--- a/src/HOL/Analysis/Path_Connected.thy Mon Jan 02 20:39:21 2023 +0100
+++ b/src/HOL/Analysis/Path_Connected.thy Mon Jan 02 20:47:09 2023 +0000
@@ -13,30 +13,32 @@
subsection \<open>Paths and Arcs\<close>
definition\<^marker>\<open>tag important\<close> path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"
- where "path g \<longleftrightarrow> continuous_on {0..1} g"
+ where "path g \<equiv> continuous_on {0..1} g"
definition\<^marker>\<open>tag important\<close> pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a"
- where "pathstart g = g 0"
+ where "pathstart g \<equiv> g 0"
definition\<^marker>\<open>tag important\<close> pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a"
- where "pathfinish g = g 1"
+ where "pathfinish g \<equiv> g 1"
definition\<^marker>\<open>tag important\<close> path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set"
- where "path_image g = g ` {0 .. 1}"
+ where "path_image g \<equiv> g ` {0 .. 1}"
definition\<^marker>\<open>tag important\<close> reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> real \<Rightarrow> 'a"
- where "reversepath g = (\<lambda>x. g(1 - x))"
+ where "reversepath g \<equiv> (\<lambda>x. g(1 - x))"
definition\<^marker>\<open>tag important\<close> joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> real \<Rightarrow> 'a"
(infixr "+++" 75)
- where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))"
+ where "g1 +++ g2 \<equiv> (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))"
+
+definition\<^marker>\<open>tag important\<close> loop_free :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"
+ where "loop_free g \<equiv> \<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"
definition\<^marker>\<open>tag important\<close> simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"
- where "simple_path g \<longleftrightarrow>
- path g \<and> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
+ where "simple_path g \<equiv> path g \<and> loop_free g"
definition\<^marker>\<open>tag important\<close> arc :: "(real \<Rightarrow> 'a :: topological_space) \<Rightarrow> bool"
- where "arc g \<longleftrightarrow> path g \<and> inj_on g {0..1}"
+ where "arc g \<equiv> path g \<and> inj_on g {0..1}"
subsection\<^marker>\<open>tag unimportant\<close>\<open>Invariance theorems\<close>
@@ -71,12 +73,8 @@
from linear_injective_left_inverse [OF assms]
obtain h where h: "linear h" "h \<circ> f = id"
by blast
- then have g: "g = h \<circ> (f \<circ> g)"
- by (metis comp_assoc id_comp)
- show ?thesis
- unfolding path_def
- using h assms
- by (metis g continuous_on_compose linear_continuous_on linear_conv_bounded_linear)
+ with assms show ?thesis
+ by (metis comp_assoc id_comp linear_continuous_on linear_linear path_continuous_image)
qed
lemma pathstart_translation: "pathstart((\<lambda>x. a + x) \<circ> g) = a + pathstart g"
@@ -110,21 +108,32 @@
lemma joinpaths_linear_image: "linear f \<Longrightarrow> (f \<circ> g1) +++ (f \<circ> g2) = f \<circ> (g1 +++ g2)"
by (rule ext) (simp add: joinpaths_def)
+lemma loop_free_translation_eq:
+ fixes g :: "real \<Rightarrow> 'a::euclidean_space"
+ shows "loop_free((\<lambda>x. a + x) \<circ> g) = loop_free g"
+ by (simp add: loop_free_def)
+
lemma simple_path_translation_eq:
fixes g :: "real \<Rightarrow> 'a::euclidean_space"
shows "simple_path((\<lambda>x. a + x) \<circ> g) = simple_path g"
- by (simp add: simple_path_def path_translation_eq)
+ by (simp add: simple_path_def loop_free_translation_eq path_translation_eq)
+
+lemma loop_free_linear_image_eq:
+ fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+ assumes "linear f" "inj f"
+ shows "loop_free(f \<circ> g) = loop_free g"
+ using assms inj_on_eq_iff [of f] by (auto simp: loop_free_def)
lemma simple_path_linear_image_eq:
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
assumes "linear f" "inj f"
shows "simple_path(f \<circ> g) = simple_path g"
- using assms inj_on_eq_iff [of f]
- by (auto simp: path_linear_image_eq simple_path_def path_translation_eq)
+ using assms
+ by (simp add: loop_free_linear_image_eq path_linear_image_eq simple_path_def)
lemma arc_translation_eq:
fixes g :: "real \<Rightarrow> 'a::euclidean_space"
- shows "arc((\<lambda>x. a + x) \<circ> g) = arc g"
+ shows "arc((\<lambda>x. a + x) \<circ> g) \<longleftrightarrow> arc g"
by (auto simp: arc_def inj_on_def path_translation_eq)
lemma arc_linear_image_eq:
@@ -161,8 +170,11 @@
lemma continuous_on_path: "path f \<Longrightarrow> t \<subseteq> {0..1} \<Longrightarrow> continuous_on t f"
using continuous_on_subset path_def by blast
+lemma inj_on_imp_loop_free: "inj_on g {0..1} \<Longrightarrow> loop_free g"
+ by (simp add: inj_onD loop_free_def)
+
lemma arc_imp_simple_path: "arc g \<Longrightarrow> simple_path g"
- by (simp add: arc_def inj_on_def simple_path_def)
+ by (simp add: arc_def inj_on_imp_loop_free simple_path_def)
lemma arc_imp_path: "arc g \<Longrightarrow> path g"
using arc_def by blast
@@ -173,9 +185,11 @@
lemma simple_path_imp_path: "simple_path g \<Longrightarrow> path g"
using simple_path_def by blast
+lemma loop_free_cases: "loop_free g \<Longrightarrow> inj_on g {0..1} \<or> pathfinish g = pathstart g"
+ by (force simp: inj_on_def loop_free_def pathfinish_def pathstart_def)
+
lemma simple_path_cases: "simple_path g \<Longrightarrow> arc g \<or> pathfinish g = pathstart g"
- unfolding simple_path_def arc_def inj_on_def pathfinish_def pathstart_def
- by force
+ using arc_def loop_free_cases simple_path_def by blast
lemma simple_path_imp_arc: "simple_path g \<Longrightarrow> pathfinish g \<noteq> pathstart g \<Longrightarrow> arc g"
using simple_path_cases by auto
@@ -250,12 +264,9 @@
lemma path_reversepath [simp]: "path (reversepath g) \<longleftrightarrow> path g"
proof -
have *: "\<And>g. path g \<Longrightarrow> path (reversepath g)"
- unfolding path_def reversepath_def
- apply (rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"])
- apply (auto intro: continuous_intros continuous_on_subset[of "{0..1}"])
- done
- show ?thesis
- using "*" by force
+ by (metis cancel_comm_monoid_add_class.diff_cancel continuous_on_compose
+ continuous_on_op_minus diff_zero image_diff_atLeastAtMost path_def reversepath_o)
+ then show ?thesis by force
qed
lemma arc_reversepath:
@@ -270,10 +281,12 @@
using assms by (clarsimp simp: arc_def intro!: inj_onI) (simp add: inj_onD reversepath_def **)
qed
+lemma loop_free_reversepath:
+ assumes "loop_free g" shows "loop_free(reversepath g)"
+ using assms by (simp add: reversepath_def loop_free_def Ball_def) (smt (verit))
+
lemma simple_path_reversepath: "simple_path g \<Longrightarrow> simple_path (reversepath g)"
- apply (simp add: simple_path_def)
- apply (force simp: reversepath_def)
- done
+ by (simp add: loop_free_reversepath simple_path_def)
lemmas reversepath_simps =
path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath
@@ -362,8 +375,7 @@
by auto
lemma subset_path_image_join:
- assumes "path_image g1 \<subseteq> s"
- and "path_image g2 \<subseteq> s"
+ assumes "path_image g1 \<subseteq> s" and "path_image g2 \<subseteq> s"
shows "path_image (g1 +++ g2) \<subseteq> s"
using path_image_join_subset[of g1 g2] and assms
by auto
@@ -394,8 +406,7 @@
qed
lemma not_in_path_image_join:
- assumes "x \<notin> path_image g1"
- and "x \<notin> path_image g2"
+ assumes "x \<notin> path_image g1" and "x \<notin> path_image g2"
shows "x \<notin> path_image (g1 +++ g2)"
using assms and path_image_join_subset[of g1 g2]
by auto
@@ -421,8 +432,11 @@
\<Longrightarrow> t \<in> {0..1} \<Longrightarrow> (p +++ q) t = (p' +++ q') t"
by (auto simp: joinpaths_def)
+lemma loop_free_inj_on: "loop_free g \<Longrightarrow> inj_on g {0<..<1}"
+ by (force simp: inj_on_def loop_free_def)
+
lemma simple_path_inj_on: "simple_path g \<Longrightarrow> inj_on g {0<..<1}"
- by (auto simp: simple_path_def path_image_def inj_on_def less_eq_real_def Ball_def)
+ using loop_free_inj_on simple_path_def by auto
subsection\<^marker>\<open>tag unimportant\<close>\<open>Simple paths with the endpoints removed\<close>
@@ -435,8 +449,8 @@
using less_eq_real_def by (auto simp: path_image_def pathstart_def pathfinish_def)
show "?rhs \<subseteq> ?lhs"
using assms
- apply (auto simp: simple_path_def path_image_def pathstart_def pathfinish_def Ball_def)
- using less_eq_real_def zero_le_one by blast+
+ apply (simp add: image_subset_iff path_image_def pathstart_def pathfinish_def simple_path_def loop_free_def Ball_def)
+ by (smt (verit))
qed
lemma connected_simple_path_endless:
@@ -470,21 +484,16 @@
lemma continuous_on_joinpaths:
assumes "continuous_on {0..1} g1" "continuous_on {0..1} g2" "pathfinish g1 = pathstart g2"
shows "continuous_on {0..1} (g1 +++ g2)"
-proof -
- have "{0..1::real} = {0..1/2} \<union> {1/2..1}"
- by auto
- then show ?thesis
- using assms by (metis path_def path_join)
-qed
+ using assms path_def path_join by blast
lemma path_join_imp: "\<lbrakk>path g1; path g2; pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> path(g1 +++ g2)"
by simp
-lemma simple_path_join_loop:
+lemma arc_join:
assumes "arc g1" "arc g2"
- "pathfinish g1 = pathstart g2" "pathfinish g2 = pathstart g1"
- "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}"
- shows "simple_path(g1 +++ g2)"
+ "pathfinish g1 = pathstart g2"
+ "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}"
+ shows "arc(g1 +++ g2)"
proof -
have injg1: "inj_on g1 {0..1}"
using assms
@@ -492,6 +501,32 @@
have injg2: "inj_on g2 {0..1}"
using assms
by (simp add: arc_def)
+ have g11: "g1 1 = g2 0"
+ and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g2 0}"
+ using assms
+ by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
+ { fix x and y::real
+ assume xy: "g2 (2 * x - 1) = g1 (2 * y)" "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1"
+ then have "g1 (2 * y) = g2 0"
+ using sb by force
+ then have False
+ using xy inj_onD injg2 by fastforce
+ } note * = this
+ have "inj_on (g1 +++ g2) {0..1}"
+ using inj_onD [OF injg1] inj_onD [OF injg2] *
+ by (simp add: inj_on_def joinpaths_def Ball_def) (smt (verit))
+ then show ?thesis
+ using arc_def assms path_join_imp by blast
+qed
+
+lemma simple_path_join_loop:
+ assumes "arc g1" "arc g2"
+ "pathfinish g1 = pathstart g2" "pathfinish g2 = pathstart g1"
+ "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}"
+ shows "simple_path(g1 +++ g2)"
+proof -
+ have injg1: "inj_on g1 {0..1}" and injg2: "inj_on g2 {0..1}"
+ using assms by (auto simp add: arc_def)
have g12: "g1 1 = g2 0"
and g21: "g2 1 = g1 0"
and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g1 0, g2 0}"
@@ -516,49 +551,12 @@
using g2_eq g12 inj_onD [OF injg2] atLeastAtMost_iff xy(1) xy(4) by fastforce
with xy show False by auto
qed
- } note * = this
- { fix x and y::real
- assume xy: "g1 (2 * x) = g2 (2 * y - 1)" "y \<le> 1" "0 \<le> x" "\<not> y * 2 \<le> 1" "x * 2 \<le> 1"
- then have "x = 0 \<and> y = 1"
- using * xy by force
- } note ** = this
- show ?thesis
- using assms
- apply (simp add: arc_def simple_path_def)
- apply (auto simp: joinpaths_def split: if_split_asm
- dest!: * ** dest: inj_onD [OF injg1] inj_onD [OF injg2])
- done
-qed
-
-lemma arc_join:
- assumes "arc g1" "arc g2"
- "pathfinish g1 = pathstart g2"
- "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}"
- shows "arc(g1 +++ g2)"
-proof -
- have injg1: "inj_on g1 {0..1}"
- using assms
- by (simp add: arc_def)
- have injg2: "inj_on g2 {0..1}"
- using assms
- by (simp add: arc_def)
- have g11: "g1 1 = g2 0"
- and sb: "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g2 0}"
- using assms
- by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
- { fix x and y::real
- assume xy: "g2 (2 * x - 1) = g1 (2 * y)" "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1"
- then have "g1 (2 * y) = g2 0"
- using sb by force
- then have False
- using xy inj_onD injg2 by fastforce
- } note * = this
- show ?thesis
- using assms
- apply (simp add: arc_def inj_on_def)
- apply (auto simp: joinpaths_def arc_imp_path split: if_split_asm
- dest: * *[OF sym] inj_onD [OF injg1] inj_onD [OF injg2])
- done
+ } note * = this
+ have "loop_free(g1 +++ g2)"
+ using inj_onD [OF injg1] inj_onD [OF injg2] *
+ by (simp add: loop_free_def joinpaths_def Ball_def) (smt (verit))
+ then show ?thesis
+ by (simp add: arc_imp_path assms simple_path_def)
qed
lemma reversepath_joinpaths:
@@ -625,7 +623,7 @@
proof -
have *: "\<And>x y. \<lbrakk>0 \<le> x; x \<le> 1; 0 \<le> y; y \<le> 1; (g1 +++ g2) x = (g1 +++ g2) y\<rbrakk>
\<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"
- using assms by (simp add: simple_path_def)
+ using assms by (simp add: simple_path_def loop_free_def)
have "path g1"
using assms path_join simple_path_imp_path by blast
moreover have "inj_on g1 {0..1}"
@@ -646,7 +644,7 @@
fix x y
assume "g2 x = g2 y" "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1"
then show "x = y"
- using * [of "(x + 1) / 2" "(y + 1) / 2"]
+ using * [of "(x+1) / 2" "(y+1) / 2"]
by (force simp: joinpaths_def split_ifs field_split_simps)
qed
ultimately have "arc g2"
@@ -672,19 +670,10 @@
arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}"
(is "?lhs = ?rhs")
proof
- assume ?lhs
- then have "simple_path(g1 +++ g2)" by (rule arc_imp_simple_path)
- then have *: "\<And>x y. \<lbrakk>0 \<le> x; x \<le> 1; 0 \<le> y; y \<le> 1; (g1 +++ g2) x = (g1 +++ g2) y\<rbrakk>
- \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"
- using assms by (simp add: simple_path_def)
- have False if "g1 0 = g2 u" "0 \<le> u" "u \<le> 1" for u
- using * [of 0 "(u + 1) / 2"] that assms arc_distinct_ends [OF \<open>?lhs\<close>]
- by (auto simp: joinpaths_def pathstart_def pathfinish_def split_ifs field_split_simps)
- then have n1: "pathstart g1 \<notin> path_image g2"
- unfolding pathstart_def path_image_def
- using atLeastAtMost_iff by blast
- show ?rhs using \<open>?lhs\<close>
- using \<open>simple_path (g1 +++ g2)\<close> assms n1 simple_path_joinE by auto
+ assume ?lhs then show ?rhs
+ using reversepath_simps assms
+ by (smt (verit, ccfv_threshold) Int_commute arc_distinct_ends arc_imp_simple_path arc_reversepath
+ in_mono insertE pathfinish_join reversepath_joinpaths simple_path_joinE subsetI)
next
assume ?rhs then show ?lhs
using assms
@@ -694,8 +683,7 @@
lemma arc_join_eq_alt:
"pathfinish g1 = pathstart g2
\<Longrightarrow> (arc(g1 +++ g2) \<longleftrightarrow>
- arc g1 \<and> arc g2 \<and>
- path_image g1 \<inter> path_image g2 = {pathstart g2})"
+ arc g1 \<and> arc g2 \<and> path_image g1 \<inter> path_image g2 = {pathstart g2})"
using pathfinish_in_path_image by (fastforce simp: arc_join_eq)
@@ -791,11 +779,10 @@
assumes "path g" "u \<in> {0..1}" "v \<in> {0..1}"
shows "path(subpath u v g)"
proof -
- have "continuous_on {0..1} (g \<circ> (\<lambda>x. ((v-u) * x+ u)))"
- using assms
- apply (intro continuous_intros; simp add: image_affinity_atLeastAtMost [where c=u])
- apply (auto simp: path_def continuous_on_subset)
- done
+ have "continuous_on {u..v} g" "continuous_on {v..u} g"
+ using assms continuous_on_path by fastforce+
+ then have "continuous_on {0..1} (g \<circ> (\<lambda>x. ((v-u) * x+ u)))"
+ by (intro continuous_intros; simp add: image_affinity_atLeastAtMost [where c=u])
then show ?thesis
by (simp add: path_def subpath_def)
qed
@@ -847,7 +834,7 @@
then have p: "path (\<lambda>x. g ((v - u) * x + u))"
and sim: "(\<And>x y. \<lbrakk>x\<in>{0..1}; y\<in>{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\<rbrakk>
\<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
- by (auto simp: simple_path_def subpath_def)
+ by (auto simp: simple_path_def loop_free_def subpath_def)
{ fix x y
assume "x \<in> closed_segment u v" "y \<in> closed_segment u v" "g x = g y"
then have "x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u"
@@ -871,45 +858,13 @@
have [simp]: "\<And>x. u + x * v = v + x * u \<longleftrightarrow> u=v \<or> x=1"
by algebra
show ?lhs using psp ne
- unfolding simple_path_def subpath_def
+ unfolding simple_path_def loop_free_def subpath_def
by (fastforce simp add: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)
qed
lemma arc_subpath_eq:
"arc(subpath u v g) \<longleftrightarrow> path(subpath u v g) \<and> u\<noteq>v \<and> inj_on g (closed_segment u v)"
- (is "?lhs = ?rhs")
-proof
- assume ?lhs
- then have p: "path (\<lambda>x. g ((v - u) * x + u))"
- and sim: "(\<And>x y. \<lbrakk>x\<in>{0..1}; y\<in>{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\<rbrakk>
- \<Longrightarrow> x = y)"
- by (auto simp: arc_def inj_on_def subpath_def)
- { fix x y
- assume "x \<in> closed_segment u v" "y \<in> closed_segment u v" "g x = g y"
- then have "x = y"
- using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p
- by (cases "v = u")
- (simp_all split: if_split_asm add: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost,
- simp add: field_simps)
- } moreover
- have "path(subpath u v g) \<and> u\<noteq>v"
- using sim [of "1/3" "2/3"] p
- by (auto simp: subpath_def)
- ultimately show ?rhs
- unfolding inj_on_def
- by metis
-next
- assume ?rhs
- then
- have d1: "\<And>x y. \<lbrakk>g x = g y; u \<le> x; x \<le> v; u \<le> y; y \<le> v\<rbrakk> \<Longrightarrow> x = y"
- and d2: "\<And>x y. \<lbrakk>g x = g y; v \<le> x; x \<le> u; v \<le> y; y \<le> u\<rbrakk> \<Longrightarrow> x = y"
- and ne: "u < v \<or> v < u"
- and psp: "path (subpath u v g)"
- by (auto simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost)
- show ?lhs using psp ne
- unfolding arc_def subpath_def inj_on_def
- by (auto simp: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)
-qed
+ by (smt (verit, best) arc_simple_path closed_segment_commute ends_in_segment(2) inj_on_def pathfinish_subpath pathstart_subpath simple_path_subpath_eq)
lemma simple_path_subpath:
@@ -917,7 +872,7 @@
shows "simple_path(subpath u v g)"
using assms
apply (simp add: simple_path_subpath_eq simple_path_imp_path)
- apply (simp add: simple_path_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce)
+ apply (simp add: simple_path_def loop_free_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce)
done
lemma arc_simple_path_subpath:
@@ -930,7 +885,7 @@
lemma arc_simple_path_subpath_interior:
"\<lbrakk>simple_path g; u \<in> {0..1}; v \<in> {0..1}; u \<noteq> v; \<bar>u-v\<bar> < 1\<rbrakk> \<Longrightarrow> arc(subpath u v g)"
- by (force simp: simple_path_def intro: arc_simple_path_subpath)
+ by (force simp: simple_path_def loop_free_def intro: arc_simple_path_subpath)
lemma path_image_subpath_subset:
"\<lbrakk>u \<in> {0..1}; v \<in> {0..1}\<rbrakk> \<Longrightarrow> path_image(subpath u v g) \<subseteq> path_image g"
@@ -1065,17 +1020,8 @@
assumes S: "closed S" and g: "path g" and g0: "pathstart g \<in> S" and g1: "pathfinish g \<notin> S"
obtains h where "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g \<inter> S"
"pathfinish h \<in> frontier S"
-proof -
- obtain h where h: "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g"
- "path_image h - {pathfinish h} \<subseteq> interior S"
- "pathfinish h \<in> frontier S"
- using exists_path_subpath_to_frontier [OF g _ g1] closure_closed [OF S] g0 by auto
- show ?thesis
- proof
- show "path_image h \<subseteq> path_image g \<inter> S"
- using assms h interior_subset [of S] by (auto simp: frontier_def)
- qed (use h in auto)
-qed
+ by (smt (verit, del_insts) Diff_iff Int_iff S closure_closed exists_path_subpath_to_frontier
+ frontier_def g g0 g1 interior_subset singletonD subset_eq)
subsection \<open>Shift Path to Start at Some Given Point\<close>
@@ -1121,8 +1067,7 @@
have *: "{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}"
using assms(3) by auto
have **: "\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)"
- using assms(2)[unfolded pathfinish_def pathstart_def]
- by auto
+ by (smt (verit, best) assms(2) pathfinish_def pathstart_def)
show ?thesis
unfolding path_def shiftpath_def *
proof (rule continuous_on_closed_Un)
@@ -1175,20 +1120,21 @@
by (auto simp: image_iff)
qed
+lemma loop_free_shiftpath:
+ assumes "loop_free g" "pathfinish g = pathstart g" and a: "0 \<le> a" "a \<le> 1"
+ shows "loop_free (shiftpath a g)"
+ unfolding loop_free_def
+proof (intro conjI impI ballI)
+ show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"
+ if "x \<in> {0..1}" "y \<in> {0..1}" "shiftpath a g x = shiftpath a g y" for x y
+ using that a assms unfolding shiftpath_def loop_free_def
+ by (smt (verit, ccfv_threshold) atLeastAtMost_iff)
+qed
+
lemma simple_path_shiftpath:
assumes "simple_path g" "pathfinish g = pathstart g" and a: "0 \<le> a" "a \<le> 1"
- shows "simple_path (shiftpath a g)"
- unfolding simple_path_def
-proof (intro conjI impI ballI)
- show "path (shiftpath a g)"
- by (simp add: assms path_shiftpath simple_path_imp_path)
- have *: "\<And>x y. \<lbrakk>g x = g y; x \<in> {0..1}; y \<in> {0..1}\<rbrakk> \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"
- using assms by (simp add: simple_path_def)
- show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"
- if "x \<in> {0..1}" "y \<in> {0..1}" "shiftpath a g x = shiftpath a g y" for x y
- using that a unfolding shiftpath_def
- by (force split: if_split_asm dest!: *)
-qed
+ shows "simple_path (shiftpath a g)"
+ using assms loop_free_shiftpath path_shiftpath simple_path_def by fastforce
subsection \<open>Straight-Line Paths\<close>
@@ -1281,14 +1227,7 @@
lemma inj_on_linepath:
assumes "a \<noteq> b" shows "inj_on (linepath a b) {0..1}"
-proof (clarsimp simp: inj_on_def linepath_def)
- fix x y
- assume "(1 - x) *\<^sub>R a + x *\<^sub>R b = (1 - y) *\<^sub>R a + y *\<^sub>R b" "0 \<le> x" "x \<le> 1" "0 \<le> y" "y \<le> 1"
- then have "x *\<^sub>R (a - b) = y *\<^sub>R (a - b)"
- by (auto simp: algebra_simps)
- then show "x=y"
- using assms by auto
-qed
+ using arc_imp_inj_on arc_linepath assms by blast
lemma linepath_le_1:
fixes a::"'a::linordered_idom" shows "\<lbrakk>a \<le> 1; b \<le> 1; 0 \<le> u; u \<le> 1\<rbrakk> \<Longrightarrow> (1 - u) * a + u * b \<le> 1"
@@ -1303,16 +1242,11 @@
lemma linepath_in_convex_hull:
fixes x::real
- assumes a: "a \<in> convex hull S"
- and b: "b \<in> convex hull S"
- and x: "0\<le>x" "x\<le>1"
+ assumes "a \<in> convex hull S"
+ and "b \<in> convex hull S"
+ and "0\<le>x" "x\<le>1"
shows "linepath a b x \<in> convex hull S"
-proof -
- have "linepath a b x \<in> closed_segment a b"
- using x by (auto simp flip: linepath_image_01)
- then show ?thesis
- using a b convex_contains_segment by blast
-qed
+ by (meson assms atLeastAtMost_iff convex_contains_segment convex_convex_hull linepath_in_path subset_eq)
lemma Re_linepath: "Re(linepath (of_real a) (of_real b) x) = (1 - x)*a + x*b"
by (simp add: linepath_def)
@@ -1358,12 +1292,7 @@
lemma midpoints_in_convex_hull:
assumes "x \<in> convex hull s" "y \<in> convex hull s"
shows "midpoint x y \<in> convex hull s"
-proof -
- have "(1 - inverse(2)) *\<^sub>R x + inverse(2) *\<^sub>R y \<in> convex hull s"
- by (rule convexD_alt) (use assms in auto)
- then show ?thesis
- by (simp add: midpoint_def algebra_simps)
-qed
+ using assms closed_segment_subset_convex_hull csegment_midpoint_subset by blast
lemma not_in_interior_convex_hull_3:
fixes a :: "complex"
@@ -1381,27 +1310,18 @@
lemma continuous_IVT_local_extremum:
fixes f :: "'a::euclidean_space \<Rightarrow> real"
assumes contf: "continuous_on (closed_segment a b) f"
- and "a \<noteq> b" "f a = f b"
+ and ab: "a \<noteq> b" "f a = f b"
obtains z where "z \<in> open_segment a b"
"(\<forall>w \<in> closed_segment a b. (f w) \<le> (f z)) \<or>
(\<forall>w \<in> closed_segment a b. (f z) \<le> (f w))"
proof -
obtain c where "c \<in> closed_segment a b" and c: "\<And>y. y \<in> closed_segment a b \<Longrightarrow> f y \<le> f c"
using continuous_attains_sup [of "closed_segment a b" f] contf by auto
+ moreover
obtain d where "d \<in> closed_segment a b" and d: "\<And>y. y \<in> closed_segment a b \<Longrightarrow> f d \<le> f y"
using continuous_attains_inf [of "closed_segment a b" f] contf by auto
- show ?thesis
- proof (cases "c \<in> open_segment a b \<or> d \<in> open_segment a b")
- case True
- then show ?thesis
- using c d that by blast
- next
- case False
- then have "(c = a \<or> c = b) \<and> (d = a \<or> d = b)"
- by (simp add: \<open>c \<in> closed_segment a b\<close> \<open>d \<in> closed_segment a b\<close> open_segment_def)
- with \<open>a \<noteq> b\<close> \<open>f a = f b\<close> c d show ?thesis
- by (rule_tac z = "midpoint a b" in that) (fastforce+)
- qed
+ ultimately show ?thesis
+ by (smt (verit) UnE ab closed_segment_eq_open empty_iff insert_iff midpoint_in_open_segment that)
qed
text\<open>An injective map into R is also an open map w.r.T. the universe, and conversely. \<close>
@@ -1483,14 +1403,8 @@
assumes "path g"
and "z \<notin> path_image g"
shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}"
-proof -
- obtain e where "ball z e \<inter> path_image g = {}" "e > 0"
- using not_on_path_ball[OF assms] by auto
- moreover have "cball z (e/2) \<subseteq> ball z e"
- using \<open>e > 0\<close> by auto
- ultimately show ?thesis
- by (rule_tac x="e/2" in exI) auto
-qed
+ by (smt (verit, ccfv_threshold) open_ball assms centre_in_ball inf.orderE inf_assoc
+ inf_bot_right not_on_path_ball open_contains_cball_eq)
subsection \<open>Path component\<close>
@@ -1538,8 +1452,7 @@
lemma path_component_linepath:
fixes S :: "'a::real_normed_vector set"
shows "closed_segment a b \<subseteq> S \<Longrightarrow> path_component S a b"
- unfolding path_component_def
- by (rule_tac x="linepath a b" in exI, auto)
+ unfolding path_component_def by fastforce
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Path components as sets\<close>
@@ -1605,7 +1518,7 @@
assume as: "open e1" "open e2" "S \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> S = {}" "e1 \<inter> S \<noteq> {}" "e2 \<inter> S \<noteq> {}"
then obtain x1 x2 where obt:"x1 \<in> e1 \<inter> S" "x2 \<in> e2 \<inter> S"
by auto
- then obtain g where g: "path g" "path_image g \<subseteq> S" "pathstart g = x1" "pathfinish g = x2"
+ then obtain g where g: "path g" "path_image g \<subseteq> S" and pg: "pathstart g = x1" "pathfinish g = x2"
using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto
have *: "connected {0..1::real}"
by (auto intro!: convex_connected)
@@ -1616,9 +1529,7 @@
unfolding subset_eq
by auto
moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}"
- using g(3,4)[unfolded path_defs]
- using obt
- by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl)
+ by (smt (verit, ccfv_threshold) IntE atLeastAtMost_iff empty_iff pg mem_Collect_eq obt pathfinish_def pathstart_def)
ultimately show False
using *[unfolded connected_local not_ex, rule_format,
of "{0..1} \<inter> g -` e1" "{0..1} \<inter> g -` e2"]
@@ -1632,18 +1543,8 @@
assumes "open S"
shows "open (path_component_set S x)"
unfolding open_contains_ball
-proof
- fix y
- assume as: "y \<in> path_component_set S x"
- then have "y \<in> S"
- by (simp add: path_component_mem(2))
- then obtain e where e: "e > 0" "ball y e \<subseteq> S"
- using assms openE by blast
-have "\<And>u. dist y u < e \<Longrightarrow> path_component S x u"
- by (metis (full_types) as centre_in_ball convex_ball convex_imp_path_connected e mem_Collect_eq mem_ball path_component_eq path_component_of_subset path_connected_component)
- then show "\<exists>e > 0. ball y e \<subseteq> path_component_set S x"
- using \<open>e>0\<close> by auto
-qed
+ by (metis assms centre_in_ball convex_ball convex_imp_path_connected equals0D openE
+ path_component_eq path_component_eq_empty path_component_maximal)
lemma open_non_path_component:
fixes S :: "'a::real_normed_vector set"
@@ -1660,14 +1561,8 @@
show "\<And>x. x \<in> ball y e \<Longrightarrow> x \<in> S"
using e by blast
show False if "z \<in> ball y e" "z \<in> path_component_set S x" for z
- proof -
- have "y \<in> path_component_set S z"
- by (meson assms convex_ball convex_imp_path_connected e open_contains_ball_eq open_path_component path_component_maximal that(1))
- then have "y \<in> path_component_set S x"
- using path_component_eq that(2) by blast
- then show False
- using y by blast
- qed
+ by (metis (no_types, lifting) Diff_iff centre_in_ball convex_ball convex_imp_path_connected
+ path_component_eq path_component_maximal subsetD that y e)
qed (use e in auto)
qed
@@ -1688,8 +1583,8 @@
by auto
ultimately
show False
- using \<open>y \<in> S\<close> open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]
- using assms(2)[unfolded connected_def not_ex, rule_format,
+ using \<open>y \<in> S\<close> open_non_path_component[OF \<open>open S\<close>] open_path_component[OF \<open>open S\<close>]
+ using \<open>connected S\<close>[unfolded connected_def not_ex, rule_format,
of "path_component_set S x" "S - path_component_set S x"]
by auto
qed
@@ -1700,16 +1595,14 @@
and "path_connected S"
shows "path_connected (f ` S)"
unfolding path_connected_def
-proof (rule, rule)
- fix x' y'
- assume "x' \<in> f ` S" "y' \<in> f ` S"
- then obtain x y where x: "x \<in> S" and y: "y \<in> S" and x': "x' = f x" and y': "y' = f y"
- by auto
- from x y obtain g where "path g \<and> path_image g \<subseteq> S \<and> pathstart g = x \<and> pathfinish g = y"
- using assms(2)[unfolded path_connected_def] by fast
- then show "\<exists>g. path g \<and> path_image g \<subseteq> f ` S \<and> pathstart g = x' \<and> pathfinish g = y'"
- unfolding x' y' path_defs
- by (fastforce intro: continuous_on_compose continuous_on_subset[OF contf])
+proof clarsimp
+ fix x y
+ assume x: "x \<in> S" and y: "y \<in> S"
+ with \<open>path_connected S\<close>
+ show "\<exists>g. path g \<and> path_image g \<subseteq> f ` S \<and> pathstart g = f x \<and> pathfinish g = f y"
+ unfolding path_defs path_connected_def
+ using continuous_on_subset[OF contf]
+ by (smt (verit, ccfv_threshold) continuous_on_compose2 image_eqI image_subset_iff)
qed
lemma path_connected_translationI:
@@ -1759,25 +1652,9 @@
assume x: "x \<in> S \<union> T" and y: "y \<in> S \<union> T"
from assms obtain z where z: "z \<in> S" "z \<in> T"
by auto
- show "path_component (S \<union> T) x y"
- using x y
- proof safe
- assume "x \<in> S" "y \<in> S"
- then show "path_component (S \<union> T) x y"
- by (meson Un_upper1 \<open>path_connected S\<close> path_component_of_subset path_connected_component)
- next
- assume "x \<in> S" "y \<in> T"
- then show "path_component (S \<union> T) x y"
- by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component)
- next
- assume "x \<in> T" "y \<in> S"
- then show "path_component (S \<union> T) x y"
- by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component)
- next
- assume "x \<in> T" "y \<in> T"
- then show "path_component (S \<union> T) x y"
- by (metis Un_upper1 assms(2) path_component_of_subset path_connected_component sup_commute)
- qed
+ with x y show "path_component (S \<union> T) x y"
+ by (smt (verit) assms(1,2) in_mono mem_Collect_eq path_component_eq path_component_maximal
+ sup.bounded_iff sup.cobounded2 sup_ge1)
qed
lemma path_connected_UNION:
@@ -1791,7 +1668,7 @@
then have "path_component (S i) x z" and "path_component (S j) z y"
using assms by (simp_all add: path_connected_component)
then have "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y"
- using *(1,3) by (auto elim!: path_component_of_subset [rotated])
+ using *(1,3) by (meson SUP_upper path_component_of_subset)+
then show "path_component (\<Union>i\<in>A. S i) x y"
by (rule path_component_trans)
qed
@@ -1821,26 +1698,31 @@
by (meson path_component_path_image_pathstart path_component_sym path_component_trans)
lemma path_connected_path_component [simp]:
- "path_connected (path_component_set s x)"
-proof -
- { fix y z
- assume pa: "path_component s x y" "path_component s x z"
- then have pae: "path_component_set s x = path_component_set s y"
- using path_component_eq by auto
- have yz: "path_component s y z"
- using pa path_component_sym path_component_trans by blast
- then have "\<exists>g. path g \<and> path_image g \<subseteq> path_component_set s x \<and> pathstart g = y \<and> pathfinish g = z"
- apply (simp add: path_component_def)
- by (metis pae path_component_maximal path_connected_path_image pathstart_in_path_image)
- }
- then show ?thesis
- by (simp add: path_connected_def)
+ "path_connected (path_component_set S x)"
+proof (clarsimp simp: path_connected_def)
+ fix y z
+ assume pa: "path_component S x y" "path_component S x z"
+ then have pae: "path_component_set S x = path_component_set S y"
+ using path_component_eq by auto
+ obtain g where g: "path g \<and> path_image g \<subseteq> S \<and> pathstart g = y \<and> pathfinish g = z"
+ using pa path_component_sym path_component_trans path_component_def by metis
+ then have "path_image g \<subseteq> path_component_set S x"
+ using pae path_component_maximal path_connected_path_image by blast
+ then show "\<exists>g. path g \<and> path_image g \<subseteq> path_component_set S x \<and>
+ pathstart g = y \<and> pathfinish g = z"
+ using g by blast
qed
-lemma path_component: "path_component S x y \<longleftrightarrow> (\<exists>t. path_connected t \<and> t \<subseteq> S \<and> x \<in> t \<and> y \<in> t)"
- apply (intro iffI)
- apply (metis path_connected_path_image path_defs(5) pathfinish_in_path_image pathstart_in_path_image)
- using path_component_of_subset path_connected_component by blast
+lemma path_component:
+ "path_component S x y \<longleftrightarrow> (\<exists>t. path_connected t \<and> t \<subseteq> S \<and> x \<in> t \<and> y \<in> t)"
+ (is "?lhs = ?rhs")
+proof
+ assume ?lhs then show ?rhs
+ by (metis path_component_def path_connected_path_image pathfinish_in_path_image pathstart_in_path_image)
+next
+ assume ?rhs then show ?lhs
+ by (meson path_component_of_subset path_connected_component)
+qed
lemma path_component_path_component [simp]:
"path_component_set (path_component_set S x) x = path_component_set S x"
@@ -1976,9 +1858,7 @@
lemma Union_path_component [simp]:
"Union {path_component_set S x |x. x \<in> S} = S"
-apply (rule subset_antisym)
-using path_component_subset apply force
-using path_component_refl by auto
+ using path_component_subset path_component_refl by blast
lemma path_component_disjoint:
"disjnt (path_component_set S a) (path_component_set S b) \<longleftrightarrow>
@@ -2244,27 +2124,21 @@
lemma path_components_of_maximal:
"\<lbrakk>C \<in> path_components_of X; path_connectedin X S; ~disjnt C S\<rbrakk> \<Longrightarrow> S \<subseteq> C"
- apply (auto simp: path_components_of_def path_component_of_equiv)
- using path_component_of_maximal path_connectedin_def apply fastforce
- by (meson disjnt_subset2 path_component_of_disjoint path_component_of_equiv path_component_of_maximal)
+ by (smt (verit, ccfv_SIG) disjnt_iff imageE mem_Collect_eq path_component_of_equiv
+ path_component_of_maximal path_components_of_def)
lemma pairwise_disjoint_path_components_of:
"pairwise disjnt (path_components_of X)"
by (auto simp: path_components_of_def pairwise_def path_component_of_disjoint path_component_of_equiv)
lemma complement_path_components_of_Union:
- "C \<in> path_components_of X
- \<Longrightarrow> topspace X - C = \<Union>(path_components_of X - {C})"
- by (metis Diff_cancel Diff_subset Union_path_components_of cSup_singleton diff_Union_pairwise_disjoint insert_subset pairwise_disjoint_path_components_of)
+ "C \<in> path_components_of X \<Longrightarrow> topspace X - C = \<Union>(path_components_of X - {C})"
+ by (metis Union_path_components_of bot.extremum ccpo_Sup_singleton diff_Union_pairwise_disjoint
+ insert_subsetI pairwise_disjoint_path_components_of)
lemma nonempty_path_components_of:
assumes "C \<in> path_components_of X" shows "C \<noteq> {}"
-proof -
- have "C \<in> path_component_of_set X ` topspace X"
- using assms path_components_of_def by blast
- then show ?thesis
- using path_component_of_refl by fastforce
-qed
+ by (metis assms imageE path_component_of_eq_empty path_components_of_def)
lemma path_components_of_subset: "C \<in> path_components_of X \<Longrightarrow> C \<subseteq> topspace X"
by (auto simp: path_components_of_def path_component_of_equiv)
@@ -2324,18 +2198,8 @@
next
case False
have "(path_components_of X = {S}) \<longleftrightarrow> (path_connected_space X \<and> topspace X = S)"
- proof (intro iffI conjI)
- assume L: "path_components_of X = {S}"
- then show "path_connected_space X"
- by (simp add: path_connected_space_iff_components_eq)
- show "topspace X = S"
- by (metis L ccpo_Sup_singleton [of S] Union_path_components_of)
- next
- assume R: "path_connected_space X \<and> topspace X = S"
- then show "path_components_of X = {S}"
- using ccpo_Sup_singleton [of S]
- by (metis False all_not_in_conv insert_iff mk_disjoint_insert path_component_in_path_components_of path_connected_space_iff_components_eq path_connected_space_path_component_set)
- qed
+ by (metis False Set.set_insert ex_in_conv insert_iff path_component_in_path_components_of
+ path_connected_space_iff_components_eq path_connected_space_path_component_set)
with False show ?thesis
by (simp add: path_components_of_eq_empty subset_singleton_iff)
qed
@@ -2367,22 +2231,7 @@
lemma exists_path_component_of_superset:
assumes S: "path_connectedin X S" and ne: "topspace X \<noteq> {}"
obtains C where "C \<in> path_components_of X" "S \<subseteq> C"
-proof (cases "S = {}")
- case True
- then show ?thesis
- using ne path_components_of_eq_empty that by fastforce
-next
- case False
- then obtain a where "a \<in> S"
- by blast
- show ?thesis
- proof
- show "Collect (path_component_of X a) \<in> path_components_of X"
- by (meson \<open>a \<in> S\<close> S subsetD path_component_in_path_components_of path_connectedin_subset_topspace)
- show "S \<subseteq> Collect (path_component_of X a)"
- by (simp add: S \<open>a \<in> S\<close> path_component_of_maximal)
- qed
-qed
+ by (metis S ne ex_in_conv path_component_in_path_components_of path_component_of_maximal path_component_of_subset_topspace subset_eq that)
lemma path_component_of_eq_overlap:
"path_component_of X x = path_component_of X y \<longleftrightarrow>
@@ -2444,8 +2293,8 @@
have "Collect (path_component_of Y (f x)) \<subseteq> topspace Y"
by (simp add: path_component_of_subset_topspace)
moreover have "g ` Collect(path_component_of Y (f x)) \<subseteq> Collect (path_component_of X (g (f x)))"
- using g x unfolding homeomorphic_maps_def
- by (metis f homeomorphic_imp_surjective_map imageI mem_Collect_eq path_component_of_maximal path_component_of_refl path_connectedin_continuous_map_image path_connectedin_path_component_of)
+ using f g x unfolding homeomorphic_maps_def
+ by (metis image_Collect_subsetI image_eqI mem_Collect_eq path_component_of_equiv path_component_of_maximal path_connectedin_continuous_map_image path_connectedin_path_component_of)
ultimately show "Collect (path_component_of Y (f x)) \<subseteq> f ` Collect (path_component_of X x)"
using g x unfolding homeomorphic_maps_def continuous_map_def image_iff subset_iff
by metis
@@ -2460,7 +2309,6 @@
lemma homeomorphic_map_path_components_of:
assumes "homeomorphic_map X Y f"
shows "path_components_of Y = (image f) ` (path_components_of X)"
- (is "?lhs = ?rhs")
unfolding path_components_of_def homeomorphic_imp_surjective_map [OF assms, symmetric]
using assms homeomorphic_map_path_component_of by fastforce
@@ -2527,11 +2375,11 @@
proof (cases r "0::real" rule: linorder_cases)
case less
then show ?thesis
- by (simp)
+ by simp
next
case equal
then show ?thesis
- by (simp)
+ by simp
next
case greater
then have eq: "(sphere (0::'a) r) = (\<lambda>x. (r / norm x) *\<^sub>R x) ` (- {0::'a})"
@@ -2712,10 +2560,13 @@
case empty
show ?case using \<open>connected S\<close> by simp
next
- case (insert x F)
- then have "connected (S-F)" by auto
- moreover have "open (S - F)" using finite_imp_closed[OF \<open>finite F\<close>] \<open>open S\<close> by auto
- ultimately have "connected (S - F - {x})" using connected_open_delete[OF _ _ 2] by auto
+ case (insert x T)
+ then have "connected (S-T)"
+ by auto
+ moreover have "open (S - T)"
+ using finite_imp_closed[OF \<open>finite T\<close>] \<open>open S\<close> by auto
+ ultimately have "connected (S - T - {x})"
+ using connected_open_delete[OF _ _ 2] by auto
thus ?case by (metis Diff_insert)
qed
@@ -2755,13 +2606,8 @@
fixes a :: "'a :: euclidean_space"
assumes "DIM('a) = 1" and "r > 0"
obtains x y where "sphere a r = {x,y} \<and> dist x y = 2*r"
-proof -
- have "sphere a r = (+) a ` sphere 0 r"
- by (metis add.right_neutral sphere_translation)
- then show ?thesis
- using sphere_1D_doubleton_zero [OF assms]
- by (metis (mono_tags, lifting) dist_add_cancel image_empty image_insert that)
-qed
+ using sphere_1D_doubleton_zero [OF assms] dist_add_cancel image_empty image_insert
+ by (metis (no_types, opaque_lifting) add.right_neutral sphere_translation)
lemma psubset_sphere_Compl_connected:
fixes S :: "'a::euclidean_space set"
@@ -2779,8 +2625,7 @@
moreover have "connected {x. dist a x \<le> r \<and> x \<notin> S}"
using assms
by (force intro: connected_intermediate_closure [of "ball a r"])
- moreover
- have "connected {x. r \<le> dist a x \<and> x \<notin> S}"
+ moreover have "connected {x. r \<le> dist a x \<and> x \<notin> S}"
proof (rule connected_intermediate_closure [of "- cball a r"])
show "{x. r \<le> dist a x \<and> x \<notin> S} \<subseteq> closure (- cball a r)"
using interior_closure by (force intro: connected_complement_bounded_convex)
@@ -2871,12 +2716,8 @@
assumes x: "x \<in> S" and S: "open S"
shows "x \<in> closure (connected_component_set S y) \<longleftrightarrow> x \<in> connected_component_set S y"
proof -
- { assume "x \<in> closure (connected_component_set S y)"
- moreover have "x \<in> connected_component_set S x"
- using x by simp
- ultimately have "x \<in> connected_component_set S y"
- using S by (meson Compl_disjoint closure_iff_nhds_not_empty connected_component_disjoint disjoint_eq_subset_Compl open_connected_component)
- }
+ have "x islimpt connected_component_set S y \<Longrightarrow> connected_component S y x"
+ by (metis (no_types, lifting) S connected_component_eq connected_component_refl islimptE mem_Collect_eq open_connected_component x)
then show ?thesis
by (auto simp: closure_def)
qed
@@ -2902,10 +2743,8 @@
from connectedD [OF \<open>connected S\<close> 1 2 4 3]
have "S \<inter> \<Union>(B-{T}) = {}"
by (auto simp: Int_commute \<open>S \<inter> T \<noteq> {}\<close>)
- with \<open>T \<in> B\<close> have "S \<subseteq> T"
- using "3" by auto
- show ?thesis
- using \<open>S \<inter> \<Union>(B - {T}) = {}\<close> \<open>S \<subseteq> T\<close> \<open>T \<in> B\<close> that by auto
+ with \<open>T \<in> B\<close> 3 that show ?thesis
+ by (metis IntI UnE empty_iff subsetD subsetI)
qed
lemma connected_disjoint_Union_open_subset:
@@ -2934,7 +2773,7 @@
and SB: "\<And>S. S \<in> B \<Longrightarrow> open S \<and> connected S \<and> S \<noteq> {}"
and eq [simp]: "\<Union>A = \<Union>B"
shows "A = B"
-by (rule subset_antisym; metis connected_disjoint_Union_open_subset assms)
+by (metis subset_antisym connected_disjoint_Union_open_subset assms)
proposition components_open_unique:
fixes S :: "'a::real_normed_vector set"
@@ -2997,11 +2836,9 @@
then have *: "\<And>x. B \<le> norm x \<Longrightarrow> x \<in> S"
by (force simp: ball_def dist_norm)
obtain x' where x': "connected_component S x x'" "norm x' > B"
- using bo [unfolded bounded_def dist_norm, simplified, rule_format]
- by (metis diff_zero norm_minus_commute not_less)
+ using B(1) bo(1) bounded_pos by force
obtain y' where y': "connected_component S y y'" "norm y' > B"
- using bo [unfolded bounded_def dist_norm, simplified, rule_format]
- by (metis diff_zero norm_minus_commute not_less)
+ using B(1) bo(2) bounded_pos by force
have x'y': "connected_component S x' y'"
unfolding connected_component_def
proof (intro exI conjI)
@@ -3009,11 +2846,8 @@
using assms by (auto intro: connected_complement_bounded_convex)
qed (use x' y' dist_norm * in auto)
show ?thesis
- proof (rule connected_component_eq)
- show "x \<in> connected_component_set S y"
using x' y' x'y'
- by (metis (no_types) connected_component_eq_eq connected_component_in mem_Collect_eq)
- qed
+ by (metis connected_component_eq mem_Collect_eq)
qed
lemma cobounded_unbounded_components:
@@ -3087,12 +2921,8 @@
fixes u::real
assumes "x \<ge> B" "y \<ge> B" "0 \<le> u" "u \<le> 1"
shows "(1 - u) * x + u * y \<ge> B"
-proof -
- obtain dx dy where "dx \<ge> 0" "dy \<ge> 0" "x = B + dx" "y = B + dy"
- using assms by auto (metis add.commute diff_add_cancel)
- with \<open>0 \<le> u\<close> \<open>u \<le> 1\<close> show ?thesis
- by (simp add: add_increasing2 mult_left_le field_simps)
-qed
+ by (smt (verit) assms convex_bound_le ge_iff_diff_ge_0 minus_add_distrib
+ mult_minus_right neg_le_iff_le)
lemma cobounded_outside:
fixes S :: "'a :: real_normed_vector set"
@@ -3150,7 +2980,7 @@
lemma connected_outside:
fixes S :: "'a::euclidean_space set"
assumes "bounded S" "2 \<le> DIM('a)"
- shows "connected(outside S)"
+ shows "connected(outside S)"
apply (clarsimp simp add: connected_iff_connected_component outside)
apply (rule_tac S="connected_component_set (- S) x" in connected_component_of_subset)
apply (metis (no_types) assms cobounded_unbounded_component cobounded_unique_unbounded_component connected_component_eq_eq connected_component_idemp double_complement mem_Collect_eq)
@@ -3158,9 +2988,14 @@
lemma outside_connected_component_lt:
"outside S = {x. \<forall>B. \<exists>y. B < norm(y) \<and> connected_component (- S) x y}"
- apply (auto simp: outside bounded_def dist_norm)
- apply (metis diff_0 norm_minus_cancel not_less)
- by (metis less_diff_eq norm_minus_commute norm_triangle_ineq2 order.trans pinf(6))
+proof -
+ have "\<And>x B. x \<in> outside S \<Longrightarrow> \<exists>y. B < norm y \<and> connected_component (- S) x y"
+ by (metis boundedI linorder_not_less mem_Collect_eq outside)
+ moreover
+ have "\<And>x. \<forall>B. \<exists>y. B < norm y \<and> connected_component (- S) x y \<Longrightarrow> x \<in> outside S"
+ by (metis bounded_pos linorder_not_less mem_Collect_eq outside)
+ ultimately show ?thesis by auto
+qed
lemma outside_connected_component_le:
"outside S = {x. \<forall>B. \<exists>y. B \<le> norm(y) \<and> connected_component (- S) x y}"
@@ -3174,14 +3009,15 @@
proof -
obtain B::real where B: "0 < B" and Bno: "\<And>x. x \<in> S \<Longrightarrow> norm x \<le> B"
using S [simplified bounded_pos] by auto
- { fix y::'a and z::'a
- assume yz: "B < norm z" "B < norm y"
+ have cyz: "connected_component (- S) y z"
+ if yz: "B < norm z" "B < norm y" for y::'a and z::'a
+ proof -
have "connected_component (- cball 0 B) y z"
using assms yz
by (force simp: dist_norm intro: connected_componentI [OF _ subset_refl] connected_complement_bounded_convex)
- then have "connected_component (- S) y z"
+ then show ?thesis
by (metis connected_component_of_subset Bno Compl_anti_mono mem_cball_0 subset_iff)
- } note cyz = this
+ qed
show ?thesis
apply (auto simp: outside bounded_pos)
apply (metis Compl_iff bounded_iff cobounded_imp_unbounded mem_Collect_eq not_le)
@@ -3210,9 +3046,8 @@
lemma inside_subset:
assumes "connected U" and "\<not> bounded U" and "T \<union> U = - S"
shows "inside S \<subseteq> T"
- apply (auto simp: inside_def)
- by (metis bounded_subset [of "connected_component_set (- S) _"] connected_component_maximal
- Compl_iff Un_iff assms subsetI)
+ using bounded_subset [of "connected_component_set (- S) _" U] assms
+ by (metis (no_types, lifting) ComplI Un_iff connected_component_maximal inside_def mem_Collect_eq subsetI)
lemma frontier_not_empty:
fixes S :: "'a :: real_normed_vector set"
@@ -3263,23 +3098,12 @@
by (metis Diff_iff Sup_upper closure_subset contra_subsetD dist_self frontier_def interior_mono)
next
case False
- have 1: "closed_segment x y \<inter> T \<noteq> {}"
- using \<open>y \<in> T\<close> by blast
- have 2: "closed_segment x y - T \<noteq> {}"
- using False by blast
+ have \<section>: "closed_segment x y \<inter> T \<noteq> {}" "closed_segment x y - T \<noteq> {}"
+ using \<open>y \<in> T\<close> False by blast+
obtain c where "c \<in> closed_segment x y" "c \<in> frontier T"
- using False connected_Int_frontier [OF connected_segment 1 2] by auto
- then show ?thesis
- proof -
- have "norm (y - x) < e"
- by (metis dist_norm \<open>dist y x < e\<close>)
- moreover have "norm (c - x) \<le> norm (y - x)"
- by (simp add: \<open>c \<in> closed_segment x y\<close> segment_bound(1))
- ultimately have "norm (c - x) < e"
- by linarith
- then show ?thesis
- by (metis (no_types) \<open>c \<in> frontier T\<close> dist_norm that(1))
- qed
+ using False connected_Int_frontier [OF connected_segment \<section>] by auto
+ with that show ?thesis
+ by (smt (verit) dist_norm segment_bound1)
qed
then show ?thesis
by (fastforce simp add: frontier_def closure_approachable)
@@ -3288,8 +3112,7 @@
lemma frontier_Union_subset:
fixes F :: "'a::real_normed_vector set set"
shows "finite F \<Longrightarrow> frontier(\<Union>F) \<subseteq> (\<Union>t \<in> F. frontier t)"
-by (rule order_trans [OF frontier_Union_subset_closure])
- (auto simp: closure_subset_eq)
+ by (metis closed_UN closure_closed frontier_Union_subset_closure frontier_closed)
lemma frontier_of_components_subset:
fixes S :: "'a::real_normed_vector set"
@@ -3328,7 +3151,7 @@
show "- frontier C \<subseteq> C \<union> - closure C"
by (simp add: \<open>open C\<close> closed_Compl frontier_closures)
then show "- closure C \<inter> - frontier C \<noteq> {}"
- by (metis (no_types, lifting) C Compl_subset_Compl_iff \<open>frontier C \<subset> S\<close> compl_sup frontier_closures in_components_subset psubsetE sup.absorb_iff2 sup.boundedE sup_bot.right_neutral sup_inf_absorb)
+ by (metis C Compl_Diff_eq Un_Int_eq(4) Un_commute \<open>frontier C \<subset> S\<close> \<open>open C\<close> compl_le_compl_iff frontier_def in_components_subset interior_eq leD sup_bot.right_neutral)
qed
then show False
using \<open>connected (- frontier C)\<close> by blast
@@ -3367,10 +3190,8 @@
using connected_component_in by auto
}
then show ?thesis
- apply (auto simp: inside_def frontier_def)
- apply (rule classical)
- apply (rule bounded_subset [OF assms], blast)
- done
+ using bounded_subset [OF assms]
+ by (metis (no_types, lifting) Diff_iff frontier_def inside_def mem_Collect_eq subsetI)
qed
lemma inside_empty [simp]: "inside {} = ({} :: 'a :: {real_normed_vector, perfect_space} set)"
@@ -3482,17 +3303,7 @@
fixes S :: "'a::real_normed_vector set"
assumes "bounded S"
shows "outside(frontier S) \<subseteq> - closure S"
- unfolding outside_inside boolean_algebra_class.compl_le_compl_iff
-proof -
- { assume "interior S \<subseteq> inside (frontier S)"
- hence "interior S \<union> inside (frontier S) = inside (frontier S)"
- by (simp add: subset_Un_eq)
- then have "closure S \<subseteq> frontier S \<union> inside (frontier S)"
- using frontier_def by auto
- }
- then show "closure S \<subseteq> frontier S \<union> inside (frontier S)"
- using interior_inside_frontier [OF assms] by blast
-qed
+ using assms frontier_def interior_inside_frontier outside_inside by fastforce
lemma outside_frontier_eq_complement_closure:
fixes S :: "'a :: {real_normed_vector, perfect_space} set"
@@ -3556,18 +3367,7 @@
fixes S :: "'a::real_normed_vector set"
assumes "closed S"
shows "frontier(inside S) \<subseteq> S"
-proof -
- have "closure (inside S) \<inter> - inside S = closure (inside S) - interior (inside S)"
- by (metis (no_types) Diff_Compl assms closure_closed interior_closure open_closed open_inside)
- moreover have "- inside S \<inter> - outside S = S"
- by (metis (no_types) compl_sup double_compl inside_Un_outside)
- moreover have "closure (inside S) \<subseteq> - outside S"
- by (metis (no_types) assms closure_inside_subset union_with_inside)
- ultimately have "closure (inside S) - interior (inside S) \<subseteq> S"
- by blast
- then show ?thesis
- by (simp add: frontier_def open_inside interior_open)
-qed
+ using assms closure_inside_subset frontier_closures frontier_disjoint_eq open_inside by fastforce
lemma closure_outside_subset:
fixes S :: "'a::real_normed_vector set"
@@ -3623,10 +3423,8 @@
lemma outside_bounded_nonempty:
fixes S :: "'a :: {real_normed_vector, perfect_space} set"
- assumes "bounded S" shows "outside S \<noteq> {}"
- by (metis (no_types, lifting) Collect_empty_eq Collect_mem_eq Compl_eq_Diff_UNIV Diff_cancel
- Diff_disjoint UNIV_I assms ball_eq_empty bounded_diff cobounded_outside convex_ball
- double_complement order_refl outside_convex outside_def)
+ assumes "bounded S" shows "outside S \<noteq> {}"
+ using assms unbounded_outside by force
lemma outside_compact_in_open:
fixes S :: "'a :: {real_normed_vector,perfect_space} set"
@@ -3700,14 +3498,7 @@
then obtain r where "0 < r" and r: "S \<union> T \<subseteq> ball 0 r"
using bounded_subset_ballD by blast
have outst: "outside S \<inter> outside T \<noteq> {}"
- proof -
- have "- ball 0 r \<subseteq> outside S"
- by (meson convex_ball le_supE outside_subset_convex r)
- moreover have "- ball 0 r \<subseteq> outside T"
- by (meson convex_ball le_supE outside_subset_convex r)
- ultimately show ?thesis
- by (metis Compl_subset_Compl_iff Int_subset_iff bounded_ball inf.orderE outside_bounded_nonempty outside_no_overlap)
- qed
+ by (metis bounded_Un bounded_subset bst cobounded_outside disjoint_eq_subset_Compl unbounded_outside)
have "S \<inter> T = {}" using assms
by (metis disjoint_iff_not_equal inside_no_overlap subsetCE)
moreover have "outside S \<inter> inside T \<noteq> {}"
@@ -3734,27 +3525,29 @@
using that
proof
assume "a \<in> S" then show ?thesis
- by (rule_tac x=a in exI, rule_tac x="{a}" in exI, simp)
+ using cons by blast
next
assume a: "a \<in> inside S"
then have ain: "a \<in> closure (inside S)"
by (simp add: closure_def)
- show ?thesis
- apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "inside S"])
- apply (simp_all add: ain b)
- subgoal for h
- apply (rule_tac x="pathfinish h" in exI)
- apply (simp add: subsetD [OF frontier_inside_subset[OF S]])
- apply (rule_tac x="path_image h" in exI)
- apply (simp add: pathfinish_in_path_image connected_path_image, auto)
- by (metis Diff_single_insert S frontier_inside_subset insert_iff interior_subset subsetD)
- done
+ obtain h where h: "path h" "pathstart h = a"
+ "path_image h - {pathfinish h} \<subseteq> interior (inside S)"
+ "pathfinish h \<in> frontier (inside S)"
+ using ain b
+ by (metis exists_path_subpath_to_frontier path_linepath pathfinish_linepath pathstart_linepath)
+ moreover
+ have h1S: "pathfinish h \<in> S"
+ using S h frontier_inside_subset by blast
+ moreover
+ have "path_image h \<subseteq> S \<union> inside S"
+ using IntD1 S h1S h interior_eq open_inside by fastforce
+ ultimately show ?thesis by blast
qed
show ?thesis
apply (simp add: connected_iff_connected_component)
apply (clarsimp simp add: connected_component_def dest!: *)
subgoal for x y u u' T t'
- by (rule_tac x="(S \<union> T \<union> t')" in exI) (auto intro!: connected_Un cons)
+ by (rule_tac x = "S \<union> T \<union> t'" in exI) (auto intro!: connected_Un cons)
done
qed
@@ -3776,16 +3569,19 @@
assume a: "a \<in> outside S"
then have ain: "a \<in> closure (outside S)"
by (simp add: closure_def)
- show ?thesis
- apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "outside S"])
- apply (simp_all add: ain b)
- subgoal for h
- apply (rule_tac x="pathfinish h" in exI)
- apply (simp add: subsetD [OF frontier_outside_subset[OF S]])
- apply (rule_tac x="path_image h" in exI)
- apply (simp add: pathfinish_in_path_image connected_path_image, auto)
- by (metis (no_types, lifting) frontier_outside_subset insertE insert_Diff interior_eq open_outside pathfinish_in_path_image S subsetCE)
- done
+ obtain h where h: "path h" "pathstart h = a"
+ "path_image h - {pathfinish h} \<subseteq> interior (outside S)"
+ "pathfinish h \<in> frontier (outside S)"
+ using ain b
+ by (metis exists_path_subpath_to_frontier path_linepath pathfinish_linepath pathstart_linepath)
+ moreover
+ have h1S: "pathfinish h \<in> S"
+ using S frontier_outside_subset h(4) by blast
+ moreover
+ have "path_image h \<subseteq> S \<union> outside S"
+ using IntD1 S h1S h interior_eq open_outside by fastforce
+ ultimately show ?thesis
+ by blast
qed
show ?thesis
apply (simp add: connected_iff_connected_component)
@@ -3798,9 +3594,13 @@
lemma inside_inside_eq_empty [simp]:
fixes S :: "'a :: {real_normed_vector, perfect_space} set"
assumes S: "closed S" and cons: "connected S"
- shows "inside (inside S) = {}"
- by (metis (no_types) unbounded_outside connected_with_outside [OF assms] bounded_Un
- inside_complement_unbounded_connected_empty unbounded_outside union_with_outside)
+ shows "inside (inside S) = {}"
+proof -
+ have "connected (- inside S)"
+ by (metis S connected_with_outside cons union_with_outside)
+ then show ?thesis
+ by (metis bounded_Un inside_complement_unbounded_connected_empty unbounded_outside union_with_outside)
+qed
lemma inside_in_components:
"inside S \<in> components (- S) \<longleftrightarrow> connected(inside S) \<and> inside S \<noteq> {}" (is "?lhs = ?rhs")
@@ -3828,9 +3628,10 @@
lemma bounded_unique_outside:
fixes S :: "'a :: euclidean_space set"
assumes "bounded S" "DIM('a) \<ge> 2"
- shows "(c \<in> components (- S) \<and> \<not> bounded c \<longleftrightarrow> c = outside S)"
+ shows "(c \<in> components (- S) \<and> \<not> bounded c) \<longleftrightarrow> c = outside S"
using assms
- by (metis cobounded_unique_unbounded_components connected_outside double_compl outside_bounded_nonempty outside_in_components unbounded_outside)
+ by (metis cobounded_unique_unbounded_components connected_outside double_compl outside_bounded_nonempty
+ outside_in_components unbounded_outside)
subsection\<open>Condition for an open map's image to contain a ball\<close>
@@ -3868,21 +3669,20 @@
then have "(\<xi> \<circ> K) \<longlonglongrightarrow> f y"
by (metis (no_types) Klim zKs y contf comp_assoc continuous_on_closure_sequentially)
with fz have wy: "w = f y" using fz LIMSEQ_unique ftendsw by auto
- have rle: "r \<le> norm (f y - f a)"
+ have "r \<le> norm (f y - f a)"
proof (rule le_no)
show "y \<in> frontier S"
using w wy oint by (force simp: imageI image_mono interiorI interior_subset frontier_def y)
qed
- have **: "(b \<inter> (- S) \<noteq> {} \<and> b - (- S) \<noteq> {} \<Longrightarrow> b \<inter> f \<noteq> {})
- \<Longrightarrow> (b \<inter> S \<noteq> {}) \<Longrightarrow> b \<inter> f = {} \<Longrightarrow> b \<subseteq> S"
- for b f and S :: "'b set"
- by blast
- have \<section>: "\<And>y. \<lbrakk>norm (f a - y) < r; y \<in> frontier (f ` S)\<rbrakk> \<Longrightarrow> False"
- by (metis dw_le norm_minus_commute not_less order_trans rle wy)
- show ?thesis
- apply (rule ** [OF connected_Int_frontier [where t = "f`S", OF connected_ball]])
- (*such a horrible mess*)
- using \<open>a \<in> S\<close> \<open>0 < r\<close> by (auto simp: disjoint_iff_not_equal dist_norm dest: \<section>)
+ then have "\<And>y. \<lbrakk>norm (f a - y) < r; y \<in> frontier (f ` S)\<rbrakk> \<Longrightarrow> False"
+ by (metis dw_le norm_minus_commute not_less order_trans wy)
+ then have "ball (f a) r \<inter> frontier (f ` S) = {}"
+ by (metis disjoint_iff_not_equal dist_norm mem_ball)
+ moreover
+ have "ball (f a) r \<inter> f ` S \<noteq> {}"
+ using \<open>a \<in> S\<close> \<open>0 < r\<close> centre_in_ball by blast
+ ultimately show ?thesis
+ by (meson connected_Int_frontier connected_ball diff_shunt_var)
qed
@@ -3891,8 +3691,7 @@
lemma Hausdorff_space_euclidean [simp]: "Hausdorff_space (euclidean :: 'a::metric_space topology)"
proof -
have "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> disjnt U V"
- if "x \<noteq> y"
- for x y :: 'a
+ if "x \<noteq> y" for x y :: 'a
proof (intro exI conjI)
let ?r = "dist x y / 2"
have [simp]: "?r > 0"
@@ -4139,7 +3938,6 @@
lemma path_image_rectpath_cbox_minus_box:
assumes "Re a \<le> Re b" "Im a \<le> Im b"
shows "path_image (rectpath a b) = cbox a b - box a b"
- using assms by (auto simp: path_image_rectpath in_cbox_complex_iff
- in_box_complex_iff)
+ using assms by (auto simp: path_image_rectpath in_cbox_complex_iff in_box_complex_iff)
end