--- a/src/HOL/ex/Tree23.thy Thu Nov 03 11:18:06 2011 +0100
+++ b/src/HOL/ex/Tree23.thy Thu Nov 03 17:40:50 2011 +0100
@@ -315,6 +315,167 @@
lemma ord0_add0: "ord0 t \<Longrightarrow> ord0 (add0 k y t)"
using ord'_add0 [of None t None k y] by (simp add: ord')
+text {* The @{term "del"} function preserves balance. *}
+
+lemma del_extra_simps:
+"l \<noteq> Empty \<or> r \<noteq> Empty \<Longrightarrow>
+ del k (Branch2 l p r) = (case compare k p of
+ LESS => (case del k l of None \<Rightarrow> None |
+ Some(p', (False, l')) => Some(p', (False, Branch2 l' p r))
+ | Some(p', (True, l')) => Some(p', case r of
+ Branch2 rl rp rr => (True, Branch3 l' p rl rp rr)
+ | Branch3 rl rp rm rq rr => (False, Branch2
+ (Branch2 l' p rl) rp (Branch2 rm rq rr))))
+ | or => (case del (if_eq or None k) r of None \<Rightarrow> None |
+ Some(p', (False, r')) => Some(p', (False, Branch2 l (if_eq or p' p) r'))
+ | Some(p', (True, r')) => Some(p', case l of
+ Branch2 ll lp lr => (True, Branch3 ll lp lr (if_eq or p' p) r')
+ | Branch3 ll lp lm lq lr => (False, Branch2
+ (Branch2 ll lp lm) lq (Branch2 lr (if_eq or p' p) r')))))"
+"l \<noteq> Empty \<or> m \<noteq> Empty \<or> r \<noteq> Empty \<Longrightarrow>
+ del k (Branch3 l p m q r) = (case compare k q of
+ LESS => (case compare k p of
+ LESS => (case del k l of None \<Rightarrow> None |
+ Some(p', (False, l')) => Some(p', (False, Branch3 l' p m q r))
+ | Some(p', (True, l')) => Some(p', (False, case (m, r) of
+ (Branch2 ml mp mr, Branch2 _ _ _) => Branch2 (Branch3 l' p ml mp mr) q r
+ | (Branch3 ml mp mm mq mr, _) => Branch3 (Branch2 l' p ml) mp (Branch2 mm mq mr) q r
+ | (Branch2 ml mp mr, Branch3 rl rp rm rq rr) =>
+ Branch3 (Branch2 l' p ml) mp (Branch2 mr q rl) rp (Branch2 rm rq rr))))
+ | or => (case del (if_eq or None k) m of None \<Rightarrow> None |
+ Some(p', (False, m')) => Some(p', (False, Branch3 l (if_eq or p' p) m' q r))
+ | Some(p', (True, m')) => Some(p', (False, case (l, r) of
+ (Branch2 ll lp lr, Branch2 _ _ _) => Branch2 (Branch3 ll lp lr (if_eq or p' p) m') q r
+ | (Branch3 ll lp lm lq lr, _) => Branch3 (Branch2 ll lp lm) lq (Branch2 lr (if_eq or p' p) m') q r
+ | (_, Branch3 rl rp rm rq rr) => Branch3 l (if_eq or p' p) (Branch2 m' q rl) rp (Branch2 rm rq rr)))))
+ | or => (case del (if_eq or None k) r of None \<Rightarrow> None |
+ Some(q', (False, r')) => Some(q', (False, Branch3 l p m (if_eq or q' q) r'))
+ | Some(q', (True, r')) => Some(q', (False, case (l, m) of
+ (Branch2 _ _ _, Branch2 ml mp mr) => Branch2 l p (Branch3 ml mp mr (if_eq or q' q) r')
+ | (_, Branch3 ml mp mm mq mr) => Branch3 l p (Branch2 ml mp mm) mq (Branch2 mr (if_eq or q' q) r')
+ | (Branch3 ll lp lm lq lr, Branch2 ml mp mr) =>
+ Branch3 (Branch2 ll lp lm) lq (Branch2 lr p ml) mp (Branch2 mr (if_eq or q' q) r')))))"
+apply -
+apply (cases l, cases r, simp_all only: del.simps, simp)
+apply (cases l, cases m, cases r, simp_all only: del.simps, simp)
+done
+
+inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where
+"full 0 Empty" |
+"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Branch2 l p r)" |
+"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Branch3 l p m q r)"
+
+inductive_cases full_elims:
+ "full n Empty"
+ "full n (Branch2 l p r)"
+ "full n (Branch3 l p m q r)"
+
+inductive_cases full_0_elim: "full 0 t"
+inductive_cases full_Suc_elim: "full (Suc n) t"
+
+lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Empty"
+ by (auto elim: full_0_elim intro: full.intros)
+
+lemma full_Empty_iff [simp]: "full n Empty \<longleftrightarrow> n = 0"
+ by (auto elim: full_elims intro: full.intros)
+
+lemma full_Suc_Branch2_iff [simp]:
+ "full (Suc n) (Branch2 l p r) \<longleftrightarrow> full n l \<and> full n r"
+ by (auto elim: full_elims intro: full.intros)
+
+lemma full_Suc_Branch3_iff [simp]:
+ "full (Suc n) (Branch3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"
+ by (auto elim: full_elims intro: full.intros)
+
+definition
+ "full_del n k t = (case del k t of None \<Rightarrow> True | Some (p, b, t') \<Rightarrow> full (if b then n else Suc n) t')"
+
+lemmas ord_case = ord.exhaust [where y=y and P="ord_case a b c y", standard]
+lemmas option_ord_case = ord.exhaust [where y=y and P="option_case a b (ord_case d e f y)", standard]
+lemmas option_option_case = option.exhaust [where y=y and P="option_case a b (option_case d e y)", standard]
+lemmas option_prod_case = prod.exhaust [where y=y and P="option_case a b (prod_case c y)", standard]
+lemmas option_bool_case = bool.exhaust [where y=y and P="option_case a b (bool_case c d y)", standard]
+lemmas prod_tree23_case = tree23.exhaust [where y=y and P="prod_case a (tree23_case b c d y)", standard]
+lemmas option_case = option.exhaust [where y=y and P="option_case a b y", standard]
+lemmas full_tree23_case = tree23.exhaust [where y=y and P="full a (tree23_case b c d y)", standard]
+
+lemmas case_intros =
+ option_ord_case option_option_case option_prod_case option_bool_case prod_tree23_case option_case
+ full_tree23_case
+
+lemma full_del: "full (Suc n) t \<Longrightarrow> full_del n k t"
+proof -
+ { fix n :: "nat" and p :: "key \<times> 'a" and l r :: "'a tree23" and k
+ assume "\<And>n. \<lbrakk>compare k p = LESS; full (Suc n) l\<rbrakk> \<Longrightarrow> full_del n k l"
+ and "\<And>n. \<lbrakk>compare k p = EQUAL; full (Suc n) r\<rbrakk> \<Longrightarrow> full_del n (if_eq EQUAL None k) r"
+ and "\<And>n. \<lbrakk>compare k p = GREATER; full (Suc n) r\<rbrakk> \<Longrightarrow> full_del n (if_eq GREATER None k) r"
+ and "full (Suc n) (Branch2 l p r)"
+ hence "full_del n k (Branch2 l p r)"
+ apply clarsimp
+ apply (cases n)
+ apply (cases k)
+ apply (simp add: full_del_def)
+ apply (simp add: full_del_def split: ord.split)
+ apply (simp add: full_del_def)
+ apply (subst del_extra_simps, force)
+ apply (simp | rule case_intros)+
+ done
+ } note A = this
+ { fix n :: "nat" and p q :: "key \<times> 'a" and l m r :: "'a tree23" and k
+ assume "\<And>n. \<lbrakk>compare k q = LESS; compare k p = LESS; full (Suc n) l\<rbrakk> \<Longrightarrow> full_del n k l"
+ and "\<And>n. \<lbrakk>compare k q = LESS; compare k p = EQUAL; full (Suc n) m\<rbrakk> \<Longrightarrow> full_del n (if_eq EQUAL None k) m"
+ and "\<And>n. \<lbrakk>compare k q = LESS; compare k p = GREATER; full (Suc n) m\<rbrakk> \<Longrightarrow> full_del n (if_eq GREATER None k) m"
+ and "\<And>n. \<lbrakk>compare k q = EQUAL; full (Suc n) r\<rbrakk> \<Longrightarrow> full_del n (if_eq EQUAL None k) r"
+ and "\<And>n. \<lbrakk>compare k q = GREATER; full (Suc n) r\<rbrakk> \<Longrightarrow> full_del n (if_eq GREATER None k) r"
+ and "full (Suc n) (Branch3 l p m q r)"
+ hence "full_del n k (Branch3 l p m q r)"
+ apply clarsimp
+ apply (cases n)
+ apply (cases k)
+ apply (simp add: full_del_def)
+ apply (simp add: full_del_def split: ord.split)
+ apply (simp add: full_del_def)
+ apply (subst del_extra_simps, force)
+ apply (simp | rule case_intros)+
+ done
+ } note B = this
+ show "full (Suc n) t \<Longrightarrow> full_del n k t"
+ proof (induct k t arbitrary: n rule: del.induct)
+ { case goal1 thus "full_del n (Some k) Empty"
+ by simp }
+ { case goal2 thus "full_del n None (Branch2 Empty p Empty)"
+ unfolding full_del_def by auto }
+ { case goal3 thus "full_del n None (Branch3 Empty p Empty q Empty)"
+ unfolding full_del_def by auto }
+ { case goal4 thus "full_del n (Some v) (Branch2 Empty p Empty)"
+ unfolding full_del_def by (auto split: ord.split) }
+ { case goal5 thus "full_del n (Some v) (Branch3 Empty p Empty q Empty)"
+ unfolding full_del_def by (auto split: ord.split) }
+ { case goal26 thus ?case by simp }
+ qed (fact A | fact B)+
+qed
+
+lemma full_imp_height: "full n t \<Longrightarrow> height t = n"
+ by (induct set: full, simp_all)
+
+lemma full_imp_bal: "full n t \<Longrightarrow> bal t"
+ by (induct set: full, auto dest: full_imp_height)
+
+lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"
+ by (induct t, simp_all)
+
+lemma bal_iff_full: "bal t \<longleftrightarrow> full (height t) t"
+ using bal_imp_full full_imp_bal ..
+
+lemma bal_del0: "bal t \<Longrightarrow> bal (del0 k t)"
+ unfolding del0_def
+ apply (drule bal_imp_full)
+ apply (case_tac "height t", simp, simp)
+ apply (frule full_del [where k="Some k"])
+ apply (simp add: full_del_def)
+ apply (auto split: option.split elim: full_imp_bal)
+ done
+
text{* This is a little test harness and should be commented out once the
above functions have been proved correct. *}
@@ -327,12 +488,15 @@
text{* Some quick checks: *}
+lemma bal_exec: "bal t \<Longrightarrow> bal (exec as t)"
+ by (induct as t arbitrary: t rule: exec.induct,
+ simp_all add: bal_add0 bal_del0)
+
+lemma "bal(exec as Empty)"
+ by (simp add: bal_exec)
+
lemma "ord0(exec as Empty)"
quickcheck
oops
-lemma "bal(exec as Empty)"
-quickcheck
-oops
-
-end
\ No newline at end of file
+end