow> Rel R x y"
+lemma transfer_prover_start: "\<lbrakk>x = x'; Rel R x' y\<rbrakk> \<Longrightarrow> Rel R x y"
   by simp
 
 lemma Rel_eq_refl: "Rel (op =) x x"
@@ -217,7 +217,7 @@
   by (safe, metis, fast)
 
 
-subsection {* Correspondence rules *}
+subsection {* Transfer rules *}
 
 lemma eq_parametric [transfer_rule]:
   assumes "bi_unique A"
@@ -250,7 +250,7 @@
 lemma fun_upd_parametric [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A"
   shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd"
-  unfolding fun_upd_def [abs_def] by correspondence
+  unfolding fun_upd_def [abs_def] by transfer_prover
 
 lemma Domainp_iff: "Domainp T x \<longleftrightarrow> (\<exists>y. T x y)"
   by auto