--- a/NEWS Mon Mar 22 00:07:55 2021 +0100
+++ b/NEWS Mon Mar 22 10:49:51 2021 +0000
@@ -65,8 +65,8 @@
specific "List_Permutation". Note that most notions from that
theory are already present in theory "Permutations". INCOMPATIBILITY.
-* Lemma "permutes_induct" has been given named premises.
-INCOMPATIBILITY.
+* Lemma "permutes_induct" has been given stronger
+hypotheses and named premises. INCOMPATIBILITY.
* Theorems "antisym" and "eq_iff" in class "order" have been renamed to
"order.antisym" and "order.eq_iff", to coexist locally with "antisym"
@@ -75,6 +75,9 @@
"order" are replaced or augmented by interpretations of locale
"ordering".
+* Theorem "swap_def" now is always qualified as "Fun.swap_def". Minor
+INCOMPATIBILITY; note that for most applications less elementary lemmas
+exists.
*** ML ***
--- a/src/HOL/Analysis/Brouwer_Fixpoint.thy Mon Mar 22 00:07:55 2021 +0100
+++ b/src/HOL/Analysis/Brouwer_Fixpoint.thy Mon Mar 22 10:49:51 2021 +0000
@@ -234,11 +234,6 @@
by auto
qed
-lemma swap_image:
- "Fun.swap i j f ` A = (if i \<in> A then (if j \<in> A then f ` A else f ` ((A - {i}) \<union> {j}))
- else (if j \<in> A then f ` ((A - {j}) \<union> {i}) else f ` A))"
- by (auto simp: swap_def cong: image_cong_simp)
-
lemmas swap_apply1 = swap_apply(1)
lemmas swap_apply2 = swap_apply(2)
@@ -2598,5 +2593,4 @@
using derf has_derivative_continuous by blast
qed (use assms in auto)
-
end
--- a/src/HOL/Analysis/Cartesian_Space.thy Mon Mar 22 00:07:55 2021 +0100
+++ b/src/HOL/Analysis/Cartesian_Space.thy Mon Mar 22 10:49:51 2021 +0000
@@ -1295,7 +1295,7 @@
case False
have *: "A $ i $ Fun.swap k l id j = 0" if "j \<noteq> k" "j \<notin> K" "i \<noteq> j" for i j
using False l insert.prems that
- by (auto simp: swap_def insert split: if_split_asm)
+ by (auto simp: swap_id_eq insert split: if_split_asm)
have "P (\<chi> i j. (\<chi> i j. A $ i $ Fun.swap k l id j) $ i $ Fun.swap k l id j)"
by (rule swap_cols [OF nonzero_hyp False]) (auto simp: l *)
moreover
@@ -1418,7 +1418,7 @@
have eq: "(\<Sum>j\<in>UNIV. if i = Fun.swap m n id j then x $ j else 0) =
(\<Sum>j\<in>UNIV. if j = Fun.swap m n id i then x $ j else 0)"
for i and x :: "real^'n"
- unfolding swap_def by (rule sum.cong) auto
+ by (rule sum.cong) (auto simp add: swap_id_eq)
have "(\<lambda>x::real^'n. \<chi> i. x $ Fun.swap m n id i) = ((*v) (\<chi> i j. if i = Fun.swap m n id j then 1 else 0))"
by (auto simp: mat_def matrix_vector_mult_def eq if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
with swap [OF \<open>m \<noteq> n\<close>] show "P ((*v) (\<chi> i j. mat 1 $ i $ Fun.swap m n id j))"
--- a/src/HOL/Analysis/Infinite_Products.thy Mon Mar 22 00:07:55 2021 +0100
+++ b/src/HOL/Analysis/Infinite_Products.thy Mon Mar 22 10:49:51 2021 +0000
@@ -686,8 +686,10 @@
show ?thesis
proof
assume cf: "convergent_prod f"
+ with f have "\<not> (\<lambda>n. prod f {..n}) \<longlonglongrightarrow> 0"
+ by simp
then have "\<not> (\<lambda>n. prod g {..n}) \<longlonglongrightarrow> 0"
- using tendsto_mult_left * convergent_prod_to_zero_iff f filterlim_cong by fastforce
+ using * \<open>C \<noteq> 0\<close> filterlim_cong by fastforce
then show "convergent_prod g"
by (metis convergent_mult_const_iff \<open>C \<noteq> 0\<close> cong cf convergent_LIMSEQ_iff convergent_prod_iff_convergent convergent_prod_imp_convergent g)
next
--- a/src/HOL/Fun.thy Mon Mar 22 00:07:55 2021 +0100
+++ b/src/HOL/Fun.thy Mon Mar 22 10:49:51 2021 +0000
@@ -500,6 +500,23 @@
by (rule bijI)
qed
+lemma bij_betw_partition:
+ \<open>bij_betw f A B\<close>
+ if \<open>bij_betw f (A \<union> C) (B \<union> D)\<close> \<open>bij_betw f C D\<close> \<open>A \<inter> C = {}\<close> \<open>B \<inter> D = {}\<close>
+proof -
+ from that have \<open>inj_on f (A \<union> C)\<close> \<open>inj_on f C\<close> \<open>f ` (A \<union> C) = B \<union> D\<close> \<open>f ` C = D\<close>
+ by (simp_all add: bij_betw_def)
+ then have \<open>inj_on f A\<close> and \<open>f ` (A - C) \<inter> f ` (C - A) = {}\<close>
+ by (simp_all add: inj_on_Un)
+ with \<open>A \<inter> C = {}\<close> have \<open>f ` A \<inter> f ` C = {}\<close>
+ by auto
+ with \<open>f ` (A \<union> C) = B \<union> D\<close> \<open>f ` C = D\<close> \<open>B \<inter> D = {}\<close>
+ have \<open>f ` A = B\<close>
+ by blast
+ with \<open>inj_on f A\<close> show ?thesis
+ by (simp add: bij_betw_def)
+qed
+
lemma surj_image_vimage_eq: "surj f \<Longrightarrow> f ` (f -` A) = A"
by simp
@@ -823,8 +840,11 @@
subsection \<open>\<open>swap\<close>\<close>
-definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
- where "swap a b f = f (a := f b, b:= f a)"
+context
+begin
+
+qualified definition swap :: \<open>'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)\<close>
+ where \<open>swap a b f = f (a := f b, b:= f a)\<close>
lemma swap_apply [simp]:
"swap a b f a = f b"
@@ -891,19 +911,29 @@
lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f"
by simp
+lemma swap_image:
+ \<open>swap i j f ` A = f ` (A - {i, j}
+ \<union> (if i \<in> A then {j} else {}) \<union> (if j \<in> A then {i} else {}))\<close>
+ by (auto simp add: swap_def)
+
+
subsection \<open>Transpositions\<close>
-lemma swap_id_idempotent [simp]: "Fun.swap a b id \<circ> Fun.swap a b id = id"
- by (rule ext) (auto simp add: Fun.swap_def)
+lemma swap_id_eq: "swap a b id x = (if x = a then b else if x = b then a else x)"
+ by (simp add: swap_def)
-lemma swap_id_eq: "Fun.swap a b id x = (if x = a then b else if x = b then a else x)"
- by (simp add: Fun.swap_def)
+lemma swap_unfold:
+ \<open>swap a b p = p \<circ> swap a b id\<close>
+ by (simp add: fun_eq_iff swap_def)
+
+lemma swap_id_idempotent [simp]: "swap a b id \<circ> swap a b id = id"
+ by (simp flip: swap_unfold)
lemma bij_swap_compose_bij:
- \<open>bij (Fun.swap a b id \<circ> p)\<close> if \<open>bij p\<close>
+ \<open>bij (swap a b id \<circ> p)\<close> if \<open>bij p\<close>
using that by (rule bij_comp) simp
-hide_const (open) swap
+end
subsection \<open>Inversion of injective functions\<close>
--- a/src/HOL/Library/Multiset.thy Mon Mar 22 00:07:55 2021 +0100
+++ b/src/HOL/Library/Multiset.thy Mon Mar 22 10:49:51 2021 +0000
@@ -2027,6 +2027,10 @@
by (cases "x \<in># A") simp_all
qed
+lemma mset_set_upto_eq_mset_upto:
+ \<open>mset_set {..<n} = mset [0..<n]\<close>
+ by (induction n) (auto simp: ac_simps lessThan_Suc)
+
context linorder
begin
--- a/src/HOL/Library/Permutations.thy Mon Mar 22 00:07:55 2021 +0100
+++ b/src/HOL/Library/Permutations.thy Mon Mar 22 10:49:51 2021 +0000
@@ -8,90 +8,206 @@
imports Multiset Disjoint_Sets
begin
+subsection \<open>Auxiliary\<close>
+
+abbreviation (input) fixpoints :: \<open>('a \<Rightarrow> 'a) \<Rightarrow> 'a set\<close>
+ where \<open>fixpoints f \<equiv> {x. f x = x}\<close>
+
+lemma inj_on_fixpoints:
+ \<open>inj_on f (fixpoints f)\<close>
+ by (rule inj_onI) simp
+
+lemma bij_betw_fixpoints:
+ \<open>bij_betw f (fixpoints f) (fixpoints f)\<close>
+ using inj_on_fixpoints by (auto simp add: bij_betw_def)
+
+
subsection \<open>Basic definition and consequences\<close>
-definition permutes (infixr "permutes" 41)
- where "(p permutes S) \<longleftrightarrow> (\<forall>x. x \<notin> S \<longrightarrow> p x = x) \<and> (\<forall>y. \<exists>!x. p x = y)"
+definition permutes :: \<open>('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool\<close> (infixr \<open>permutes\<close> 41)
+ where \<open>p permutes S \<longleftrightarrow> (\<forall>x. x \<notin> S \<longrightarrow> p x = x) \<and> (\<forall>y. \<exists>!x. p x = y)\<close>
-lemma permutes_in_image: "p permutes S \<Longrightarrow> p x \<in> S \<longleftrightarrow> x \<in> S"
- unfolding permutes_def by metis
+lemma bij_imp_permutes:
+ \<open>p permutes S\<close> if \<open>bij_betw p S S\<close> and stable: \<open>\<And>x. x \<notin> S \<Longrightarrow> p x = x\<close>
+proof -
+ note \<open>bij_betw p S S\<close>
+ moreover have \<open>bij_betw p (- S) (- S)\<close>
+ by (auto simp add: stable intro!: bij_betw_imageI inj_onI)
+ ultimately have \<open>bij_betw p (S \<union> - S) (S \<union> - S)\<close>
+ by (rule bij_betw_combine) simp
+ then have \<open>\<exists>!x. p x = y\<close> for y
+ by (simp add: bij_iff)
+ with stable show ?thesis
+ by (simp add: permutes_def)
+qed
-lemma permutes_not_in: "f permutes S \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = x"
- by (auto simp: permutes_def)
+context
+ fixes p :: \<open>'a \<Rightarrow> 'a\<close> and S :: \<open>'a set\<close>
+ assumes perm: \<open>p permutes S\<close>
+begin
+
+lemma permutes_inj:
+ \<open>inj p\<close>
+ using perm by (auto simp: permutes_def inj_on_def)
-lemma permutes_image: "p permutes S \<Longrightarrow> p ` S = S"
- unfolding permutes_def
- apply (rule set_eqI)
- apply (simp add: image_iff)
- apply metis
- done
+lemma permutes_image:
+ \<open>p ` S = S\<close>
+proof (rule set_eqI)
+ fix x
+ show \<open>x \<in> p ` S \<longleftrightarrow> x \<in> S\<close>
+ proof
+ assume \<open>x \<in> p ` S\<close>
+ then obtain y where \<open>y \<in> S\<close> \<open>p y = x\<close>
+ by blast
+ with perm show \<open>x \<in> S\<close>
+ by (cases \<open>y = x\<close>) (auto simp add: permutes_def)
+ next
+ assume \<open>x \<in> S\<close>
+ with perm obtain y where \<open>y \<in> S\<close> \<open>p y = x\<close>
+ by (metis permutes_def)
+ then show \<open>x \<in> p ` S\<close>
+ by blast
+ qed
+qed
+
+lemma permutes_not_in:
+ \<open>x \<notin> S \<Longrightarrow> p x = x\<close>
+ using perm by (auto simp: permutes_def)
+
+lemma permutes_image_complement:
+ \<open>p ` (- S) = - S\<close>
+ by (auto simp add: permutes_not_in)
-lemma permutes_inj: "p permutes S \<Longrightarrow> inj p"
- unfolding permutes_def inj_def by blast
+lemma permutes_in_image:
+ \<open>p x \<in> S \<longleftrightarrow> x \<in> S\<close>
+ using permutes_image permutes_inj by (auto dest: inj_image_mem_iff)
+
+lemma permutes_surj:
+ \<open>surj p\<close>
+proof -
+ have \<open>p ` (S \<union> - S) = p ` S \<union> p ` (- S)\<close>
+ by (rule image_Un)
+ then show ?thesis
+ by (simp add: permutes_image permutes_image_complement)
+qed
-lemma permutes_inj_on: "f permutes S \<Longrightarrow> inj_on f A"
- by (auto simp: permutes_def inj_on_def)
+lemma permutes_inv_o:
+ shows "p \<circ> inv p = id"
+ and "inv p \<circ> p = id"
+ using permutes_inj permutes_surj
+ unfolding inj_iff [symmetric] surj_iff [symmetric] by auto
+
+lemma permutes_inverses:
+ shows "p (inv p x) = x"
+ and "inv p (p x) = x"
+ using permutes_inv_o [unfolded fun_eq_iff o_def] by auto
-lemma permutes_surj: "p permutes s \<Longrightarrow> surj p"
- unfolding permutes_def surj_def by metis
+lemma permutes_inv_eq:
+ \<open>inv p y = x \<longleftrightarrow> p x = y\<close>
+ by (auto simp add: permutes_inverses)
-lemma permutes_bij: "p permutes s \<Longrightarrow> bij p"
+lemma permutes_inj_on:
+ \<open>inj_on p A\<close>
+ by (rule inj_on_subset [of _ UNIV]) (auto intro: permutes_inj)
+
+lemma permutes_bij:
+ \<open>bij p\<close>
unfolding bij_def by (metis permutes_inj permutes_surj)
-lemma permutes_imp_bij: "p permutes S \<Longrightarrow> bij_betw p S S"
- by (metis UNIV_I bij_betw_subset permutes_bij permutes_image subsetI)
-
-lemma bij_imp_permutes: "bij_betw p S S \<Longrightarrow> (\<And>x. x \<notin> S \<Longrightarrow> p x = x) \<Longrightarrow> p permutes S"
- unfolding permutes_def bij_betw_def inj_on_def
- by auto (metis image_iff)+
+lemma permutes_imp_bij:
+ \<open>bij_betw p S S\<close>
+ by (simp add: bij_betw_def permutes_image permutes_inj_on)
-lemma permutes_inv_o:
- assumes permutes: "p permutes S"
- shows "p \<circ> inv p = id"
- and "inv p \<circ> p = id"
- using permutes_inj[OF permutes] permutes_surj[OF permutes]
- unfolding inj_iff[symmetric] surj_iff[symmetric] by blast+
-
-lemma permutes_inverses:
- fixes p :: "'a \<Rightarrow> 'a"
- assumes permutes: "p permutes S"
- shows "p (inv p x) = x"
- and "inv p (p x) = x"
- using permutes_inv_o[OF permutes, unfolded fun_eq_iff o_def] by auto
-
-lemma permutes_subset: "p permutes S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> p permutes T"
- unfolding permutes_def by blast
+lemma permutes_subset:
+ \<open>p permutes T\<close> if \<open>S \<subseteq> T\<close>
+proof (rule bij_imp_permutes)
+ define R where \<open>R = T - S\<close>
+ with that have \<open>T = R \<union> S\<close> \<open>R \<inter> S = {}\<close>
+ by auto
+ then have \<open>p x = x\<close> if \<open>x \<in> R\<close> for x
+ using that by (auto intro: permutes_not_in)
+ then have \<open>p ` R = R\<close>
+ by simp
+ with \<open>T = R \<union> S\<close> show \<open>bij_betw p T T\<close>
+ by (simp add: bij_betw_def permutes_inj_on image_Un permutes_image)
+ fix x
+ assume \<open>x \<notin> T\<close>
+ with \<open>T = R \<union> S\<close> show \<open>p x = x\<close>
+ by (simp add: permutes_not_in)
+qed
lemma permutes_imp_permutes_insert:
- \<open>p permutes insert x S\<close> if \<open>p permutes S\<close>
- using that by (rule permutes_subset) auto
+ \<open>p permutes insert x S\<close>
+ by (rule permutes_subset) auto
+
+end
+
+lemma permutes_id [simp]:
+ \<open>id permutes S\<close>
+ by (auto intro: bij_imp_permutes)
-lemma permutes_empty[simp]: "p permutes {} \<longleftrightarrow> p = id"
- by (auto simp add: fun_eq_iff permutes_def)
+lemma permutes_empty [simp]:
+ \<open>p permutes {} \<longleftrightarrow> p = id\<close>
+proof
+ assume \<open>p permutes {}\<close>
+ then show \<open>p = id\<close>
+ by (auto simp add: fun_eq_iff permutes_not_in)
+next
+ assume \<open>p = id\<close>
+ then show \<open>p permutes {}\<close>
+ by simp
+qed
-lemma permutes_sing[simp]: "p permutes {a} \<longleftrightarrow> p = id"
- by (simp add: fun_eq_iff permutes_def) metis (*somewhat slow*)
+lemma permutes_sing [simp]:
+ \<open>p permutes {a} \<longleftrightarrow> p = id\<close>
+proof
+ assume perm: \<open>p permutes {a}\<close>
+ show \<open>p = id\<close>
+ proof
+ fix x
+ from perm have \<open>p ` {a} = {a}\<close>
+ by (rule permutes_image)
+ with perm show \<open>p x = id x\<close>
+ by (cases \<open>x = a\<close>) (auto simp add: permutes_not_in)
+ qed
+next
+ assume \<open>p = id\<close>
+ then show \<open>p permutes {a}\<close>
+ by simp
+qed
lemma permutes_univ: "p permutes UNIV \<longleftrightarrow> (\<forall>y. \<exists>!x. p x = y)"
by (simp add: permutes_def)
-lemma permutes_inv_eq: "p permutes S \<Longrightarrow> inv p y = x \<longleftrightarrow> p x = y"
- unfolding permutes_def inv_def
- apply auto
- apply (erule allE[where x=y])
- apply (erule allE[where x=y])
- apply (rule someI_ex)
- apply blast
- apply (rule some1_equality)
- apply blast
- apply blast
- done
+lemma permutes_swap_id: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> Fun.swap a b id permutes S"
+ by (rule bij_imp_permutes) (auto simp add: swap_id_eq)
-lemma permutes_swap_id: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> Fun.swap a b id permutes S"
- unfolding permutes_def Fun.swap_def fun_upd_def by auto metis
-
-lemma permutes_superset: "p permutes S \<Longrightarrow> (\<forall>x \<in> S - T. p x = x) \<Longrightarrow> p permutes T"
- by (simp add: Ball_def permutes_def) metis
+lemma permutes_superset:
+ \<open>p permutes T\<close> if \<open>p permutes S\<close> \<open>\<And>x. x \<in> S - T \<Longrightarrow> p x = x\<close>
+proof -
+ define R U where \<open>R = T \<inter> S\<close> and \<open>U = S - T\<close>
+ then have \<open>T = R \<union> (T - S)\<close> \<open>S = R \<union> U\<close> \<open>R \<inter> U = {}\<close>
+ by auto
+ from that \<open>U = S - T\<close> have \<open>p ` U = U\<close>
+ by simp
+ from \<open>p permutes S\<close> have \<open>bij_betw p (R \<union> U) (R \<union> U)\<close>
+ by (simp add: permutes_imp_bij \<open>S = R \<union> U\<close>)
+ moreover have \<open>bij_betw p U U\<close>
+ using that \<open>U = S - T\<close> by (simp add: bij_betw_def permutes_inj_on)
+ ultimately have \<open>bij_betw p R R\<close>
+ using \<open>R \<inter> U = {}\<close> \<open>R \<inter> U = {}\<close> by (rule bij_betw_partition)
+ then have \<open>p permutes R\<close>
+ proof (rule bij_imp_permutes)
+ fix x
+ assume \<open>x \<notin> R\<close>
+ with \<open>R = T \<inter> S\<close> \<open>p permutes S\<close> show \<open>p x = x\<close>
+ by (cases \<open>x \<in> S\<close>) (auto simp add: permutes_not_in that(2))
+ qed
+ then have \<open>p permutes R \<union> (T - S)\<close>
+ by (rule permutes_subset) simp
+ with \<open>T = R \<union> (T - S)\<close> show ?thesis
+ by simp
+qed
lemma permutes_bij_inv_into: \<^marker>\<open>contributor \<open>Lukas Bulwahn\<close>\<close>
fixes A :: "'a set"
@@ -139,9 +255,6 @@
subsection \<open>Group properties\<close>
-lemma permutes_id: "id permutes S"
- by (simp add: permutes_def)
-
lemma permutes_compose: "p permutes S \<Longrightarrow> q permutes S \<Longrightarrow> q \<circ> p permutes S"
unfolding permutes_def o_def by metis
@@ -346,7 +459,7 @@
from pF \<open>x \<notin> F\<close> eq have "b = ?g (b, p) x"
by (auto simp: permutes_def Fun.swap_def fun_upd_def fun_eq_iff)
also from qF \<open>x \<notin> F\<close> eq have "\<dots> = ?g (c, q) x"
- by (auto simp: swap_def fun_upd_def fun_eq_iff)
+ by (auto simp: fun_upd_def fun_eq_iff)
also from qF \<open>x \<notin> F\<close> have "\<dots> = c"
by (auto simp: permutes_def Fun.swap_def fun_upd_def fun_eq_iff)
finally have "b = c" .
@@ -388,6 +501,55 @@
using card_permutations[OF refl assms] by (auto intro: card_ge_0_finite)
+subsection \<open>Hence a sort of induction principle composing by swaps\<close>
+
+lemma permutes_induct [consumes 2, case_names id swap]:
+ \<open>P p\<close> if \<open>p permutes S\<close> \<open>finite S\<close>
+ and id: \<open>P id\<close>
+ and swap: \<open>\<And>a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> p permutes S \<Longrightarrow> P p \<Longrightarrow> P (Fun.swap a b id \<circ> p)\<close>
+using \<open>finite S\<close> \<open>p permutes S\<close> swap proof (induction S arbitrary: p)
+ case empty
+ with id show ?case
+ by (simp only: permutes_empty)
+next
+ case (insert x S p)
+ define q where \<open>q = Fun.swap x (p x) id \<circ> p\<close>
+ then have swap_q: \<open>Fun.swap x (p x) id \<circ> q = p\<close>
+ by (simp add: o_assoc)
+ from \<open>p permutes insert x S\<close> have \<open>q permutes S\<close>
+ by (simp add: q_def permutes_insert_lemma)
+ then have \<open>q permutes insert x S\<close>
+ by (simp add: permutes_imp_permutes_insert)
+ from \<open>q permutes S\<close> have \<open>P q\<close>
+ by (auto intro: insert.IH insert.prems(2) permutes_imp_permutes_insert)
+ have \<open>x \<in> insert x S\<close>
+ by simp
+ moreover from \<open>p permutes insert x S\<close> have \<open>p x \<in> insert x S\<close>
+ using permutes_in_image [of p \<open>insert x S\<close> x] by simp
+ ultimately have \<open>P (Fun.swap x (p x) id \<circ> q)\<close>
+ using \<open>q permutes insert x S\<close> \<open>P q\<close>
+ by (rule insert.prems(2))
+ then show ?case
+ by (simp add: swap_q)
+qed
+
+lemma permutes_rev_induct [consumes 2, case_names id swap]:
+ \<open>P p\<close> if \<open>p permutes S\<close> \<open>finite S\<close>
+ and id': \<open>P id\<close>
+ and swap': \<open>\<And>a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> p permutes S \<Longrightarrow> P p \<Longrightarrow> P (Fun.swap a b p)\<close>
+using \<open>p permutes S\<close> \<open>finite S\<close> proof (induction rule: permutes_induct)
+ case id
+ from id' show ?case .
+next
+ case (swap a b p)
+ have \<open>P (Fun.swap (inv p a) (inv p b) p)\<close>
+ by (rule swap') (auto simp add: swap permutes_in_image permutes_inv)
+ also have \<open>Fun.swap (inv p a) (inv p b) p = Fun.swap a b id \<circ> p\<close>
+ by (rule bij_swap_comp [symmetric]) (rule permutes_bij, rule swap)
+ finally show ?case .
+qed
+
+
subsection \<open>Permutations of index set for iterated operations\<close>
lemma (in comm_monoid_set) permute:
@@ -834,47 +996,39 @@
subsection \<open>Relation to \<open>permutes\<close>\<close>
-lemma permutation_permutes: "permutation p \<longleftrightarrow> (\<exists>S. finite S \<and> p permutes S)"
- unfolding permutation permutes_def bij_iff[symmetric]
- apply (rule iffI, clarify)
- apply (rule exI[where x="{x. p x \<noteq> x}"])
- apply simp
- apply clarsimp
- apply (rule_tac B="S" in finite_subset)
- apply auto
- done
-
-
-subsection \<open>Hence a sort of induction principle composing by swaps\<close>
+lemma permutes_imp_permutation:
+ \<open>permutation p\<close> if \<open>finite S\<close> \<open>p permutes S\<close>
+proof -
+ from \<open>p permutes S\<close> have \<open>{x. p x \<noteq> x} \<subseteq> S\<close>
+ by (auto dest: permutes_not_in)
+ then have \<open>finite {x. p x \<noteq> x}\<close>
+ using \<open>finite S\<close> by (rule finite_subset)
+ moreover from \<open>p permutes S\<close> have \<open>bij p\<close>
+ by (auto dest: permutes_bij)
+ ultimately show ?thesis
+ by (simp add: permutation)
+qed
-lemma permutes_induct [consumes 2, case_names id swap]:
- \<open>P p\<close> if \<open>p permutes S\<close> \<open>finite S\<close>
- and id: \<open>P id\<close>
- and swap: \<open>\<And>a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> permutation p \<Longrightarrow> P p \<Longrightarrow> P (Fun.swap a b id \<circ> p)\<close>
-using \<open>finite S\<close> \<open>p permutes S\<close> id swap proof (induction S arbitrary: p)
- case empty
- then show ?case by auto
-next
- case (insert x F p)
- let ?r = "Fun.swap x (p x) id \<circ> p"
- let ?q = "Fun.swap x (p x) id \<circ> ?r"
- have qp: "?q = p"
- by (simp add: o_assoc)
- from permutes_insert_lemma[OF \<open>p permutes insert x F\<close>] insert have Pr: "P ?r"
- by blast
- from permutes_in_image[OF \<open>p permutes insert x F\<close>, of x]
- have pxF: "p x \<in> insert x F"
- by simp
- have xF: "x \<in> insert x F"
- by simp
- have rp: "permutation ?r"
- unfolding permutation_permutes
- using insert.hyps(1) permutes_insert_lemma[OF \<open>p permutes insert x F\<close>]
- by blast
- from insert.prems(3)[OF xF pxF rp Pr] qp show ?case
- by (simp only:)
+lemma permutation_permutesE:
+ assumes \<open>permutation p\<close>
+ obtains S where \<open>finite S\<close> \<open>p permutes S\<close>
+proof -
+ from assms have fin: \<open>finite {x. p x \<noteq> x}\<close>
+ by (simp add: permutation)
+ from assms have \<open>bij p\<close>
+ by (simp add: permutation)
+ also have \<open>UNIV = {x. p x \<noteq> x} \<union> {x. p x = x}\<close>
+ by auto
+ finally have \<open>bij_betw p {x. p x \<noteq> x} {x. p x \<noteq> x}\<close>
+ by (rule bij_betw_partition) (auto simp add: bij_betw_fixpoints)
+ then have \<open>p permutes {x. p x \<noteq> x}\<close>
+ by (auto intro: bij_imp_permutes)
+ with fin show thesis ..
qed
+lemma permutation_permutes: "permutation p \<longleftrightarrow> (\<exists>S. finite S \<and> p permutes S)"
+ by (auto elim: permutation_permutesE intro: permutes_imp_permutation)
+
subsection \<open>Sign of a permutation as a real number\<close>
@@ -1084,9 +1238,6 @@
ultimately show ?thesis ..
qed
-lemma mset_set_upto_eq_mset_upto: "mset_set {..<n} = mset [0..<n]"
- by (induct n) (auto simp: add.commute lessThan_Suc)
-
\<comment> \<open>... and derive the existing property:\<close>
lemma mset_eq_permutation:
fixes xs ys :: "'a list"