Moved some proofs to FOL/IFOL.ML
authorpaulson
Tue, 26 Mar 1996 16:26:55 +0100
changeset 1615 ec04389ddcd3
parent 1614 c9f0fc335b12
child 1616 6d7278c3f686
Moved some proofs to FOL/IFOL.ML
src/ZF/AC/AC_Equiv.ML
--- a/src/ZF/AC/AC_Equiv.ML	Tue Mar 26 16:16:24 1996 +0100
+++ b/src/ZF/AC/AC_Equiv.ML	Tue Mar 26 16:26:55 1996 +0100
@@ -21,8 +21,6 @@
  
 (* ******************************************** *)
 
-val nat_implies_well_ord = nat_into_Ord RS well_ord_Memrel;
-
 (* Theorems analogous to ones presented in "ZF/Ordinal.ML" *)
 
 (* lemma for nat_le_imp_lepoll *)
@@ -44,18 +42,6 @@
 (*             lemmas concerning FOL and pure ZF theory                   *)
 (* ********************************************************************** *)
 
-(* The following two theorms are useful when rewriting only one instance  *) 
-(* of a definition                                                        *)
-(* first one for definitions of formulae and the second for terms         *)
-
-val prems = goal ZF.thy "(A == B) ==> A <-> B";
-by (asm_simp_tac (ZF_ss addsimps prems) 1);
-val def_imp_iff = result();
-
-val prems = goal ZF.thy "(A == B) ==> A = B";
-by (simp_tac (ZF_ss addsimps prems) 1);
-val def_imp_eq = result();
-
 goal thy "!!X. (A->X)=0 ==> X=0";
 by (fast_tac (ZF_cs addSIs [equals0I] addEs [lam_type RSN (2, equals0D)]) 1);
 val fun_space_emptyD = result();