--- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Wed Mar 03 09:33:46 2010 +0100
+++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Wed Mar 03 10:06:12 2010 +0100
@@ -100,6 +100,12 @@
instance ..
end
+instantiation cart :: (scaleR, finite) scaleR
+begin
+ definition vector_scaleR_def: "scaleR = (\<lambda> r x. (\<chi> i. scaleR r (x$i)))"
+ instance ..
+end
+
instantiation cart :: (ord,finite) ord
begin
definition vector_le_def:
@@ -108,12 +114,31 @@
instance by (intro_classes)
end
-instantiation cart :: (scaleR, finite) scaleR
+text{* The ordering on real^1 is linear. *}
+
+class cart_one = assumes UNIV_one: "card (UNIV \<Colon> 'a set) = Suc 0"
begin
- definition vector_scaleR_def: "scaleR = (\<lambda> r x. (\<chi> i. scaleR r (x$i)))"
- instance ..
+ subclass finite
+ proof from UNIV_one show "finite (UNIV :: 'a set)"
+ by (auto intro!: card_ge_0_finite) qed
end
+instantiation num1 :: cart_one begin
+instance proof
+ show "CARD(1) = Suc 0" by auto
+qed end
+
+instantiation cart :: (linorder,cart_one) linorder begin
+instance proof
+ guess a B using UNIV_one[where 'a='b] unfolding card_Suc_eq apply- by(erule exE)+
+ hence *:"UNIV = {a}" by auto
+ have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P a" unfolding * by auto hence all:"\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a" by auto
+ fix x y z::"'a^'b::cart_one" note * = vector_le_def vector_less_def all Cart_eq
+ show "x\<le>x" "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" "x\<le>y \<or> y\<le>x" unfolding * by(auto simp only:field_simps)
+ { assume "x\<le>y" "y\<le>z" thus "x\<le>z" unfolding * by(auto simp only:field_simps) }
+ { assume "x\<le>y" "y\<le>x" thus "x=y" unfolding * by(auto simp only:field_simps) }
+qed end
+
text{* Also the scalar-vector multiplication. *}
definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
@@ -123,25 +148,11 @@
definition "vec x = (\<chi> i. x)"
-text{* Dot products. *}
-
-definition dot :: "'a::{comm_monoid_add, times} ^ 'n \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a" (infix "\<bullet>" 70) where
- "x \<bullet> y = setsum (\<lambda>i. x$i * y$i) UNIV"
-
-lemma dot_1[simp]: "(x::'a::{comm_monoid_add, times}^1) \<bullet> y = (x$1) * (y$1)"
- by (simp add: dot_def setsum_1)
-
-lemma dot_2[simp]: "(x::'a::{comm_monoid_add, times}^2) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2)"
- by (simp add: dot_def setsum_2)
-
-lemma dot_3[simp]: "(x::'a::{comm_monoid_add, times}^3) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2) + (x$3) * (y$3)"
- by (simp add: dot_def setsum_3)
-
subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *}
method_setup vector = {*
let
- val ss1 = HOL_basic_ss addsimps [@{thm dot_def}, @{thm setsum_addf} RS sym,
+ val ss1 = HOL_basic_ss addsimps [@{thm setsum_addf} RS sym,
@{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
@{thm setsum_left_distrib}, @{thm setsum_negf} RS sym]
val ss2 = @{simpset} addsimps
@@ -165,8 +176,6 @@
lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def)
lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def)
-
-
text{* Obvious "component-pushing". *}
lemma vec_component [simp]: "vec x $ i = x"
@@ -791,6 +800,8 @@
subsection {* Inner products *}
+abbreviation inner_bullet (infix "\<bullet>" 70) where "x \<bullet> y \<equiv> inner x y"
+
instantiation cart :: (real_inner, finite) real_inner
begin
@@ -821,27 +832,6 @@
end
-subsection{* Properties of the dot product. *}
-
-lemma dot_sym: "(x::'a:: {comm_monoid_add, ab_semigroup_mult} ^ 'n) \<bullet> y = y \<bullet> x"
- by (vector mult_commute)
-lemma dot_ladd: "((x::'a::ring ^ 'n) + y) \<bullet> z = (x \<bullet> z) + (y \<bullet> z)"
- by (vector ring_simps)
-lemma dot_radd: "x \<bullet> (y + (z::'a::ring ^ 'n)) = (x \<bullet> y) + (x \<bullet> z)"
- by (vector ring_simps)
-lemma dot_lsub: "((x::'a::ring ^ 'n) - y) \<bullet> z = (x \<bullet> z) - (y \<bullet> z)"
- by (vector ring_simps)
-lemma dot_rsub: "(x::'a::ring ^ 'n) \<bullet> (y - z) = (x \<bullet> y) - (x \<bullet> z)"
- by (vector ring_simps)
-lemma dot_lmult: "(c *s x) \<bullet> y = (c::'a::ring) * (x \<bullet> y)" by (vector ring_simps)
-lemma dot_rmult: "x \<bullet> (c *s y) = (c::'a::comm_ring) * (x \<bullet> y)" by (vector ring_simps)
-lemma dot_lneg: "(-x) \<bullet> (y::'a::ring ^ 'n) = -(x \<bullet> y)" by vector
-lemma dot_rneg: "(x::'a::ring ^ 'n) \<bullet> (-y) = -(x \<bullet> y)" by vector
-lemma dot_lzero[simp]: "0 \<bullet> x = (0::'a::{comm_monoid_add, mult_zero})" by vector
-lemma dot_rzero[simp]: "x \<bullet> 0 = (0::'a::{comm_monoid_add, mult_zero})" by vector
-lemma dot_pos_le[simp]: "(0::'a\<Colon>linordered_ring_strict) <= x \<bullet> x"
- by (simp add: dot_def setsum_nonneg)
-
lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\<forall>x \<in> F. f x \<ge> (0 ::'a::ordered_ab_group_add)" shows "setsum f F = 0 \<longleftrightarrow> (ALL x:F. f x = 0)"
using fS fp setsum_nonneg[OF fp]
proof (induct set: finite)
@@ -855,12 +845,6 @@
show ?case by (simp add: h)
qed
-lemma dot_eq_0: "x \<bullet> x = 0 \<longleftrightarrow> (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) = 0"
- by (simp add: dot_def setsum_squares_eq_0_iff Cart_eq)
-
-lemma dot_pos_lt[simp]: "(0 < x \<bullet> x) \<longleftrightarrow> (x::'a::{linordered_ring_strict,ring_no_zero_divisors} ^ 'n) \<noteq> 0" using dot_eq_0[of x] dot_pos_le[of x]
- by (auto simp add: le_less)
-
subsection{* The collapse of the general concepts to dimension one. *}
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
@@ -994,12 +978,8 @@
lemma norm_mul[simp]: "norm(a *s x) = abs(a) * norm x"
by (simp add: norm_vector_def vector_component setL2_right_distrib
abs_mult cong: strong_setL2_cong)
-lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (x \<bullet> x = (0::real))"
- by (simp add: norm_vector_def dot_def setL2_def power2_eq_square)
-lemma real_vector_norm_def: "norm x = sqrt (x \<bullet> x)"
- by (simp add: norm_vector_def setL2_def dot_def power2_eq_square)
-lemma norm_pow_2: "norm x ^ 2 = x \<bullet> x"
- by (simp add: real_vector_norm_def)
+lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (inner x x = (0::real))"
+ by (simp add: norm_vector_def setL2_def power2_eq_square)
lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
by vector
@@ -1011,34 +991,17 @@
by (metis vector_mul_lcancel)
lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
by (metis vector_mul_rcancel)
+
lemma norm_cauchy_schwarz:
fixes x y :: "real ^ 'n"
- shows "x \<bullet> y <= norm x * norm y"
-proof-
- {assume "norm x = 0"
- hence ?thesis by (simp add: dot_lzero dot_rzero)}
- moreover
- {assume "norm y = 0"
- hence ?thesis by (simp add: dot_lzero dot_rzero)}
- moreover
- {assume h: "norm x \<noteq> 0" "norm y \<noteq> 0"
- let ?z = "norm y *s x - norm x *s y"
- from h have p: "norm x * norm y > 0" by (metis norm_ge_zero le_less zero_compare_simps)
- from dot_pos_le[of ?z]
- have "(norm x * norm y) * (x \<bullet> y) \<le> norm x ^2 * norm y ^2"
- apply (simp add: dot_rsub dot_lsub dot_lmult dot_rmult ring_simps)
- by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym)
- hence "x\<bullet>y \<le> (norm x ^2 * norm y ^2) / (norm x * norm y)" using p
- by (simp add: field_simps)
- hence ?thesis using h by (simp add: power2_eq_square)}
- ultimately show ?thesis by metis
-qed
+ shows "inner x y <= norm x * norm y"
+ using Cauchy_Schwarz_ineq2[of x y] by auto
lemma norm_cauchy_schwarz_abs:
fixes x y :: "real ^ 'n"
- shows "\<bar>x \<bullet> y\<bar> \<le> norm x * norm y"
+ shows "\<bar>inner x y\<bar> \<le> norm x * norm y"
using norm_cauchy_schwarz[of x y] norm_cauchy_schwarz[of x "-y"]
- by (simp add: real_abs_def dot_rneg)
+ by (simp add: real_abs_def)
lemma norm_triangle_sub:
fixes x y :: "'a::real_normed_vector"
@@ -1064,21 +1027,21 @@
lemma real_abs_sub_norm: "\<bar>norm (x::real ^ 'n) - norm y\<bar> <= norm(x - y)"
by (rule norm_triangle_ineq3)
lemma norm_le: "norm(x::real ^ 'n) <= norm(y) \<longleftrightarrow> x \<bullet> x <= y \<bullet> y"
- by (simp add: real_vector_norm_def)
+ by (simp add: norm_eq_sqrt_inner)
lemma norm_lt: "norm(x::real ^ 'n) < norm(y) \<longleftrightarrow> x \<bullet> x < y \<bullet> y"
- by (simp add: real_vector_norm_def)
-lemma norm_eq: "norm(x::real ^ 'n) = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
- by (simp add: order_eq_iff norm_le)
+ by (simp add: norm_eq_sqrt_inner)
+lemma norm_eq: "norm(x::real ^ 'n) = norm (y::real ^ 'n) \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
+ apply(subst order_eq_iff) unfolding norm_le by auto
lemma norm_eq_1: "norm(x::real ^ 'n) = 1 \<longleftrightarrow> x \<bullet> x = 1"
- by (simp add: real_vector_norm_def)
+ unfolding norm_eq_sqrt_inner by auto
text{* Squaring equations and inequalities involving norms. *}
lemma dot_square_norm: "x \<bullet> x = norm(x)^2"
- by (simp add: real_vector_norm_def)
+ by (simp add: norm_eq_sqrt_inner)
lemma norm_eq_square: "norm(x) = a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x = a^2"
- by (auto simp add: real_vector_norm_def)
+ by (auto simp add: norm_eq_sqrt_inner)
lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)^2 \<le> y^2"
proof-
@@ -1106,12 +1069,14 @@
text{* Dot product in terms of the norm rather than conversely. *}
+lemmas inner_simps = inner.add_left inner.add_right inner.diff_right inner.diff_left
+inner.scaleR_left inner.scaleR_right
+
lemma dot_norm: "x \<bullet> y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2"
- by (simp add: norm_pow_2 dot_ladd dot_radd dot_sym)
+ unfolding power2_norm_eq_inner inner_simps inner_commute by auto
lemma dot_norm_neg: "x \<bullet> y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2"
- by (simp add: norm_pow_2 dot_ladd dot_radd dot_lsub dot_rsub dot_sym)
-
+ unfolding power2_norm_eq_inner inner_simps inner_commute by(auto simp add:group_simps)
text{* Equality of vectors in terms of @{term "op \<bullet>"} products. *}
@@ -1120,14 +1085,12 @@
assume "?lhs" then show ?rhs by simp
next
assume ?rhs
- then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y\<bullet> y = 0" by simp
- hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
- by (simp add: dot_rsub dot_lsub dot_sym)
- then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps dot_lsub dot_rsub)
- then show "x = y" by (simp add: dot_eq_0)
+ then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" by simp
+ hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" by (simp add: inner_simps inner_commute)
+ then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps inner_simps inner_commute)
+ then show "x = y" by (simp)
qed
-
subsection{* General linear decision procedure for normed spaces. *}
lemma norm_cmul_rule_thm:
@@ -1456,15 +1419,14 @@
finally show ?thesis .
qed
-lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{comm_ring}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
- by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd dot_radd)
-
-lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{comm_ring}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
- by (induct rule: finite_induct, auto simp add: dot_rzero dot_radd)
+lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{real_inner}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
+ apply(induct rule: finite_induct) by(auto simp add: inner_simps)
+
+lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{real_inner}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
+ apply(induct rule: finite_induct) by(auto simp add: inner_simps)
subsection{* Basis vectors in coordinate directions. *}
-
definition "basis k = (\<chi> i. if i = k then 1 else 0)"
lemma basis_component [simp]: "basis k $ i = (if k=i then 1 else 0)"
@@ -1475,11 +1437,9 @@
lemma norm_basis:
shows "norm (basis k :: real ^'n) = 1"
- apply (simp add: basis_def real_vector_norm_def dot_def)
+ apply (simp add: basis_def norm_eq_sqrt_inner) unfolding inner_vector_def
apply (vector delta_mult_idempotent)
- using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"]
- apply auto
- done
+ using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"] by auto
lemma norm_basis_1: "norm(basis 1 :: real ^'n::{finite,one}) = 1"
by (rule norm_basis)
@@ -1515,8 +1475,8 @@
by auto
lemma dot_basis:
- shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i :: 'a^'n) = (x$i :: 'a::semiring_1)"
- by (auto simp add: dot_def basis_def cond_application_beta cond_value_iff setsum_delta cong del: if_weak_cong)
+ shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i) = (x$i)"
+ unfolding inner_vector_def by (auto simp add: basis_def cond_application_beta cond_value_iff setsum_delta cong del: if_weak_cong)
lemma inner_basis:
fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n"
@@ -1532,7 +1492,7 @@
shows "basis k \<noteq> (0:: 'a::semiring_1 ^'n)"
by (simp add: basis_eq_0)
-lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::'a::semiring_1^'n)"
+lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::real^'n)"
apply (auto simp add: Cart_eq dot_basis)
apply (erule_tac x="basis i" in allE)
apply (simp add: dot_basis)
@@ -1541,7 +1501,7 @@
apply (simp add: Cart_eq)
done
-lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::'a::semiring_1^'n)"
+lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::real^'n)"
apply (auto simp add: Cart_eq dot_basis)
apply (erule_tac x="basis i" in allE)
apply (simp add: dot_basis)
@@ -1555,31 +1515,29 @@
definition "orthogonal x y \<longleftrightarrow> (x \<bullet> y = 0)"
lemma orthogonal_basis:
- shows "orthogonal (basis i :: 'a^'n) x \<longleftrightarrow> x$i = (0::'a::ring_1)"
- by (auto simp add: orthogonal_def dot_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
+ shows "orthogonal (basis i) x \<longleftrightarrow> x$i = (0::real)"
+ by (auto simp add: orthogonal_def inner_vector_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
lemma orthogonal_basis_basis:
- shows "orthogonal (basis i :: 'a::ring_1^'n) (basis j) \<longleftrightarrow> i \<noteq> j"
+ shows "orthogonal (basis i :: real^'n) (basis j) \<longleftrightarrow> i \<noteq> j"
unfolding orthogonal_basis[of i] basis_component[of j] by simp
(* FIXME : Maybe some of these require less than comm_ring, but not all*)
lemma orthogonal_clauses:
- "orthogonal a (0::'a::comm_ring ^'n)"
- "orthogonal a x ==> orthogonal a (c *s x)"
+ "orthogonal a (0::real ^'n)"
+ "orthogonal a x ==> orthogonal a (c *\<^sub>R x)"
"orthogonal a x ==> orthogonal a (-x)"
"orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x + y)"
"orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x - y)"
"orthogonal 0 a"
- "orthogonal x a ==> orthogonal (c *s x) a"
+ "orthogonal x a ==> orthogonal (c *\<^sub>R x) a"
"orthogonal x a ==> orthogonal (-x) a"
"orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x + y) a"
"orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x - y) a"
- unfolding orthogonal_def dot_rneg dot_rmult dot_radd dot_rsub
- dot_lzero dot_rzero dot_lneg dot_lmult dot_ladd dot_lsub
- by simp_all
-
-lemma orthogonal_commute: "orthogonal (x::'a::{ab_semigroup_mult,comm_monoid_add} ^'n)y \<longleftrightarrow> orthogonal y x"
- by (simp add: orthogonal_def dot_sym)
+ unfolding orthogonal_def inner_simps by auto
+
+lemma orthogonal_commute: "orthogonal (x::real ^'n)y \<longleftrightarrow> orthogonal y x"
+ by (simp add: orthogonal_def inner_commute)
subsection{* Explicit vector construction from lists. *}
@@ -1969,7 +1927,7 @@
lemma choice_iff: "(\<forall>x. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x. P x (f x))" by metis
lemma adjoint_works_lemma:
- fixes f:: "'a::ring_1 ^'n \<Rightarrow> 'a ^'m"
+ fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y"
proof-
@@ -1977,8 +1935,8 @@
let ?M = "UNIV :: 'm set"
have fN: "finite ?N" by simp
have fM: "finite ?M" by simp
- {fix y:: "'a ^ 'm"
- let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: 'a ^ 'n"
+ {fix y:: "real ^ 'm"
+ let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: real ^ 'n"
{fix x
have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *s basis i) ?N) \<bullet> y"
by (simp only: basis_expansion)
@@ -1987,7 +1945,7 @@
by (simp add: linear_cmul[OF lf])
finally have "f x \<bullet> y = x \<bullet> ?w"
apply (simp only: )
- apply (simp add: dot_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
+ apply (simp add: inner_vector_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
done}
}
then show ?thesis unfolding adjoint_def
@@ -1997,34 +1955,34 @@
qed
lemma adjoint_works:
- fixes f:: "'a::ring_1 ^'n \<Rightarrow> 'a ^'m"
+ fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "x \<bullet> adjoint f y = f x \<bullet> y"
using adjoint_works_lemma[OF lf] by metis
-
lemma adjoint_linear:
- fixes f :: "'a::comm_ring_1 ^'n \<Rightarrow> 'a ^'m"
+ fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "linear (adjoint f)"
- by (simp add: linear_def vector_eq_ldot[symmetric] dot_radd dot_rmult adjoint_works[OF lf])
+ unfolding linear_def vector_eq_ldot[symmetric] apply safe
+ unfolding inner_simps smult_conv_scaleR adjoint_works[OF lf] by auto
lemma adjoint_clauses:
- fixes f:: "'a::comm_ring_1 ^'n \<Rightarrow> 'a ^'m"
+ fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "x \<bullet> adjoint f y = f x \<bullet> y"
and "adjoint f y \<bullet> x = y \<bullet> f x"
- by (simp_all add: adjoint_works[OF lf] dot_sym )
+ by (simp_all add: adjoint_works[OF lf] inner_commute)
lemma adjoint_adjoint:
- fixes f:: "'a::comm_ring_1 ^ 'n \<Rightarrow> 'a ^'m"
+ fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "adjoint (adjoint f) = f"
apply (rule ext)
by (simp add: vector_eq_ldot[symmetric] adjoint_clauses[OF adjoint_linear[OF lf]] adjoint_clauses[OF lf])
lemma adjoint_unique:
- fixes f:: "'a::comm_ring_1 ^ 'n \<Rightarrow> 'a ^'m"
+ fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f" and u: "\<forall>x y. f' x \<bullet> y = x \<bullet> f y"
shows "f' = adjoint f"
apply (rule ext)
@@ -2101,11 +2059,11 @@
by (auto simp add: basis_def cond_value_iff cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong)
lemma matrix_vector_mul_component:
- shows "((A::'a::semiring_1^_^_) *v x)$k = (A$k) \<bullet> x"
- by (simp add: matrix_vector_mult_def dot_def)
-
-lemma dot_lmul_matrix: "((x::'a::comm_semiring_1 ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
- apply (simp add: dot_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
+ shows "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
+ by (simp add: matrix_vector_mult_def inner_vector_def)
+
+lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
+ apply (simp add: inner_vector_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
apply (subst setsum_commute)
by simp
@@ -2133,7 +2091,7 @@
text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *}
lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
- by (simp add: matrix_vector_mult_def dot_def)
+ by (simp add: matrix_vector_mult_def inner_vector_def)
lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
by (simp add: matrix_vector_mult_def Cart_eq column_def mult_commute)
@@ -2194,15 +2152,15 @@
lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
by (simp add: matrix_vector_mult_def transpose_def Cart_eq mult_commute)
-lemma adjoint_matrix: "adjoint(\<lambda>x. (A::'a::comm_ring_1^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
+lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
apply (rule adjoint_unique[symmetric])
apply (rule matrix_vector_mul_linear)
- apply (simp add: transpose_def dot_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
+ apply (simp add: transpose_def inner_vector_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
apply (subst setsum_commute)
apply (auto simp add: mult_ac)
done
-lemma matrix_adjoint: assumes lf: "linear (f :: 'a::comm_ring_1^'n \<Rightarrow> 'a ^'m)"
+lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
shows "matrix(adjoint f) = transpose(matrix f)"
apply (subst matrix_vector_mul[OF lf])
unfolding adjoint_matrix matrix_of_matrix_vector_mul ..
@@ -2514,11 +2472,11 @@
apply (auto simp add: Cart_eq matrix_vector_mult_def column_def mult_commute UNIV_1)
done
-lemma linear_to_scalars: assumes lf: "linear (f::'a::comm_ring_1 ^'n \<Rightarrow> 'a^1)"
+lemma linear_to_scalars: assumes lf: "linear (f::real ^'n \<Rightarrow> real^1)"
shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))"
apply (rule ext)
apply (subst matrix_works[OF lf, symmetric])
- apply (simp add: Cart_eq matrix_vector_mult_def row_def dot_def mult_commute forall_1)
+ apply (simp add: Cart_eq matrix_vector_mult_def row_def inner_vector_def mult_commute forall_1)
done
lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0"
@@ -2624,11 +2582,11 @@
have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
by (simp add: pastecart_fst_snd)
have th1: "fstcart x \<bullet> fstcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
- by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
+ by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def setsum_nonneg)
then show ?thesis
unfolding th0
- unfolding real_vector_norm_def real_sqrt_le_iff id_def
- by (simp add: dot_def)
+ unfolding norm_eq_sqrt_inner real_sqrt_le_iff id_def
+ by (simp add: inner_vector_def)
qed
lemma dist_fstcart: "dist(fstcart (x::real^_)) (fstcart y) <= dist x y"
@@ -2639,18 +2597,18 @@
have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
by (simp add: pastecart_fst_snd)
have th1: "sndcart x \<bullet> sndcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
- by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
+ by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def setsum_nonneg)
then show ?thesis
unfolding th0
- unfolding real_vector_norm_def real_sqrt_le_iff id_def
- by (simp add: dot_def)
+ unfolding norm_eq_sqrt_inner real_sqrt_le_iff id_def
+ by (simp add: inner_vector_def)
qed
lemma dist_sndcart: "dist(sndcart (x::real^_)) (sndcart y) <= dist x y"
unfolding dist_norm by (metis sndcart_sub[symmetric] norm_sndcart)
-lemma dot_pastecart: "(pastecart (x1::'a::{times,comm_monoid_add}^'n) (x2::'a::{times,comm_monoid_add}^'m)) \<bullet> (pastecart y1 y2) = x1 \<bullet> y1 + x2 \<bullet> y2"
- by (simp add: dot_def setsum_UNIV_sum pastecart_def)
+lemma dot_pastecart: "(pastecart (x1::real^'n) (x2::real^'m)) \<bullet> (pastecart y1 y2) = x1 \<bullet> y1 + x2 \<bullet> y2"
+ by (simp add: inner_vector_def setsum_UNIV_sum pastecart_def)
text {* TODO: move to NthRoot *}
lemma sqrt_add_le_add_sqrt:
@@ -3586,8 +3544,8 @@
{fix x assume xs: "x \<in> s"
have t: "t \<subseteq> (insert b (insert a (t -{b})))" using b by auto
from b(1) have "b \<in> span t" by (simp add: span_superset)
- have bs: "b \<in> span (insert a (t - {b}))"
- by (metis in_span_delete a sp mem_def subset_eq)
+ have bs: "b \<in> span (insert a (t - {b}))" apply(rule in_span_delete)
+ using a sp unfolding subset_eq by auto
from xs sp have "x \<in> span t" by blast
with span_mono[OF t]
have x: "x \<in> span (insert b (insert a (t - {b})))" ..
@@ -3842,11 +3800,8 @@
(* FIXME : Move to some general theory ?*)
definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
-lemma vector_sub_project_orthogonal: "(b::'a::linordered_field^'n) \<bullet> (x - ((b \<bullet> x) / (b\<bullet>b)) *s b) = 0"
- apply (cases "b = 0", simp)
- apply (simp add: dot_rsub dot_rmult)
- unfolding times_divide_eq_right[symmetric]
- by (simp add: field_simps dot_eq_0)
+lemma vector_sub_project_orthogonal: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0"
+ unfolding inner_simps smult_conv_scaleR by auto
lemma basis_orthogonal:
fixes B :: "(real ^'n) set"
@@ -3861,7 +3816,7 @@
from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C`
obtain C where C: "finite C" "card C \<le> card B"
"span C = span B" "pairwise orthogonal C" by blast
- let ?a = "a - setsum (\<lambda>x. (x\<bullet>a / (x\<bullet>x)) *s x) C"
+ let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *s x) C"
let ?C = "insert ?a C"
from C(1) have fC: "finite ?C" by simp
from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" by (simp add: card_insert_if)
@@ -3887,13 +3842,12 @@
have fth: "finite (C - {y})" using C by simp
have "orthogonal x y"
using xa ya
- unfolding orthogonal_def xa dot_lsub dot_rsub diff_eq_0_iff_eq
+ unfolding orthogonal_def xa inner_simps diff_eq_0_iff_eq
apply simp
apply (subst Cy)
using C(1) fth
- apply (simp only: setsum_clauses)
- thm dot_ladd
- apply (auto simp add: dot_ladd dot_radd dot_lmult dot_rmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth])
+ apply (simp only: setsum_clauses) unfolding smult_conv_scaleR
+ apply (auto simp add: inner_simps inner_eq_zero_iff inner_commute[of y a] dot_lsum[OF fth])
apply (rule setsum_0')
apply clarsimp
apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -3904,13 +3858,13 @@
have fth: "finite (C - {x})" using C by simp
have "orthogonal x y"
using xa ya
- unfolding orthogonal_def ya dot_rsub dot_lsub diff_eq_0_iff_eq
+ unfolding orthogonal_def ya inner_simps diff_eq_0_iff_eq
apply simp
apply (subst Cx)
using C(1) fth
- apply (simp only: setsum_clauses)
- apply (subst dot_sym[of x])
- apply (auto simp add: dot_radd dot_rmult dot_eq_0 dot_sym[of x a] dot_rsum[OF fth])
+ apply (simp only: setsum_clauses) unfolding smult_conv_scaleR
+ apply (subst inner_commute[of x])
+ apply (auto simp add: inner_simps inner_eq_zero_iff inner_commute[of x a] dot_rsum[OF fth])
apply (rule setsum_0')
apply clarsimp
apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -3945,7 +3899,8 @@
qed
lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S"
- by (metis set_eq_subset span_mono span_span span_inc) (* FIXME: slow *)
+ using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"]
+ by(auto simp add: span_span)
(* ------------------------------------------------------------------------- *)
(* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *)
@@ -3962,8 +3917,8 @@
from B have fB: "finite B" "card B = dim S" using independent_bound by auto
from span_mono[OF B(2)] span_mono[OF B(3)]
have sSB: "span S = span B" by (simp add: span_span)
- let ?a = "a - setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B"
- have "setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B \<in> span S"
+ let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *s b) B"
+ have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *s b) B \<in> span S"
unfolding sSB
apply (rule span_setsum[OF fB(1)])
apply clarsimp
@@ -3972,20 +3927,20 @@
with a have a0:"?a \<noteq> 0" by auto
have "\<forall>x\<in>span B. ?a \<bullet> x = 0"
proof(rule span_induct')
- show "subspace (\<lambda>x. ?a \<bullet> x = 0)"
- by (auto simp add: subspace_def mem_def dot_radd dot_rmult)
- next
+ show "subspace (\<lambda>x. ?a \<bullet> x = 0)" by (auto simp add: subspace_def mem_def inner_simps smult_conv_scaleR)
+
+next
{fix x assume x: "x \<in> B"
from x have B': "B = insert x (B - {x})" by blast
have fth: "finite (B - {x})" using fB by simp
have "?a \<bullet> x = 0"
apply (subst B') using fB fth
unfolding setsum_clauses(2)[OF fth]
- apply simp
- apply (clarsimp simp add: dot_lsub dot_ladd dot_lmult dot_lsum dot_eq_0)
+ apply simp unfolding inner_simps smult_conv_scaleR
+ apply (clarsimp simp add: inner_simps inner_eq_zero_iff smult_conv_scaleR dot_lsum)
apply (rule setsum_0', rule ballI)
- unfolding dot_sym
- by (auto simp add: x field_simps dot_eq_0 intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
+ unfolding inner_commute
+ by (auto simp add: x field_simps inner_eq_zero_iff intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
then show "\<forall>x \<in> B. ?a \<bullet> x = 0" by blast
qed
with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"])
@@ -4754,8 +4709,8 @@
"columnvector (A *v v) = A ** columnvector v"
by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
-lemma dot_matrix_product: "(x::'a::semiring_1^'n) \<bullet> y = (((rowvector x ::'a^'n^1) ** (columnvector y :: 'a^1^'n))$1)$1"
- by (vector matrix_matrix_mult_def rowvector_def columnvector_def dot_def)
+lemma dot_matrix_product: "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
+ by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vector_def)
lemma dot_matrix_vector_mul:
fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
@@ -4911,20 +4866,18 @@
by (auto intro: real_sqrt_pow2)
have th: "sqrt (real ?d) * infnorm x \<ge> 0"
by (simp add: zero_le_mult_iff real_sqrt_ge_0_iff infnorm_pos_le)
- have th1: "x\<bullet>x \<le> (sqrt (real ?d) * infnorm x)^2"
+ have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)^2"
unfolding power_mult_distrib d2
+ unfolding real_of_nat_def inner_vector_def
+ apply (subst power2_abs[symmetric])
+ apply (rule setsum_bounded)
+ apply(auto simp add: power2_eq_square[symmetric])
apply (subst power2_abs[symmetric])
- unfolding real_of_nat_def dot_def power2_eq_square[symmetric]
- apply (subst power2_abs[symmetric])
- apply (rule setsum_bounded)
apply (rule power_mono)
- unfolding abs_of_nonneg[OF infnorm_pos_le]
unfolding infnorm_def Sup_finite_ge_iff[OF infnorm_set_lemma]
- unfolding infnorm_set_image bex_simps
- apply blast
- by (rule abs_ge_zero)
- from real_le_lsqrt[OF dot_pos_le th th1]
- show ?thesis unfolding real_vector_norm_def id_def .
+ unfolding infnorm_set_image bex_simps apply(rule_tac x=i in exI) by auto
+ from real_le_lsqrt[OF inner_ge_zero th th1]
+ show ?thesis unfolding norm_eq_sqrt_inner id_def .
qed
(* Equality in Cauchy-Schwarz and triangle inequalities. *)
@@ -4938,16 +4891,14 @@
hence ?thesis by simp}
moreover
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
- from dot_eq_0[of "norm y *s x - norm x *s y"]
+ from inner_eq_zero_iff[of "norm y *s x - norm x *s y"]
have "?rhs \<longleftrightarrow> (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) = 0)"
using x y
- unfolding dot_rsub dot_lsub dot_lmult dot_rmult
- unfolding norm_pow_2[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: dot_sym)
- apply (simp add: ring_simps)
- apply metis
- done
+ unfolding inner_simps smult_conv_scaleR
+ unfolding power2_norm_eq_inner[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: inner_commute)
+ apply (simp add: ring_simps) by metis
also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y
- by (simp add: ring_simps dot_sym)
+ by (simp add: ring_simps inner_commute)
also have "\<dots> \<longleftrightarrow> ?lhs" using x y
apply simp
by metis
@@ -4969,8 +4920,7 @@
unfolding norm_minus_cancel
norm_mul by blast
also have "\<dots> \<longleftrightarrow> ?lhs"
- unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] dot_lneg
- by arith
+ unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps by auto
finally show ?thesis ..
qed
@@ -4993,8 +4943,8 @@
by arith
also have "\<dots> \<longleftrightarrow> norm x *s y = norm y *s x"
unfolding norm_cauchy_schwarz_eq[symmetric]
- unfolding norm_pow_2 dot_ladd dot_radd
- by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym ring_simps)
+ unfolding power2_norm_eq_inner inner_simps
+ by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute ring_simps)
finally have ?thesis .}
ultimately show ?thesis by blast
qed
@@ -5089,3 +5039,4 @@
done
end
+
\ No newline at end of file