--- a/src/HOL/ex/Dedekind_Real.thy Fri Apr 26 16:51:40 2019 +0100
+++ b/src/HOL/ex/Dedekind_Real.thy Fri Apr 26 19:00:44 2019 +0100
@@ -19,9 +19,9 @@
definition
cut :: "rat set => bool" where
- "cut A = ({} \<subset> A &
- A < {r. 0 < r} &
- (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))"
+ "cut A = ({} \<subset> A \<and>
+ A < {r. 0 < r} \<and>
+ (\<forall>y \<in> A. ((\<forall>z. 0<z \<and> z < y \<longrightarrow> z \<in> A) \<and> (\<exists>u \<in> A. y < u))))"
lemma interval_empty_iff:
"{y. (x::'a::unbounded_dense_linorder) < y \<and> y < z} = {} \<longleftrightarrow> \<not> x < z"
@@ -29,7 +29,7 @@
lemma cut_of_rat:
- assumes q: "0 < q" shows "cut {r::rat. 0 < r & r < q}" (is "cut ?A")
+ assumes q: "0 < q" shows "cut {r::rat. 0 < r \<and> r < q}" (is "cut ?A")
proof -
from q have pos: "?A < {r. 0 < r}" by force
have nonempty: "{} \<subset> ?A"
@@ -51,8 +51,7 @@
"(\<And>x. cut x \<Longrightarrow> P (Abs_preal x)) \<Longrightarrow> P x"
using Abs_preal_induct [of P x] by simp
-lemma Rep_preal:
- "cut (Rep_preal x)"
+lemma Rep_preal: "cut (Rep_preal x)"
using Rep_preal [of x] by simp
definition
@@ -65,7 +64,7 @@
definition
diff_set :: "[rat set,rat set] => rat set" where
- "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
+ "diff_set A B = {w. \<exists>x. 0 < w \<and> 0 < x \<and> x \<notin> B \<and> x + w \<in> A}"
definition
mult_set :: "[rat set,rat set] => rat set" where
@@ -73,40 +72,40 @@
definition
inverse_set :: "rat set => rat set" where
- "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
+ "inverse_set A \<equiv> {x. \<exists>y. 0 < x \<and> x < y \<and> inverse y \<notin> A}"
instantiation preal :: "{ord, plus, minus, times, inverse, one}"
begin
definition
preal_less_def:
- "R < S == Rep_preal R < Rep_preal S"
+ "R < S \<equiv> Rep_preal R < Rep_preal S"
definition
preal_le_def:
- "R \<le> S == Rep_preal R \<subseteq> Rep_preal S"
+ "R \<le> S \<equiv> Rep_preal R \<subseteq> Rep_preal S"
definition
preal_add_def:
- "R + S == Abs_preal (add_set (Rep_preal R) (Rep_preal S))"
+ "R + S \<equiv> Abs_preal (add_set (Rep_preal R) (Rep_preal S))"
definition
preal_diff_def:
- "R - S == Abs_preal (diff_set (Rep_preal R) (Rep_preal S))"
+ "R - S \<equiv> Abs_preal (diff_set (Rep_preal R) (Rep_preal S))"
definition
preal_mult_def:
- "R * S == Abs_preal (mult_set (Rep_preal R) (Rep_preal S))"
+ "R * S \<equiv> Abs_preal (mult_set (Rep_preal R) (Rep_preal S))"
definition
preal_inverse_def:
- "inverse R == Abs_preal (inverse_set (Rep_preal R))"
+ "inverse R \<equiv> Abs_preal (inverse_set (Rep_preal R))"
definition "R div S = R * inverse (S::preal)"
definition
preal_one_def:
- "1 == Abs_preal {x. 0 < x & x < 1}"
+ "1 \<equiv> Abs_preal {x. 0 < x \<and> x < 1}"
instance ..
@@ -117,37 +116,30 @@
declare Abs_preal_inject [simp]
declare Abs_preal_inverse [simp]
-lemma rat_mem_preal: "0 < q ==> cut {r::rat. 0 < r & r < q}"
+lemma rat_mem_preal: "0 < q \<Longrightarrow> cut {r::rat. 0 < r \<and> r < q}"
by (simp add: cut_of_rat)
-lemma preal_nonempty: "cut A ==> \<exists>x\<in>A. 0 < x"
+lemma preal_nonempty: "cut A \<Longrightarrow> \<exists>x\<in>A. 0 < x"
unfolding cut_def [abs_def] by blast
lemma preal_Ex_mem: "cut A \<Longrightarrow> \<exists>x. x \<in> A"
- apply (drule preal_nonempty)
- apply fast
- done
+ using preal_nonempty by blast
-lemma preal_imp_psubset_positives: "cut A ==> A < {r. 0 < r}"
+lemma preal_imp_psubset_positives: "cut A \<Longrightarrow> A < {r. 0 < r}"
by (force simp add: cut_def)
-lemma preal_exists_bound: "cut A ==> \<exists>x. 0 < x & x \<notin> A"
- apply (drule preal_imp_psubset_positives)
- apply auto
- done
+lemma preal_exists_bound: "cut A \<Longrightarrow> \<exists>x. 0 < x \<and> x \<notin> A"
+ using Dedekind_Real.cut_def by fastforce
-lemma preal_exists_greater: "[| cut A; y \<in> A |] ==> \<exists>u \<in> A. y < u"
+lemma preal_exists_greater: "\<lbrakk>cut A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>u \<in> A. y < u"
unfolding cut_def [abs_def] by blast
-lemma preal_downwards_closed: "[| cut A; y \<in> A; 0 < z; z < y |] ==> z \<in> A"
+lemma preal_downwards_closed: "\<lbrakk>cut A; y \<in> A; 0 < z; z < y\<rbrakk> \<Longrightarrow> z \<in> A"
unfolding cut_def [abs_def] by blast
text\<open>Relaxing the final premise\<close>
-lemma preal_downwards_closed':
- "[| cut A; y \<in> A; 0 < z; z \<le> y |] ==> z \<in> A"
-apply (simp add: order_le_less)
-apply (blast intro: preal_downwards_closed)
-done
+lemma preal_downwards_closed': "\<lbrakk>cut A; y \<in> A; 0 < z; z \<le> y\<rbrakk> \<Longrightarrow> z \<in> A"
+ using less_eq_rat_def preal_downwards_closed by blast
text\<open>A positive fraction not in a positive real is an upper bound.
Gleason p. 122 - Remark (1)\<close>
@@ -202,18 +194,15 @@
by (auto simp add: preal_le_def preal_less_def Rep_preal_inject)
qed
-lemma preal_imp_pos: "[|cut A; r \<in> A|] ==> 0 < r"
+lemma preal_imp_pos: "\<lbrakk>cut A; r \<in> A\<rbrakk> \<Longrightarrow> 0 < r"
by (insert preal_imp_psubset_positives, blast)
instance preal :: linorder
proof
fix x y :: preal
- show "x <= y | y <= x"
- apply (auto simp add: preal_le_def)
- apply (rule ccontr)
- apply (blast dest: not_in_Rep_preal_ub intro: preal_imp_pos [OF Rep_preal]
- elim: order_less_asym)
- done
+ show "x \<le> y \<or> y \<le> x"
+ unfolding preal_le_def
+ by (meson Dedekind_Real.Rep_preal not_in_preal_ub preal_downwards_closed preal_imp_pos subsetI)
qed
instantiation preal :: distrib_lattice
@@ -234,31 +223,30 @@
subsection\<open>Properties of Addition\<close>
lemma preal_add_commute: "(x::preal) + y = y + x"
-apply (unfold preal_add_def add_set_def)
-apply (rule_tac f = Abs_preal in arg_cong)
-apply (force simp add: add.commute)
-done
+ unfolding preal_add_def add_set_def
+ by (metis (no_types, hide_lams) add.commute)
text\<open>Lemmas for proving that addition of two positive reals gives
a positive real\<close>
text\<open>Part 1 of Dedekind sections definition\<close>
lemma add_set_not_empty:
- "[|cut A; cut B|] ==> {} \<subset> add_set A B"
-apply (drule preal_nonempty)+
-apply (auto simp add: add_set_def)
-done
+ "\<lbrakk>cut A; cut B\<rbrakk> \<Longrightarrow> {} \<subset> add_set A B"
+ by (force simp add: add_set_def dest: preal_nonempty)
text\<open>Part 2 of Dedekind sections definition. A structured version of
this proof is \<open>preal_not_mem_mult_set_Ex\<close> below.\<close>
lemma preal_not_mem_add_set_Ex:
- "[|cut A; cut B|] ==> \<exists>q>0. q \<notin> add_set A B"
-apply (insert preal_exists_bound [of A] preal_exists_bound [of B], auto)
-apply (rule_tac x = "x+xa" in exI)
-apply (simp add: add_set_def, clarify)
-apply (drule (3) not_in_preal_ub)+
-apply (force dest: add_strict_mono)
-done
+assumes "cut A" "cut B"
+shows "\<exists>q>0. q \<notin> add_set A B"
+proof -
+ obtain a b where "a > 0" "a \<notin> A" "b > 0" "b \<notin> B" "\<And>x. x \<in> A \<Longrightarrow> x < a" "\<And>y. y \<in> B \<Longrightarrow> y < b"
+ by (meson assms preal_exists_bound not_in_preal_ub)
+ with assms have "a+b \<notin> add_set A B"
+ by (fastforce simp add: add_set_def)
+ then show ?thesis
+ using \<open>0 < a\<close> \<open>0 < b\<close> add_pos_pos by blast
+qed
lemma add_set_not_rat_set:
assumes A: "cut A"
@@ -274,8 +262,8 @@
text\<open>Part 3 of Dedekind sections definition\<close>
lemma add_set_lemma3:
- "[|cut A; cut B; u \<in> add_set A B; 0 < z; z < u|]
- ==> z \<in> add_set A B"
+ "\<lbrakk>cut A; cut B; u \<in> add_set A B; 0 < z; z < u\<rbrakk>
+ \<Longrightarrow> z \<in> add_set A B"
proof (unfold add_set_def, clarify)
fix x::rat and y::rat
assume A: "cut A"
@@ -317,24 +305,18 @@
text\<open>Part 4 of Dedekind sections definition\<close>
lemma add_set_lemma4:
- "[|cut A; cut B; y \<in> add_set A B|] ==> \<exists>u \<in> add_set A B. y < u"
-apply (auto simp add: add_set_def)
-apply (frule preal_exists_greater [of A], auto)
-apply (rule_tac x="u + ya" in exI)
-apply (auto intro: add_strict_left_mono)
-done
+ "\<lbrakk>cut A; cut B; y \<in> add_set A B\<rbrakk> \<Longrightarrow> \<exists>u \<in> add_set A B. y < u"
+ unfolding add_set_def
+ using preal_exists_greater by fastforce
lemma mem_add_set:
- "[|cut A; cut B|] ==> cut (add_set A B)"
-apply (simp (no_asm_simp) add: cut_def)
-apply (blast intro!: add_set_not_empty add_set_not_rat_set
- add_set_lemma3 add_set_lemma4)
-done
+ "\<lbrakk>cut A; cut B\<rbrakk> \<Longrightarrow> cut (add_set A B)"
+ by (meson Dedekind_Real.cut_def add_set_lemma3 add_set_lemma4 add_set_not_empty add_set_not_rat_set)
lemma preal_add_assoc: "((x::preal) + y) + z = x + (y + z)"
-apply (simp add: preal_add_def mem_add_set Rep_preal)
-apply (force simp add: add_set_def ac_simps)
-done
+ apply (simp add: preal_add_def mem_add_set Rep_preal)
+ apply (force simp add: add_set_def ac_simps)
+ done
instance preal :: ab_semigroup_add
proof
@@ -349,10 +331,8 @@
text\<open>Proofs essentially same as for addition\<close>
lemma preal_mult_commute: "(x::preal) * y = y * x"
-apply (unfold preal_mult_def mult_set_def)
-apply (rule_tac f = Abs_preal in arg_cong)
-apply (force simp add: mult.commute)
-done
+ unfolding preal_mult_def mult_set_def
+ by (metis (no_types, hide_lams) mult.commute)
text\<open>Multiplication of two positive reals gives a positive real.\<close>
@@ -360,16 +340,14 @@
text\<open>Part 1 of Dedekind sections definition\<close>
lemma mult_set_not_empty:
- "[|cut A; cut B|] ==> {} \<subset> mult_set A B"
-apply (insert preal_nonempty [of A] preal_nonempty [of B])
-apply (auto simp add: mult_set_def)
-done
+ "\<lbrakk>cut A; cut B\<rbrakk> \<Longrightarrow> {} \<subset> mult_set A B"
+ by (force simp add: mult_set_def dest: preal_nonempty)
text\<open>Part 2 of Dedekind sections definition\<close>
lemma preal_not_mem_mult_set_Ex:
assumes A: "cut A"
and B: "cut B"
- shows "\<exists>q. 0 < q & q \<notin> mult_set A B"
+ shows "\<exists>q. 0 < q \<and> q \<notin> mult_set A B"
proof -
from preal_exists_bound [OF A] obtain x where 1 [simp]: "0 < x" "x \<notin> A" by blast
from preal_exists_bound [OF B] obtain y where 2 [simp]: "0 < y" "y \<notin> B" by blast
@@ -411,8 +389,8 @@
text\<open>Part 3 of Dedekind sections definition\<close>
lemma mult_set_lemma3:
- "[|cut A; cut B; u \<in> mult_set A B; 0 < z; z < u|]
- ==> z \<in> mult_set A B"
+ "\<lbrakk>cut A; cut B; u \<in> mult_set A B; 0 < z; z < u\<rbrakk>
+ \<Longrightarrow> z \<in> mult_set A B"
proof (unfold mult_set_def, clarify)
fix x::rat and y::rat
assume A: "cut A"
@@ -443,17 +421,14 @@
text\<open>Part 4 of Dedekind sections definition\<close>
lemma mult_set_lemma4:
- "[|cut A; cut B; y \<in> mult_set A B|] ==> \<exists>u \<in> mult_set A B. y < u"
+ "\<lbrakk>cut A; cut B; y \<in> mult_set A B\<rbrakk> \<Longrightarrow> \<exists>u \<in> mult_set A B. y < u"
apply (auto simp add: mult_set_def)
-apply (frule preal_exists_greater [of A], auto)
-apply (rule_tac x="u * ya" in exI)
-apply (auto intro: preal_imp_pos [of A] preal_imp_pos [of B]
- mult_strict_right_mono)
-done
+apply (frule preal_exists_greater [of A], auto)
+ using mult_strict_right_mono preal_imp_pos by blast
lemma mem_mult_set:
- "[|cut A; cut B|] ==> cut (mult_set A B)"
+ "\<lbrakk>cut A; cut B\<rbrakk> \<Longrightarrow> cut (mult_set A B)"
apply (simp (no_asm_simp) add: cut_def)
apply (blast intro!: mult_set_not_empty mult_set_not_rat_set
mult_set_lemma3 mult_set_lemma4)
@@ -478,7 +453,7 @@
proof (induct z)
fix A :: "rat set"
assume A: "cut A"
- have "{w. \<exists>u. 0 < u \<and> u < 1 & (\<exists>v \<in> A. w = u * v)} = A" (is "?lhs = A")
+ have "{w. \<exists>u. 0 < u \<and> u < 1 \<and> (\<exists>v \<in> A. w = u * v)} = A" (is "?lhs = A")
proof
show "?lhs \<subseteq> A"
proof clarify
@@ -595,7 +570,7 @@
subsection\<open>Existence of Inverse, a Positive Real\<close>
lemma mem_inv_set_ex:
- assumes A: "cut A" shows "\<exists>x y. 0 < x & x < y & inverse y \<notin> A"
+ assumes A: "cut A" shows "\<exists>x y. 0 < x \<and> x < y \<and> inverse y \<notin> A"
proof -
from preal_exists_bound [OF A]
obtain x where [simp]: "0<x" "x \<notin> A" by blast
@@ -612,7 +587,7 @@
text\<open>Part 1 of Dedekind sections definition\<close>
lemma inverse_set_not_empty:
- "cut A ==> {} \<subset> inverse_set A"
+ "cut A \<Longrightarrow> {} \<subset> inverse_set A"
apply (insert mem_inv_set_ex [of A])
apply (auto simp add: inverse_set_def)
done
@@ -620,7 +595,7 @@
text\<open>Part 2 of Dedekind sections definition\<close>
lemma preal_not_mem_inverse_set_Ex:
- assumes A: "cut A" shows "\<exists>q. 0 < q & q \<notin> inverse_set A"
+ assumes A: "cut A" shows "\<exists>q. 0 < q \<and> q \<notin> inverse_set A"
proof -
from preal_nonempty [OF A]
obtain x where x: "x \<in> A" and xpos [simp]: "0<x" ..
@@ -652,15 +627,15 @@
text\<open>Part 3 of Dedekind sections definition\<close>
lemma inverse_set_lemma3:
- "[|cut A; u \<in> inverse_set A; 0 < z; z < u|]
- ==> z \<in> inverse_set A"
+ "\<lbrakk>cut A; u \<in> inverse_set A; 0 < z; z < u\<rbrakk>
+ \<Longrightarrow> z \<in> inverse_set A"
apply (auto simp add: inverse_set_def)
apply (auto intro: order_less_trans)
done
text\<open>Part 4 of Dedekind sections definition\<close>
lemma inverse_set_lemma4:
- "[|cut A; y \<in> inverse_set A|] ==> \<exists>u \<in> inverse_set A. y < u"
+ "\<lbrakk>cut A; y \<in> inverse_set A\<rbrakk> \<Longrightarrow> \<exists>u \<in> inverse_set A. y < u"
apply (auto simp add: inverse_set_def)
apply (drule dense [of y])
apply (blast intro: order_less_trans)
@@ -668,7 +643,7 @@
lemma mem_inverse_set:
- "cut A ==> cut (inverse_set A)"
+ "cut A \<Longrightarrow> cut (inverse_set A)"
apply (simp (no_asm_simp) add: cut_def)
apply (blast intro!: inverse_set_not_empty inverse_set_not_rat_set
inverse_set_lemma3 inverse_set_lemma4)
@@ -702,7 +677,7 @@
lemma Gleason9_34_contra:
assumes A: "cut A"
- shows "[|\<forall>x\<in>A. x + u \<in> A; 0 < u; 0 < y; y \<notin> A|] ==> False"
+ shows "\<lbrakk>\<forall>x\<in>A. x + u \<in> A; 0 < u; 0 < y; y \<notin> A\<rbrakk> \<Longrightarrow> False"
proof (induct u, induct y)
fix a::int and b::int
fix c::int and d::int
@@ -814,8 +789,8 @@
lemma subset_inverse_mult_lemma:
assumes xpos: "0 < x" and xless: "x < 1"
- shows "\<exists>r u y. 0 < r & r < y & inverse y \<notin> Rep_preal R &
- u \<in> Rep_preal R & x = r * u"
+ shows "\<exists>r u y. 0 < r \<and> r < y \<and> inverse y \<notin> Rep_preal R \<and>
+ u \<in> Rep_preal R \<and> x = r * u"
proof -
from xpos and xless have "1 < inverse x" by (simp add: one_less_inverse_iff)
from lemma_gleason9_36 [OF Rep_preal this]
@@ -921,12 +896,12 @@
subsection\<open>Subtraction for Positive Reals\<close>
-text\<open>Gleason prop. 9-3.5(iv), page 123: proving \<^prop>\<open>A < B ==> \<exists>D. A + D =
+text\<open>Gleason prop. 9-3.5(iv), page 123: proving \<^prop>\<open>A < B \<Longrightarrow> \<exists>D. A + D =
B\<close>. We define the claimed \<^term>\<open>D\<close> and show that it is a positive real\<close>
text\<open>Part 1 of Dedekind sections definition\<close>
lemma diff_set_not_empty:
- "R < S ==> {} \<subset> diff_set (Rep_preal S) (Rep_preal R)"
+ "R < S \<Longrightarrow> {} \<subset> diff_set (Rep_preal S) (Rep_preal R)"
apply (auto simp add: preal_less_def diff_set_def elim!: equalityE)
apply (frule_tac x1 = S in Rep_preal [THEN preal_exists_greater])
apply (drule preal_imp_pos [OF Rep_preal], clarify)
@@ -935,7 +910,7 @@
text\<open>Part 2 of Dedekind sections definition\<close>
lemma diff_set_nonempty:
- "\<exists>q. 0 < q & q \<notin> diff_set (Rep_preal S) (Rep_preal R)"
+ "\<exists>q. 0 < q \<and> q \<notin> diff_set (Rep_preal S) (Rep_preal R)"
apply (cut_tac X = S in Rep_preal_exists_bound)
apply (erule exE)
apply (rule_tac x = x in exI, auto)
@@ -952,8 +927,8 @@
text\<open>Part 3 of Dedekind sections definition\<close>
lemma diff_set_lemma3:
- "[|R < S; u \<in> diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u|]
- ==> z \<in> diff_set (Rep_preal S) (Rep_preal R)"
+ "\<lbrakk>R < S; u \<in> diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u\<rbrakk>
+ \<Longrightarrow> z \<in> diff_set (Rep_preal S) (Rep_preal R)"
apply (auto simp add: diff_set_def)
apply (rule_tac x=x in exI)
apply (drule Rep_preal [THEN preal_downwards_closed], auto)
@@ -961,8 +936,8 @@
text\<open>Part 4 of Dedekind sections definition\<close>
lemma diff_set_lemma4:
- "[|R < S; y \<in> diff_set (Rep_preal S) (Rep_preal R)|]
- ==> \<exists>u \<in> diff_set (Rep_preal S) (Rep_preal R). y < u"
+ "\<lbrakk>R < S; y \<in> diff_set (Rep_preal S) (Rep_preal R)\<rbrakk>
+ \<Longrightarrow> \<exists>u \<in> diff_set (Rep_preal S) (Rep_preal R). y < u"
apply (auto simp add: diff_set_def)
apply (drule Rep_preal [THEN preal_exists_greater], clarify)
apply (cut_tac a="x+y" and b=u in add_eq_exists, clarify)
@@ -971,16 +946,16 @@
done
lemma mem_diff_set:
- "R < S ==> cut (diff_set (Rep_preal S) (Rep_preal R))"
+ "R < S \<Longrightarrow> cut (diff_set (Rep_preal S) (Rep_preal R))"
apply (unfold cut_def)
apply (blast intro!: diff_set_not_empty diff_set_not_rat_set
diff_set_lemma3 diff_set_lemma4)
done
lemma mem_Rep_preal_diff_iff:
- "R < S ==>
+ "R < S \<Longrightarrow>
(z \<in> Rep_preal(S-R)) =
- (\<exists>x. 0 < x & 0 < z & x \<notin> Rep_preal R & x + z \<in> Rep_preal S)"
+ (\<exists>x. 0 < x \<and> 0 < z \<and> x \<notin> Rep_preal R \<and> x + z \<in> Rep_preal S)"
apply (simp add: preal_diff_def mem_diff_set Rep_preal)
apply (force simp add: diff_set_def)
done
@@ -1005,7 +980,7 @@
qed
lemma less_add_left_le1:
- "R < (S::preal) ==> R + (S-R) \<le> S"
+ "R < (S::preal) \<Longrightarrow> R + (S-R) \<le> S"
apply (auto simp add: Bex_def preal_le_def mem_Rep_preal_add_iff
mem_Rep_preal_diff_iff)
apply (blast intro: less_add_left_lemma)
@@ -1014,7 +989,7 @@
subsection\<open>proving that \<^term>\<open>S \<le> R + D\<close> --- trickier\<close>
lemma lemma_sum_mem_Rep_preal_ex:
- "x \<in> Rep_preal S ==> \<exists>e. 0 < e & x + e \<in> Rep_preal S"
+ "x \<in> Rep_preal S \<Longrightarrow> \<exists>e. 0 < e \<and> x + e \<in> Rep_preal S"
apply (drule Rep_preal [THEN preal_exists_greater], clarify)
apply (cut_tac a=x and b=u in add_eq_exists, auto)
done
@@ -1023,8 +998,8 @@
assumes Rless: "R < S"
and x: "x \<in> Rep_preal S"
and xnot: "x \<notin> Rep_preal R"
- shows "\<exists>u v z. 0 < v & 0 < z & u \<in> Rep_preal R & z \<notin> Rep_preal R &
- z + v \<in> Rep_preal S & x = u + v"
+ shows "\<exists>u v z. 0 < v \<and> 0 < z \<and> u \<in> Rep_preal R \<and> z \<notin> Rep_preal R \<and>
+ z + v \<in> Rep_preal S \<and> x = u + v"
proof -
have xpos: "0<x" by (rule preal_imp_pos [OF Rep_preal x])
from lemma_sum_mem_Rep_preal_ex [OF x]
@@ -1046,7 +1021,7 @@
qed
qed
-lemma less_add_left_le2: "R < (S::preal) ==> S \<le> R + (S-R)"
+lemma less_add_left_le2: "R < (S::preal) \<Longrightarrow> S \<le> R + (S-R)"
apply (auto simp add: preal_le_def)
apply (case_tac "x \<in> Rep_preal R")
apply (cut_tac Rep_preal_self_subset [of R], force)
@@ -1054,28 +1029,28 @@
apply (blast dest: less_add_left_lemma2)
done
-lemma less_add_left: "R < (S::preal) ==> R + (S-R) = S"
+lemma less_add_left: "R < (S::preal) \<Longrightarrow> R + (S-R) = S"
by (blast intro: antisym [OF less_add_left_le1 less_add_left_le2])
-lemma less_add_left_Ex: "R < (S::preal) ==> \<exists>D. R + D = S"
+lemma less_add_left_Ex: "R < (S::preal) \<Longrightarrow> \<exists>D. R + D = S"
by (fast dest: less_add_left)
-lemma preal_add_less2_mono1: "R < (S::preal) ==> R + T < S + T"
+lemma preal_add_less2_mono1: "R < (S::preal) \<Longrightarrow> R + T < S + T"
apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc)
apply (rule_tac y1 = D in preal_add_commute [THEN subst])
apply (auto intro: preal_self_less_add_left simp add: preal_add_assoc [symmetric])
done
-lemma preal_add_less2_mono2: "R < (S::preal) ==> T + R < T + S"
+lemma preal_add_less2_mono2: "R < (S::preal) \<Longrightarrow> T + R < T + S"
by (auto intro: preal_add_less2_mono1 simp add: preal_add_commute [of T])
-lemma preal_add_right_less_cancel: "R + T < S + T ==> R < (S::preal)"
+lemma preal_add_right_less_cancel: "R + T < S + T \<Longrightarrow> R < (S::preal)"
apply (insert linorder_less_linear [of R S], auto)
apply (drule_tac R = S and T = T in preal_add_less2_mono1)
apply (blast dest: order_less_trans)
done
-lemma preal_add_left_less_cancel: "T + R < T + S ==> R < (S::preal)"
+lemma preal_add_left_less_cancel: "T + R < T + S \<Longrightarrow> R < (S::preal)"
by (auto elim: preal_add_right_less_cancel simp add: preal_add_commute [of T])
lemma preal_add_less_cancel_left [simp]: "(T + (R::preal) < T + S) = (R < S)"
@@ -1090,12 +1065,12 @@
lemma preal_add_le_cancel_right [simp]: "((R::preal) + T \<le> S + T) = (R \<le> S)"
using preal_add_le_cancel_left [symmetric, of R S T] by (simp add: ac_simps)
-lemma preal_add_right_cancel: "(R::preal) + T = S + T ==> R = S"
+lemma preal_add_right_cancel: "(R::preal) + T = S + T \<Longrightarrow> R = S"
apply (insert linorder_less_linear [of R S], safe)
apply (drule_tac [!] T = T in preal_add_less2_mono1, auto)
done
-lemma preal_add_left_cancel: "C + A = C + B ==> A = (B::preal)"
+lemma preal_add_left_cancel: "C + A = C + B \<Longrightarrow> A = (B::preal)"
by (auto intro: preal_add_right_cancel simp add: preal_add_commute)
instance preal :: linordered_ab_semigroup_add
@@ -1112,7 +1087,7 @@
text\<open>Part 1 of Dedekind sections definition\<close>
lemma preal_sup_set_not_empty:
- "P \<noteq> {} ==> {} \<subset> (\<Union>X \<in> P. Rep_preal(X))"
+ "P \<noteq> {} \<Longrightarrow> {} \<subset> (\<Union>X \<in> P. Rep_preal(X))"
apply auto
apply (cut_tac X = x in mem_Rep_preal_Ex, auto)
done
@@ -1121,44 +1096,44 @@
text\<open>Part 2 of Dedekind sections definition\<close>
lemma preal_sup_not_exists:
- "\<forall>X \<in> P. X \<le> Y ==> \<exists>q. 0 < q & q \<notin> (\<Union>X \<in> P. Rep_preal(X))"
+ "\<forall>X \<in> P. X \<le> Y \<Longrightarrow> \<exists>q. 0 < q \<and> q \<notin> (\<Union>X \<in> P. Rep_preal(X))"
apply (cut_tac X = Y in Rep_preal_exists_bound)
apply (auto simp add: preal_le_def)
done
lemma preal_sup_set_not_rat_set:
- "\<forall>X \<in> P. X \<le> Y ==> (\<Union>X \<in> P. Rep_preal(X)) < {r. 0 < r}"
+ "\<forall>X \<in> P. X \<le> Y \<Longrightarrow> (\<Union>X \<in> P. Rep_preal(X)) < {r. 0 < r}"
apply (drule preal_sup_not_exists)
apply (blast intro: preal_imp_pos [OF Rep_preal])
done
text\<open>Part 3 of Dedekind sections definition\<close>
lemma preal_sup_set_lemma3:
- "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; u \<in> (\<Union>X \<in> P. Rep_preal(X)); 0 < z; z < u|]
- ==> z \<in> (\<Union>X \<in> P. Rep_preal(X))"
+ "\<lbrakk>P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; u \<in> (\<Union>X \<in> P. Rep_preal(X)); 0 < z; z < u\<rbrakk>
+ \<Longrightarrow> z \<in> (\<Union>X \<in> P. Rep_preal(X))"
by (auto elim: Rep_preal [THEN preal_downwards_closed])
text\<open>Part 4 of Dedekind sections definition\<close>
lemma preal_sup_set_lemma4:
- "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; y \<in> (\<Union>X \<in> P. Rep_preal(X)) |]
- ==> \<exists>u \<in> (\<Union>X \<in> P. Rep_preal(X)). y < u"
+ "\<lbrakk>P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; y \<in> (\<Union>X \<in> P. Rep_preal(X))\<rbrakk>
+ \<Longrightarrow> \<exists>u \<in> (\<Union>X \<in> P. Rep_preal(X)). y < u"
by (blast dest: Rep_preal [THEN preal_exists_greater])
lemma preal_sup:
- "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y|] ==> cut (\<Union>X \<in> P. Rep_preal(X))"
+ "\<lbrakk>P \<noteq> {}; \<forall>X \<in> P. X \<le> Y\<rbrakk> \<Longrightarrow> cut (\<Union>X \<in> P. Rep_preal(X))"
apply (unfold cut_def)
apply (blast intro!: preal_sup_set_not_empty preal_sup_set_not_rat_set
preal_sup_set_lemma3 preal_sup_set_lemma4)
done
lemma preal_psup_le:
- "[| \<forall>X \<in> P. X \<le> Y; x \<in> P |] ==> x \<le> psup P"
+ "\<lbrakk>\<forall>X \<in> P. X \<le> Y; x \<in> P\<rbrakk> \<Longrightarrow> x \<le> psup P"
apply (simp (no_asm_simp) add: preal_le_def)
apply (subgoal_tac "P \<noteq> {}")
apply (auto simp add: psup_def preal_sup)
done
-lemma psup_le_ub: "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> psup P \<le> Y"
+lemma psup_le_ub: "\<lbrakk>P \<noteq> {}; \<forall>X \<in> P. X \<le> Y\<rbrakk> \<Longrightarrow> psup P \<le> Y"
apply (simp (no_asm_simp) add: preal_le_def)
apply (simp add: psup_def preal_sup)
apply (auto simp add: preal_le_def)
@@ -1166,7 +1141,7 @@
text\<open>Supremum property\<close>
lemma preal_complete:
- "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> (\<exists>X \<in> P. Z < X) = (Z < psup P)"
+ "\<lbrakk>P \<noteq> {}; \<forall>X \<in> P. X \<le> Y\<rbrakk> \<Longrightarrow> (\<exists>X \<in> P. Z < X) = (Z < psup P)"
apply (simp add: preal_less_def psup_def preal_sup)
apply (auto simp add: preal_le_def)
apply (rename_tac U)
@@ -1178,7 +1153,7 @@
definition
realrel :: "((preal * preal) * (preal * preal)) set" where
- "realrel = {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
+ "realrel = {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) \<and> x1+y2 = x2+y1}"
definition "Real = UNIV//realrel"
@@ -1218,14 +1193,14 @@
{ Abs_Real(realrel``{(x*u + y*v, x*v + y*u)}) })"
definition
- real_inverse_def: "inverse (R::real) = (THE S. (R = 0 & S = 0) | S * R = 1)"
+ real_inverse_def: "inverse (R::real) = (THE S. (R = 0 \<and> S = 0) | S * R = 1)"
definition
real_divide_def: "R div (S::real) = R * inverse S"
definition
real_le_def: "z \<le> (w::real) \<longleftrightarrow>
- (\<exists>x y u v. x+v \<le> u+y & (x,y) \<in> Rep_Real z & (u,v) \<in> Rep_Real w)"
+ (\<exists>x y u v. x+v \<le> u+y \<and> (x,y) \<in> Rep_Real z \<and> (u,v) \<in> Rep_Real w)"
definition
real_less_def: "x < (y::real) \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
@@ -1293,8 +1268,8 @@
subsection \<open>Addition and Subtraction\<close>
lemma real_add_congruent2_lemma:
- "[|a + ba = aa + b; ab + bc = ac + bb|]
- ==> a + ab + (ba + bc) = aa + ac + (b + (bb::preal))"
+ "\<lbrakk>a + ba = aa + b; ab + bc = ac + bb\<rbrakk>
+ \<Longrightarrow> a + ab + (ba + bc) = aa + ac + (b + (bb::preal))"
apply (simp add: add.assoc)
apply (rule add.left_commute [of ab, THEN ssubst])
apply (simp add: add.assoc [symmetric])
@@ -1340,7 +1315,7 @@
subsection \<open>Multiplication\<close>
lemma real_mult_congruent2_lemma:
- "!!(x1::preal). [| x1 + y2 = x2 + y1 |] ==>
+ "!!(x1::preal). \<lbrakk>x1 + y2 = x2 + y1\<rbrakk> \<Longrightarrow>
x * x1 + y * y1 + (x * y2 + y * x2) =
x * x2 + y * y2 + (x * y1 + y * x1)"
apply (simp add: add.left_commute add.assoc [symmetric])
@@ -1409,7 +1384,7 @@
text\<open>Instead of using an existential quantifier and constructing the inverse
within the proof, we could define the inverse explicitly.\<close>
-lemma real_mult_inverse_left_ex: "x \<noteq> 0 ==> \<exists>y. y*x = (1::real)"
+lemma real_mult_inverse_left_ex: "x \<noteq> 0 \<Longrightarrow> \<exists>y. y*x = (1::real)"
apply (simp add: real_zero_def real_one_def, cases x)
apply (cut_tac x = xa and y = y in linorder_less_linear)
apply (auto dest!: less_add_left_Ex simp add: real_zero_iff)
@@ -1422,7 +1397,7 @@
apply (auto simp add: real_mult preal_mult_inverse_right algebra_simps)
done
-lemma real_mult_inverse_left: "x \<noteq> 0 ==> inverse(x)*x = (1::real)"
+lemma real_mult_inverse_left: "x \<noteq> 0 \<Longrightarrow> inverse(x)*x = (1::real)"
apply (simp add: real_inverse_def)
apply (drule real_mult_inverse_left_ex, safe)
apply (rule theI, assumption, rename_tac z)
@@ -1437,7 +1412,7 @@
instance real :: field
proof
fix x y z :: real
- show "x \<noteq> 0 ==> inverse x * x = 1" by (rule real_mult_inverse_left)
+ show "x \<noteq> 0 \<Longrightarrow> inverse x * x = 1" by (rule real_mult_inverse_left)
show "x / y = x * inverse y" by (simp add: real_divide_def)
show "inverse 0 = (0::real)" by (simp add: real_inverse_def)
qed
@@ -1479,7 +1454,7 @@
apply (auto intro: real_le_lemma)
done
-lemma real_le_antisym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
+lemma real_le_antisym: "\<lbrakk>z \<le> w; w \<le> z\<rbrakk> \<Longrightarrow> z = (w::real)"
by (cases z, cases w, simp add: real_le)
lemma real_trans_lemma:
@@ -1495,7 +1470,7 @@
finally show ?thesis by simp
qed
-lemma real_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::real)"
+lemma real_le_trans: "\<lbrakk>i \<le> j; j \<le> k\<rbrakk> \<Longrightarrow> i \<le> (k::real)"
apply (cases i, cases j, cases k)
apply (simp add: real_le)
apply (blast intro: real_trans_lemma)
@@ -1533,13 +1508,13 @@
by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"])
qed
-lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
+lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) \<Longrightarrow> (W < S)"
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S])
-lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
+lemma real_less_sum_gt_zero: "(W < S) \<Longrightarrow> (0 < S + (-W::real))"
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S])
-lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
+lemma real_mult_order: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> (0::real) < x * y"
apply (cases x, cases y)
apply (simp add: linorder_not_le [where 'a = real, symmetric]
linorder_not_le [where 'a = preal]
@@ -1549,7 +1524,7 @@
simp add: algebra_simps preal_self_less_add_left)
done
-lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
+lemma real_mult_less_mono2: "\<lbrakk>(0::real) < z; x < y\<rbrakk> \<Longrightarrow> z * x < z * y"
apply (rule real_sum_gt_zero_less)
apply (drule real_less_sum_gt_zero [of x y])
apply (drule real_mult_order, assumption)
@@ -1576,8 +1551,8 @@
instance real :: linordered_field
proof
fix x y z :: real
- show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
- show "x < y ==> 0 < z ==> z * x < z * y" by (rule real_mult_less_mono2)
+ show "x \<le> y \<Longrightarrow> z + x \<le> z + y" by (rule real_add_left_mono)
+ show "x < y \<Longrightarrow> 0 < z \<Longrightarrow> z * x < z * y" by (rule real_mult_less_mono2)
show "\<bar>x\<bar> = (if x < 0 then -x else x)" by (simp only: real_abs_def)
show "sgn x = (if x=0 then 0 else if 0<x then 1 else - 1)"
by (simp only: real_sgn_def)
@@ -1606,14 +1581,14 @@
done
lemma real_of_preal_leD:
- "real_of_preal m1 \<le> real_of_preal m2 ==> m1 \<le> m2"
+ "real_of_preal m1 \<le> real_of_preal m2 \<Longrightarrow> m1 \<le> m2"
by (simp add: real_of_preal_def real_le)
-lemma real_of_preal_lessI: "m1 < m2 ==> real_of_preal m1 < real_of_preal m2"
+lemma real_of_preal_lessI: "m1 < m2 \<Longrightarrow> real_of_preal m1 < real_of_preal m2"
by (auto simp add: real_of_preal_leD linorder_not_le [symmetric])
lemma real_of_preal_lessD:
- "real_of_preal m1 < real_of_preal m2 ==> m1 < m2"
+ "real_of_preal m1 < real_of_preal m2 \<Longrightarrow> m1 < m2"
by (simp add: real_of_preal_def real_le linorder_not_le [symmetric])
lemma real_of_preal_less_iff [simp]:
@@ -1649,20 +1624,20 @@
done
lemma real_gt_preal_preal_Ex:
- "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
+ "real_of_preal z < x \<Longrightarrow> \<exists>y. x = real_of_preal y"
by (blast dest!: real_of_preal_zero_less [THEN order_less_trans]
intro: real_gt_zero_preal_Ex [THEN iffD1])
lemma real_ge_preal_preal_Ex:
- "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
+ "real_of_preal z \<le> x \<Longrightarrow> \<exists>y. x = real_of_preal y"
by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)
-lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
+lemma real_less_all_preal: "y \<le> 0 \<Longrightarrow> \<forall>x. y < real_of_preal x"
by (auto elim: order_le_imp_less_or_eq [THEN disjE]
intro: real_of_preal_zero_less [THEN [2] order_less_trans]
simp add: real_of_preal_zero_less)
-lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
+lemma real_less_all_real2: "~ 0 < y \<Longrightarrow> \<forall>x. y < real_of_preal x"
by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
subsection \<open>Completeness of Positive Reals\<close>
@@ -1741,7 +1716,7 @@
show "px \<in> ?pP" using x_in_P and x_is_px by simp
qed
- have "(\<exists>X \<in> ?pP. py < X) ==> (py < psup ?pP)"
+ have "(\<exists>X \<in> ?pP. py < X) \<Longrightarrow> (py < psup ?pP)"
using psup by simp
hence "py < psup ?pP" using py_less_X by simp
thus "y < real_of_preal (psup {w. real_of_preal w \<in> P})"
@@ -1867,7 +1842,7 @@
shows "\<exists>n. inverse (of_nat (Suc n)) < x"
proof (rule ccontr)
assume contr: "\<not> ?thesis"
- have "\<forall>n. x * of_nat (Suc n) <= 1"
+ have "\<forall>n. x * of_nat (Suc n) \<le> 1"
proof
fix n
from contr have "x \<le> inverse (of_nat (Suc n))"