--- a/src/FOL/ex/First_Order_Logic.thy Sun May 18 17:03:20 2008 +0200
+++ b/src/FOL/ex/First_Order_Logic.thy Sun May 18 17:03:23 2008 +0200
@@ -110,7 +110,7 @@
equal :: "i \<Rightarrow> i \<Rightarrow> o" (infixl "=" 50)
where
refl [intro]: "x = x" and
- subst: "x = y \<Longrightarrow> P(x) \<Longrightarrow> P(y)"
+ subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
by (rule subst)
@@ -128,32 +128,32 @@
All :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10) and
Ex :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
where
- allI [intro]: "(\<And>x. P(x)) \<Longrightarrow> \<forall>x. P(x)" and
- allD [dest]: "\<forall>x. P(x) \<Longrightarrow> P(a)" and
- exI [intro]: "P(a) \<Longrightarrow> \<exists>x. P(x)" and
- exE [elim]: "\<exists>x. P(x) \<Longrightarrow> (\<And>x. P(x) \<Longrightarrow> C) \<Longrightarrow> C"
+ allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x" and
+ allD [dest]: "\<forall>x. P x \<Longrightarrow> P a" and
+ exI [intro]: "P a \<Longrightarrow> \<exists>x. P x" and
+ exE [elim]: "\<exists>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> C) \<Longrightarrow> C"
-lemma "(\<exists>x. P(f(x))) \<longrightarrow> (\<exists>y. P(y))"
+lemma "(\<exists>x. P (f x)) \<longrightarrow> (\<exists>y. P y)"
proof
- assume "\<exists>x. P(f(x))"
- then show "\<exists>y. P(y)"
+ assume "\<exists>x. P (f x)"
+ then show "\<exists>y. P y"
proof
- fix x assume "P(f(x))"
+ fix x assume "P (f x)"
then show ?thesis ..
qed
qed
-lemma "(\<exists>x. \<forall>y. R(x, y)) \<longrightarrow> (\<forall>y. \<exists>x. R(x, y))"
+lemma "(\<exists>x. \<forall>y. R x y) \<longrightarrow> (\<forall>y. \<exists>x. R x y)"
proof
- assume "\<exists>x. \<forall>y. R(x, y)"
- then show "\<forall>y. \<exists>x. R(x, y)"
+ assume "\<exists>x. \<forall>y. R x y"
+ then show "\<forall>y. \<exists>x. R x y"
proof
- fix x assume a: "\<forall>y. R(x, y)"
+ fix x assume a: "\<forall>y. R x y"
show ?thesis
proof
- fix y from a have "R(x, y)" ..
- then show "\<exists>x. R(x, y)" ..
+ fix y from a have "R x y" ..
+ then show "\<exists>x. R x y" ..
qed
qed
qed
--- a/src/Pure/Pure.thy Sun May 18 17:03:20 2008 +0200
+++ b/src/Pure/Pure.thy Sun May 18 17:03:23 2008 +0200
@@ -14,14 +14,14 @@
lemmas meta_impE = meta_mp [elim_format]
lemma meta_spec:
- assumes "!!x. PROP P(x)"
- shows "PROP P(x)"
- by (rule `!!x. PROP P(x)`)
+ assumes "!!x. PROP P x"
+ shows "PROP P x"
+ by (rule `!!x. PROP P x`)
lemmas meta_allE = meta_spec [elim_format]
lemma swap_params:
- "(!!x y. PROP P(x, y)) == (!!y x. PROP P(x, y))" ..
+ "(!!x y. PROP P x y) == (!!y x. PROP P x y)" ..
subsection {* Embedded terms *}
@@ -39,22 +39,22 @@
lemma all_conjunction:
includes meta_conjunction_syntax
- shows "(!!x. PROP A(x) && PROP B(x)) == ((!!x. PROP A(x)) && (!!x. PROP B(x)))"
+ shows "(!!x. PROP A x && PROP B x) == ((!!x. PROP A x) && (!!x. PROP B x))"
proof
- assume conj: "!!x. PROP A(x) && PROP B(x)"
- show "(!!x. PROP A(x)) && (!!x. PROP B(x))"
+ assume conj: "!!x. PROP A x && PROP B x"
+ show "(!!x. PROP A x) && (!!x. PROP B x)"
proof -
fix x
- from conj show "PROP A(x)" by (rule conjunctionD1)
- from conj show "PROP B(x)" by (rule conjunctionD2)
+ from conj show "PROP A x" by (rule conjunctionD1)
+ from conj show "PROP B x" by (rule conjunctionD2)
qed
next
- assume conj: "(!!x. PROP A(x)) && (!!x. PROP B(x))"
+ assume conj: "(!!x. PROP A x) && (!!x. PROP B x)"
fix x
- show "PROP A(x) && PROP B(x)"
+ show "PROP A x && PROP B x"
proof -
- show "PROP A(x)" by (rule conj [THEN conjunctionD1, rule_format])
- show "PROP B(x)" by (rule conj [THEN conjunctionD2, rule_format])
+ show "PROP A x" by (rule conj [THEN conjunctionD1, rule_format])
+ show "PROP B x" by (rule conj [THEN conjunctionD2, rule_format])
qed
qed