moving quickcheck_generators.ML to Quickcheck directory and renaming it random_generators.ML
authorbulwahn
Fri, 11 Mar 2011 15:21:13 +0100
changeset 41921 ee84fc7a61f1
parent 41920 d4fb7a418152
child 41922 fc070c5f3a4c
moving quickcheck_generators.ML to Quickcheck directory and renaming it random_generators.ML
src/HOL/Tools/Quickcheck/random_generators.ML
src/HOL/Tools/quickcheck_generators.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Quickcheck/random_generators.ML	Fri Mar 11 15:21:13 2011 +0100
@@ -0,0 +1,474 @@
+(*  Title:      HOL/Tools/quickcheck_generators.ML
+    Author:     Florian Haftmann, TU Muenchen
+
+Quickcheck generators for various types.
+*)
+
+signature QUICKCHECK_GENERATORS =
+sig
+  type seed = Random_Engine.seed
+  val random_fun: typ -> typ -> ('a -> 'a -> bool) -> ('a -> term)
+    -> (seed -> ('b * (unit -> term)) * seed) -> (seed -> seed * seed)
+    -> seed -> (('a -> 'b) * (unit -> term)) * seed
+  val perhaps_constrain: theory -> (typ * sort) list -> (string * sort) list
+    -> (string * sort -> string * sort) option
+  val ensure_sort_datatype:
+    sort * (Datatype.config -> Datatype.descr -> (string * sort) list -> string list -> string ->
+      string list * string list -> typ list * typ list -> theory -> theory)
+    -> Datatype.config -> string list -> theory -> theory
+  val compile_generator_expr:
+    Proof.context -> term -> int -> term list option * Quickcheck.report option
+  val put_counterexample: (unit -> int -> seed -> term list option * seed)
+    -> Proof.context -> Proof.context
+  val put_counterexample_report: (unit -> int -> seed -> (term list option * (bool list * bool)) * seed)
+    -> Proof.context -> Proof.context
+  val setup: theory -> theory
+end;
+
+structure Quickcheck_Generators : QUICKCHECK_GENERATORS =
+struct
+
+(** abstract syntax **)
+
+fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit => term"})
+val size = @{term "i::code_numeral"};
+val size_pred = @{term "(i::code_numeral) - 1"};
+val size' = @{term "j::code_numeral"};
+val seed = @{term "s::Random.seed"};
+
+
+(** typ "'a => 'b" **)
+
+type seed = Random_Engine.seed;
+
+fun random_fun T1 T2 eq term_of random random_split seed =
+  let
+    val fun_upd = Const (@{const_name fun_upd},
+      (T1 --> T2) --> T1 --> T2 --> T1 --> T2);
+    val ((y, t2), seed') = random seed;
+    val (seed'', seed''') = random_split seed';
+
+    val state = Unsynchronized.ref (seed'', [], fn () => Abs ("x", T1, t2 ()));
+    fun random_fun' x =
+      let
+        val (seed, fun_map, f_t) = ! state;
+      in case AList.lookup (uncurry eq) fun_map x
+       of SOME y => y
+        | NONE => let
+              val t1 = term_of x;
+              val ((y, t2), seed') = random seed;
+              val fun_map' = (x, y) :: fun_map;
+              val f_t' = fn () => fun_upd $ f_t () $ t1 $ t2 ();
+              val _ = state := (seed', fun_map', f_t');
+            in y end
+      end;
+    fun term_fun' () = #3 (! state) ();
+  in ((random_fun', term_fun'), seed''') end;
+
+
+(** datatypes **)
+
+(* definitional scheme for random instances on datatypes *)
+
+local
+
+fun dest_ctyp_nth k cT = nth (Thm.dest_ctyp cT) k;
+val eq = Thm.cprop_of @{thm random_aux_rec} |> Thm.dest_arg |> Thm.dest_arg |> Thm.dest_arg;
+val lhs = eq |> Thm.dest_arg1;
+val pt_random_aux = lhs |> Thm.dest_fun;
+val ct_k = lhs |> Thm.dest_arg;
+val pt_rhs = eq |> Thm.dest_arg |> Thm.dest_fun;
+val aT = pt_random_aux |> Thm.ctyp_of_term |> dest_ctyp_nth 1;
+
+val rew_thms = map mk_meta_eq [@{thm code_numeral_zero_minus_one},
+  @{thm Suc_code_numeral_minus_one}, @{thm select_weight_cons_zero}, @{thm beyond_zero}];
+val rew_ts = map (Logic.dest_equals o Thm.prop_of) rew_thms;
+val rew_ss = HOL_ss addsimps rew_thms;
+
+in
+
+fun random_aux_primrec eq lthy =
+  let
+    val thy = ProofContext.theory_of lthy;
+    val ((t_random_aux as Free (random_aux, T)) $ (t_k as Free (v, _)), proto_t_rhs) =
+      (HOLogic.dest_eq o HOLogic.dest_Trueprop) eq;
+    val Type (_, [_, iT]) = T;
+    val icT = Thm.ctyp_of thy iT;
+    val cert = Thm.cterm_of thy;
+    val inst = Thm.instantiate_cterm ([(aT, icT)], []);
+    fun subst_v t' = map_aterms (fn t as Free (w, _) => if v = w then t' else t | t => t);
+    val t_rhs = lambda t_k proto_t_rhs;
+    val eqs0 = [subst_v @{term "0::code_numeral"} eq,
+      subst_v (@{term "Suc_code_numeral"} $ t_k) eq];
+    val eqs1 = map (Pattern.rewrite_term thy rew_ts []) eqs0;
+    val ((_, (_, eqs2)), lthy') = Primrec.add_primrec_simple
+      [((Binding.conceal (Binding.name random_aux), T), NoSyn)] eqs1 lthy;
+    val cT_random_aux = inst pt_random_aux;
+    val cT_rhs = inst pt_rhs;
+    val rule = @{thm random_aux_rec}
+      |> Drule.instantiate ([(aT, icT)],
+           [(cT_random_aux, cert t_random_aux), (cT_rhs, cert t_rhs)]);
+    val tac = ALLGOALS (rtac rule)
+      THEN ALLGOALS (simp_tac rew_ss)
+      THEN (ALLGOALS (ProofContext.fact_tac eqs2))
+    val simp = Skip_Proof.prove lthy' [v] [] eq (K tac);
+  in (simp, lthy') end;
+
+end;
+
+fun random_aux_primrec_multi auxname [eq] lthy =
+      lthy
+      |> random_aux_primrec eq
+      |>> (fn simp => [simp])
+  | random_aux_primrec_multi auxname (eqs as _ :: _ :: _) lthy =
+      let
+        val thy = ProofContext.theory_of lthy;
+        val (lhss, rhss) = map_split (HOLogic.dest_eq o HOLogic.dest_Trueprop) eqs;
+        val (vs, (arg as Free (v, _)) :: _) = map_split (fn (t1 $ t2) => (t1, t2)) lhss;
+        val Ts = map fastype_of lhss;
+        val tupleT = foldr1 HOLogic.mk_prodT Ts;
+        val aux_lhs = Free ("mutual_" ^ auxname, fastype_of arg --> tupleT) $ arg;
+        val aux_eq = (HOLogic.mk_Trueprop o HOLogic.mk_eq)
+          (aux_lhs, foldr1 HOLogic.mk_prod rhss);
+        fun mk_proj t [T] = [t]
+          | mk_proj t (Ts as T :: (Ts' as _ :: _)) =
+              Const (@{const_name fst}, foldr1 HOLogic.mk_prodT Ts --> T) $ t
+                :: mk_proj (Const (@{const_name snd},
+                  foldr1 HOLogic.mk_prodT Ts --> foldr1 HOLogic.mk_prodT Ts') $ t) Ts';
+        val projs = mk_proj (aux_lhs) Ts;
+        val proj_eqs = map2 (fn v => fn proj => (v, lambda arg proj)) vs projs;
+        val proj_defs = map2 (fn Free (name, _) => fn (_, rhs) =>
+          ((Binding.conceal (Binding.name name), NoSyn),
+            (apfst Binding.conceal Attrib.empty_binding, rhs))) vs proj_eqs;
+        val aux_eq' = Pattern.rewrite_term thy proj_eqs [] aux_eq;
+        fun prove_eqs aux_simp proj_defs lthy = 
+          let
+            val proj_simps = map (snd o snd) proj_defs;
+            fun tac { context = ctxt, prems = _ } =
+              ALLGOALS (simp_tac (HOL_ss addsimps proj_simps))
+              THEN ALLGOALS (EqSubst.eqsubst_tac ctxt [0] [aux_simp])
+              THEN ALLGOALS (simp_tac (HOL_ss addsimps [@{thm fst_conv}, @{thm snd_conv}]));
+          in (map (fn prop => Skip_Proof.prove lthy [v] [] prop tac) eqs, lthy) end;
+      in
+        lthy
+        |> random_aux_primrec aux_eq'
+        ||>> fold_map Local_Theory.define proj_defs
+        |-> (fn (aux_simp, proj_defs) => prove_eqs aux_simp proj_defs)
+      end;
+
+fun random_aux_specification prfx name eqs lthy =
+  let
+    val vs = fold Term.add_free_names ((snd o strip_comb o fst o HOLogic.dest_eq
+      o HOLogic.dest_Trueprop o hd) eqs) [];
+    fun mk_proto_eq eq =
+      let
+        val (head $ t $ u, rhs) = (HOLogic.dest_eq o HOLogic.dest_Trueprop) eq;
+      in ((HOLogic.mk_Trueprop o HOLogic.mk_eq) (head, lambda t (lambda u rhs))) end;
+    val proto_eqs = map mk_proto_eq eqs;
+    fun prove_simps proto_simps lthy =
+      let
+        val ext_simps = map (fn thm => fun_cong OF [fun_cong OF [thm]]) proto_simps;
+        val tac = ALLGOALS (ProofContext.fact_tac ext_simps);
+      in (map (fn prop => Skip_Proof.prove lthy vs [] prop (K tac)) eqs, lthy) end;
+    val b = Binding.conceal (Binding.qualify true prfx
+      (Binding.qualify true name (Binding.name "simps")));
+  in
+    lthy
+    |> random_aux_primrec_multi (name ^ prfx) proto_eqs
+    |-> (fn proto_simps => prove_simps proto_simps)
+    |-> (fn simps => Local_Theory.note
+      ((b, Code.add_default_eqn_attrib :: map (Attrib.internal o K)
+          [Simplifier.simp_add, Nitpick_Simps.add]), simps))
+    |> snd
+  end
+
+
+(* constructing random instances on datatypes *)
+
+val random_auxN = "random_aux";
+
+fun mk_random_aux_eqs thy descr vs tycos (names, auxnames) (Ts, Us) =
+  let
+    val mk_const = curry (Sign.mk_const thy);
+    val random_auxsN = map (prefix (random_auxN ^ "_")) (names @ auxnames);
+    val rTs = Ts @ Us;
+    fun random_resultT T = @{typ Random.seed}
+      --> HOLogic.mk_prodT (termifyT T,@{typ Random.seed});
+    val pTs = map random_resultT rTs;
+    fun sizeT T = @{typ code_numeral} --> @{typ code_numeral} --> T;
+    val random_auxT = sizeT o random_resultT;
+    val random_auxs = map2 (fn s => fn rT => Free (s, random_auxT rT))
+      random_auxsN rTs;
+    fun mk_random_call T = (NONE, (HOLogic.mk_random T size', T));
+    fun mk_random_aux_call fTs (k, _) (tyco, Ts) =
+      let
+        val T = Type (tyco, Ts);
+        fun mk_random_fun_lift [] t = t
+          | mk_random_fun_lift (fT :: fTs) t =
+              mk_const @{const_name random_fun_lift} [fTs ---> T, fT] $
+                mk_random_fun_lift fTs t;
+        val t = mk_random_fun_lift fTs (nth random_auxs k $ size_pred $ size');
+        val size = Option.map snd (Datatype_Aux.find_shortest_path descr k)
+          |> the_default 0;
+      in (SOME size, (t, fTs ---> T)) end;
+    val tss = Datatype_Aux.interpret_construction descr vs
+      { atyp = mk_random_call, dtyp = mk_random_aux_call };
+    fun mk_consexpr simpleT (c, xs) =
+      let
+        val (ks, simple_tTs) = split_list xs;
+        val T = termifyT simpleT;
+        val tTs = (map o apsnd) termifyT simple_tTs;
+        val is_rec = exists is_some ks;
+        val k = fold (fn NONE => I | SOME k => Integer.max k) ks 0;
+        val vs = Name.names Name.context "x" (map snd simple_tTs);
+        val tc = HOLogic.mk_return T @{typ Random.seed}
+          (HOLogic.mk_valtermify_app c vs simpleT);
+        val t = HOLogic.mk_ST
+          (map2 (fn (t, _) => fn (v, T') => ((t, @{typ Random.seed}), SOME ((v, termifyT T')))) tTs vs)
+            tc @{typ Random.seed} (SOME T, @{typ Random.seed});
+        val tk = if is_rec
+          then if k = 0 then size
+            else @{term "Quickcheck.beyond :: code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"}
+             $ HOLogic.mk_number @{typ code_numeral} k $ size
+          else @{term "1::code_numeral"}
+      in (is_rec, HOLogic.mk_prod (tk, t)) end;
+    fun sort_rec xs =
+      map_filter (fn (true, t) => SOME t | _ =>  NONE) xs
+      @ map_filter (fn (false, t) => SOME t | _ =>  NONE) xs;
+    val gen_exprss = tss
+      |> (map o apfst) Type
+      |> map (fn (T, cs) => (T, (sort_rec o map (mk_consexpr T)) cs));
+    fun mk_select (rT, xs) =
+      mk_const @{const_name Quickcheck.collapse} [@{typ "Random.seed"}, termifyT rT]
+      $ (mk_const @{const_name Random.select_weight} [random_resultT rT]
+        $ HOLogic.mk_list (HOLogic.mk_prodT (@{typ code_numeral}, random_resultT rT)) xs)
+          $ seed;
+    val auxs_lhss = map (fn t => t $ size $ size' $ seed) random_auxs;
+    val auxs_rhss = map mk_select gen_exprss;
+  in (random_auxs, auxs_lhss ~~ auxs_rhss) end;
+
+fun instantiate_random_datatype config descr vs tycos prfx (names, auxnames) (Ts, Us) thy =
+  let
+    val _ = Datatype_Aux.message config "Creating quickcheck generators ...";
+    val mk_prop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq;
+    fun mk_size_arg k = case Datatype_Aux.find_shortest_path descr k
+     of SOME (_, l) => if l = 0 then size
+          else @{term "max :: code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"}
+            $ HOLogic.mk_number @{typ code_numeral} l $ size
+      | NONE => size;
+    val (random_auxs, auxs_eqs) = (apsnd o map) mk_prop_eq
+      (mk_random_aux_eqs thy descr vs tycos (names, auxnames) (Ts, Us));
+    val random_defs = map_index (fn (k, T) => mk_prop_eq
+      (HOLogic.mk_random T size, nth random_auxs k $ mk_size_arg k $ size)) Ts;
+  in
+    thy
+    |> Class.instantiation (tycos, vs, @{sort random})
+    |> random_aux_specification prfx random_auxN auxs_eqs
+    |> `(fn lthy => map (Syntax.check_term lthy) random_defs)
+    |-> (fn random_defs' => fold_map (fn random_def =>
+          Specification.definition (NONE, (apfst Binding.conceal
+            Attrib.empty_binding, random_def))) random_defs')
+    |> snd
+    |> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
+  end;
+
+fun perhaps_constrain thy insts raw_vs =
+  let
+    fun meet (T, sort) = Sorts.meet_sort (Sign.classes_of thy) 
+      (Logic.varifyT_global T, sort);
+    val vtab = Vartab.empty
+      |> fold (fn (v, sort) => Vartab.update ((v, 0), sort)) raw_vs
+      |> fold meet insts;
+  in SOME (fn (v, _) => (v, (the o Vartab.lookup vtab) (v, 0)))
+  end handle Sorts.CLASS_ERROR _ => NONE;
+
+fun ensure_sort_datatype (sort, instantiate_datatype) config raw_tycos thy =
+  let
+    val algebra = Sign.classes_of thy;
+    val (descr, raw_vs, tycos, prfx, (names, auxnames), raw_TUs) =
+      Datatype.the_descr thy raw_tycos;
+    val typerep_vs = (map o apsnd)
+      (curry (Sorts.inter_sort algebra) @{sort typerep}) raw_vs;
+    val sort_insts = (map (rpair sort) o flat o maps snd o maps snd)
+      (Datatype_Aux.interpret_construction descr typerep_vs
+        { atyp = single, dtyp = (K o K o K) [] });
+    val term_of_insts = (map (rpair @{sort term_of}) o flat o maps snd o maps snd)
+      (Datatype_Aux.interpret_construction descr typerep_vs
+        { atyp = K [], dtyp = K o K });
+    val has_inst = exists (fn tyco =>
+      can (Sorts.mg_domain algebra tyco) sort) tycos;
+  in if has_inst then thy
+    else case perhaps_constrain thy (sort_insts @ term_of_insts) typerep_vs
+     of SOME constrain => instantiate_datatype config descr
+          (map constrain typerep_vs) tycos prfx (names, auxnames)
+            ((pairself o map o map_atyps) (fn TFree v => TFree (constrain v)) raw_TUs) thy
+      | NONE => thy
+  end;
+
+(** building and compiling generator expressions **)
+
+(* FIXME just one data slot (record) per program unit *)
+
+structure Counterexample = Proof_Data
+(
+  type T = unit -> int -> int * int -> term list option * (int * int)
+  (* FIXME avoid user error with non-user text *)
+  fun init _ () = error "Counterexample"
+);
+val put_counterexample = Counterexample.put;
+
+structure Counterexample_Report = Proof_Data
+(
+  type T = unit -> int -> seed -> (term list option * (bool list * bool)) * seed
+  (* FIXME avoid user error with non-user text *)
+  fun init _ () = error "Counterexample_Report"
+);
+val put_counterexample_report = Counterexample_Report.put;
+
+val target = "Quickcheck";
+
+fun mk_generator_expr thy prop Ts =
+  let
+    val bound_max = length Ts - 1;
+    val bounds = map_index (fn (i, ty) =>
+      (2 * (bound_max - i) + 1, 2 * (bound_max - i), 2 * i, ty)) Ts;
+    val result = list_comb (prop, map (fn (i, _, _, _) => Bound i) bounds);
+    val terms = HOLogic.mk_list @{typ term} (map (fn (_, i, _, _) => Bound i $ @{term "()"}) bounds);
+    val check = @{term "If :: bool => term list option => term list option => term list option"}
+      $ result $ @{term "None :: term list option"} $ (@{term "Some :: term list => term list option"} $ terms);
+    val return = @{term "Pair :: term list option => Random.seed => term list option * Random.seed"};
+    fun liftT T sT = sT --> HOLogic.mk_prodT (T, sT);
+    fun mk_termtyp T = HOLogic.mk_prodT (T, @{typ "unit => term"});
+    fun mk_scomp T1 T2 sT f g = Const (@{const_name scomp},
+      liftT T1 sT --> (T1 --> liftT T2 sT) --> liftT T2 sT) $ f $ g;
+    fun mk_split T = Sign.mk_const thy
+      (@{const_name prod_case}, [T, @{typ "unit => term"}, liftT @{typ "term list option"} @{typ Random.seed}]);
+    fun mk_scomp_split T t t' =
+      mk_scomp (mk_termtyp T) @{typ "term list option"} @{typ Random.seed} t
+        (mk_split T $ Abs ("", T, Abs ("", @{typ "unit => term"}, t')));
+    fun mk_bindclause (_, _, i, T) = mk_scomp_split T
+      (Sign.mk_const thy (@{const_name Quickcheck.random}, [T]) $ Bound i);
+  in Abs ("n", @{typ code_numeral}, fold_rev mk_bindclause bounds (return $ check)) end;
+
+fun mk_reporting_generator_expr thy prop Ts =
+  let
+    val bound_max = length Ts - 1;
+    val bounds = map_index (fn (i, ty) =>
+      (2 * (bound_max - i) + 1, 2 * (bound_max - i), 2 * i, ty)) Ts;
+    fun strip_imp (Const(@{const_name HOL.implies},_) $ A $ B) = apfst (cons A) (strip_imp B)
+      | strip_imp A = ([], A)
+    val prop' = betapplys (prop, map (fn (i, _, _, _) => Bound i) bounds);
+    val terms = HOLogic.mk_list @{typ term} (map (fn (_, i, _, _) => Bound i $ @{term "()"}) bounds)
+    val (assms, concl) = strip_imp prop'
+    val return =
+      @{term "Pair :: term list option * (bool list * bool) => Random.seed => (term list option * (bool list * bool)) * Random.seed"};
+    fun mk_assms_report i =
+      HOLogic.mk_prod (@{term "None :: term list option"},
+        HOLogic.mk_prod (HOLogic.mk_list HOLogic.boolT
+          (replicate i @{term True} @ replicate (length assms - i) @{term False}),
+        @{term False}))
+    fun mk_concl_report b =
+      HOLogic.mk_prod (HOLogic.mk_list HOLogic.boolT (replicate (length assms) @{term True}),
+        if b then @{term True} else @{term False})
+    val If =
+      @{term "If :: bool => term list option * (bool list * bool) => term list option * (bool list * bool) => term list option * (bool list * bool)"}
+    val concl_check = If $ concl $
+      HOLogic.mk_prod (@{term "None :: term list option"}, mk_concl_report true) $
+      HOLogic.mk_prod (@{term "Some :: term list  => term list option"} $ terms, mk_concl_report false)
+    val check = fold_rev (fn (i, assm) => fn t => If $ assm $ t $ mk_assms_report i)
+      (map_index I assms) concl_check
+    fun liftT T sT = sT --> HOLogic.mk_prodT (T, sT);
+    fun mk_termtyp T = HOLogic.mk_prodT (T, @{typ "unit => term"});
+    fun mk_scomp T1 T2 sT f g = Const (@{const_name scomp},
+      liftT T1 sT --> (T1 --> liftT T2 sT) --> liftT T2 sT) $ f $ g;
+    fun mk_split T = Sign.mk_const thy
+      (@{const_name prod_case}, [T, @{typ "unit => term"},
+        liftT @{typ "term list option * (bool list * bool)"} @{typ Random.seed}]);
+    fun mk_scomp_split T t t' =
+      mk_scomp (mk_termtyp T) @{typ "term list option * (bool list * bool)"} @{typ Random.seed} t
+        (mk_split T $ Abs ("", T, Abs ("", @{typ "unit => term"}, t')));
+    fun mk_bindclause (_, _, i, T) = mk_scomp_split T
+      (Sign.mk_const thy (@{const_name Quickcheck.random}, [T]) $ Bound i);
+  in
+    Abs ("n", @{typ code_numeral}, fold_rev mk_bindclause bounds (return $ check))
+  end
+
+(* single quickcheck report *)
+
+datatype single_report = Run of bool list * bool | MatchExc
+
+fun collect_single_report single_report
+    (Quickcheck.Report {iterations = iterations, raised_match_errors = raised_match_errors,
+    satisfied_assms = satisfied_assms, positive_concl_tests = positive_concl_tests}) =
+  case single_report
+  of MatchExc =>
+    Quickcheck.Report {iterations = iterations + 1, raised_match_errors = raised_match_errors + 1,
+      satisfied_assms = satisfied_assms, positive_concl_tests = positive_concl_tests}
+   | Run (assms, concl) =>
+    Quickcheck.Report {iterations = iterations + 1, raised_match_errors = raised_match_errors,
+      satisfied_assms =
+        map2 (fn b => fn s => if b then s + 1 else s) assms
+         (if null satisfied_assms then replicate (length assms) 0 else satisfied_assms),
+      positive_concl_tests = if concl then positive_concl_tests + 1 else positive_concl_tests}
+
+val empty_report = Quickcheck.Report { iterations = 0, raised_match_errors = 0,
+  satisfied_assms = [], positive_concl_tests = 0 }
+    
+fun compile_generator_expr ctxt t =
+  let
+    val Ts = (map snd o fst o strip_abs) t;
+    val thy = ProofContext.theory_of ctxt
+    val iterations = Config.get ctxt Quickcheck.iterations
+  in
+    if Config.get ctxt Quickcheck.report then
+      let
+        val t' = mk_reporting_generator_expr thy t Ts;
+        val compile = Code_Runtime.dynamic_value_strict
+          (Counterexample_Report.get, put_counterexample_report, "Quickcheck_Generators.put_counterexample_report")
+          thy (SOME target) (fn proc => fn g => fn s => g s #>> (apfst o Option.map o map) proc) t' [];
+        val single_tester = compile #> Random_Engine.run
+        fun iterate_and_collect size 0 report = (NONE, report)
+          | iterate_and_collect size j report =
+            let
+              val (test_result, single_report) = apsnd Run (single_tester size) handle Match => 
+                (if Config.get ctxt Quickcheck.quiet then ()
+                 else warning "Exception Match raised during quickcheck"; (NONE, MatchExc))
+              val report = collect_single_report single_report report
+            in
+              case test_result of NONE => iterate_and_collect size (j - 1) report
+                | SOME q => (SOME q, report)
+            end
+      in
+        fn size => apsnd SOME (iterate_and_collect size iterations empty_report)
+      end
+    else
+      let
+        val t' = mk_generator_expr thy t Ts;
+        val compile = Code_Runtime.dynamic_value_strict
+          (Counterexample.get, put_counterexample, "Quickcheck_Generators.put_counterexample")
+          thy (SOME target) (fn proc => fn g => fn s => g s #>> (Option.map o map) proc) t' [];
+        val single_tester = compile #> Random_Engine.run
+        fun iterate size 0 = NONE
+          | iterate size j =
+            let
+              val result = single_tester size handle Match => 
+                (if Config.get ctxt Quickcheck.quiet then ()
+                 else warning "Exception Match raised during quickcheck"; NONE)
+            in
+              case result of NONE => iterate size (j - 1) | SOME q => SOME q
+            end
+      in
+        fn size => (rpair NONE (iterate size iterations))
+      end
+  end;
+
+
+(** setup **)
+
+val setup =
+  Datatype.interpretation (ensure_sort_datatype (@{sort random}, instantiate_random_datatype))
+  #> Code_Target.extend_target (target, (Code_Runtime.target, K I))
+  #> Context.theory_map
+    (Quickcheck.add_generator ("random", compile_generator_expr));
+
+end;
--- a/src/HOL/Tools/quickcheck_generators.ML	Fri Mar 11 15:21:13 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,474 +0,0 @@
-(*  Title:      HOL/Tools/quickcheck_generators.ML
-    Author:     Florian Haftmann, TU Muenchen
-
-Quickcheck generators for various types.
-*)
-
-signature QUICKCHECK_GENERATORS =
-sig
-  type seed = Random_Engine.seed
-  val random_fun: typ -> typ -> ('a -> 'a -> bool) -> ('a -> term)
-    -> (seed -> ('b * (unit -> term)) * seed) -> (seed -> seed * seed)
-    -> seed -> (('a -> 'b) * (unit -> term)) * seed
-  val perhaps_constrain: theory -> (typ * sort) list -> (string * sort) list
-    -> (string * sort -> string * sort) option
-  val ensure_sort_datatype:
-    sort * (Datatype.config -> Datatype.descr -> (string * sort) list -> string list -> string ->
-      string list * string list -> typ list * typ list -> theory -> theory)
-    -> Datatype.config -> string list -> theory -> theory
-  val compile_generator_expr:
-    Proof.context -> term -> int -> term list option * Quickcheck.report option
-  val put_counterexample: (unit -> int -> seed -> term list option * seed)
-    -> Proof.context -> Proof.context
-  val put_counterexample_report: (unit -> int -> seed -> (term list option * (bool list * bool)) * seed)
-    -> Proof.context -> Proof.context
-  val setup: theory -> theory
-end;
-
-structure Quickcheck_Generators : QUICKCHECK_GENERATORS =
-struct
-
-(** abstract syntax **)
-
-fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit => term"})
-val size = @{term "i::code_numeral"};
-val size_pred = @{term "(i::code_numeral) - 1"};
-val size' = @{term "j::code_numeral"};
-val seed = @{term "s::Random.seed"};
-
-
-(** typ "'a => 'b" **)
-
-type seed = Random_Engine.seed;
-
-fun random_fun T1 T2 eq term_of random random_split seed =
-  let
-    val fun_upd = Const (@{const_name fun_upd},
-      (T1 --> T2) --> T1 --> T2 --> T1 --> T2);
-    val ((y, t2), seed') = random seed;
-    val (seed'', seed''') = random_split seed';
-
-    val state = Unsynchronized.ref (seed'', [], fn () => Abs ("x", T1, t2 ()));
-    fun random_fun' x =
-      let
-        val (seed, fun_map, f_t) = ! state;
-      in case AList.lookup (uncurry eq) fun_map x
-       of SOME y => y
-        | NONE => let
-              val t1 = term_of x;
-              val ((y, t2), seed') = random seed;
-              val fun_map' = (x, y) :: fun_map;
-              val f_t' = fn () => fun_upd $ f_t () $ t1 $ t2 ();
-              val _ = state := (seed', fun_map', f_t');
-            in y end
-      end;
-    fun term_fun' () = #3 (! state) ();
-  in ((random_fun', term_fun'), seed''') end;
-
-
-(** datatypes **)
-
-(* definitional scheme for random instances on datatypes *)
-
-local
-
-fun dest_ctyp_nth k cT = nth (Thm.dest_ctyp cT) k;
-val eq = Thm.cprop_of @{thm random_aux_rec} |> Thm.dest_arg |> Thm.dest_arg |> Thm.dest_arg;
-val lhs = eq |> Thm.dest_arg1;
-val pt_random_aux = lhs |> Thm.dest_fun;
-val ct_k = lhs |> Thm.dest_arg;
-val pt_rhs = eq |> Thm.dest_arg |> Thm.dest_fun;
-val aT = pt_random_aux |> Thm.ctyp_of_term |> dest_ctyp_nth 1;
-
-val rew_thms = map mk_meta_eq [@{thm code_numeral_zero_minus_one},
-  @{thm Suc_code_numeral_minus_one}, @{thm select_weight_cons_zero}, @{thm beyond_zero}];
-val rew_ts = map (Logic.dest_equals o Thm.prop_of) rew_thms;
-val rew_ss = HOL_ss addsimps rew_thms;
-
-in
-
-fun random_aux_primrec eq lthy =
-  let
-    val thy = ProofContext.theory_of lthy;
-    val ((t_random_aux as Free (random_aux, T)) $ (t_k as Free (v, _)), proto_t_rhs) =
-      (HOLogic.dest_eq o HOLogic.dest_Trueprop) eq;
-    val Type (_, [_, iT]) = T;
-    val icT = Thm.ctyp_of thy iT;
-    val cert = Thm.cterm_of thy;
-    val inst = Thm.instantiate_cterm ([(aT, icT)], []);
-    fun subst_v t' = map_aterms (fn t as Free (w, _) => if v = w then t' else t | t => t);
-    val t_rhs = lambda t_k proto_t_rhs;
-    val eqs0 = [subst_v @{term "0::code_numeral"} eq,
-      subst_v (@{term "Suc_code_numeral"} $ t_k) eq];
-    val eqs1 = map (Pattern.rewrite_term thy rew_ts []) eqs0;
-    val ((_, (_, eqs2)), lthy') = Primrec.add_primrec_simple
-      [((Binding.conceal (Binding.name random_aux), T), NoSyn)] eqs1 lthy;
-    val cT_random_aux = inst pt_random_aux;
-    val cT_rhs = inst pt_rhs;
-    val rule = @{thm random_aux_rec}
-      |> Drule.instantiate ([(aT, icT)],
-           [(cT_random_aux, cert t_random_aux), (cT_rhs, cert t_rhs)]);
-    val tac = ALLGOALS (rtac rule)
-      THEN ALLGOALS (simp_tac rew_ss)
-      THEN (ALLGOALS (ProofContext.fact_tac eqs2))
-    val simp = Skip_Proof.prove lthy' [v] [] eq (K tac);
-  in (simp, lthy') end;
-
-end;
-
-fun random_aux_primrec_multi auxname [eq] lthy =
-      lthy
-      |> random_aux_primrec eq
-      |>> (fn simp => [simp])
-  | random_aux_primrec_multi auxname (eqs as _ :: _ :: _) lthy =
-      let
-        val thy = ProofContext.theory_of lthy;
-        val (lhss, rhss) = map_split (HOLogic.dest_eq o HOLogic.dest_Trueprop) eqs;
-        val (vs, (arg as Free (v, _)) :: _) = map_split (fn (t1 $ t2) => (t1, t2)) lhss;
-        val Ts = map fastype_of lhss;
-        val tupleT = foldr1 HOLogic.mk_prodT Ts;
-        val aux_lhs = Free ("mutual_" ^ auxname, fastype_of arg --> tupleT) $ arg;
-        val aux_eq = (HOLogic.mk_Trueprop o HOLogic.mk_eq)
-          (aux_lhs, foldr1 HOLogic.mk_prod rhss);
-        fun mk_proj t [T] = [t]
-          | mk_proj t (Ts as T :: (Ts' as _ :: _)) =
-              Const (@{const_name fst}, foldr1 HOLogic.mk_prodT Ts --> T) $ t
-                :: mk_proj (Const (@{const_name snd},
-                  foldr1 HOLogic.mk_prodT Ts --> foldr1 HOLogic.mk_prodT Ts') $ t) Ts';
-        val projs = mk_proj (aux_lhs) Ts;
-        val proj_eqs = map2 (fn v => fn proj => (v, lambda arg proj)) vs projs;
-        val proj_defs = map2 (fn Free (name, _) => fn (_, rhs) =>
-          ((Binding.conceal (Binding.name name), NoSyn),
-            (apfst Binding.conceal Attrib.empty_binding, rhs))) vs proj_eqs;
-        val aux_eq' = Pattern.rewrite_term thy proj_eqs [] aux_eq;
-        fun prove_eqs aux_simp proj_defs lthy = 
-          let
-            val proj_simps = map (snd o snd) proj_defs;
-            fun tac { context = ctxt, prems = _ } =
-              ALLGOALS (simp_tac (HOL_ss addsimps proj_simps))
-              THEN ALLGOALS (EqSubst.eqsubst_tac ctxt [0] [aux_simp])
-              THEN ALLGOALS (simp_tac (HOL_ss addsimps [@{thm fst_conv}, @{thm snd_conv}]));
-          in (map (fn prop => Skip_Proof.prove lthy [v] [] prop tac) eqs, lthy) end;
-      in
-        lthy
-        |> random_aux_primrec aux_eq'
-        ||>> fold_map Local_Theory.define proj_defs
-        |-> (fn (aux_simp, proj_defs) => prove_eqs aux_simp proj_defs)
-      end;
-
-fun random_aux_specification prfx name eqs lthy =
-  let
-    val vs = fold Term.add_free_names ((snd o strip_comb o fst o HOLogic.dest_eq
-      o HOLogic.dest_Trueprop o hd) eqs) [];
-    fun mk_proto_eq eq =
-      let
-        val (head $ t $ u, rhs) = (HOLogic.dest_eq o HOLogic.dest_Trueprop) eq;
-      in ((HOLogic.mk_Trueprop o HOLogic.mk_eq) (head, lambda t (lambda u rhs))) end;
-    val proto_eqs = map mk_proto_eq eqs;
-    fun prove_simps proto_simps lthy =
-      let
-        val ext_simps = map (fn thm => fun_cong OF [fun_cong OF [thm]]) proto_simps;
-        val tac = ALLGOALS (ProofContext.fact_tac ext_simps);
-      in (map (fn prop => Skip_Proof.prove lthy vs [] prop (K tac)) eqs, lthy) end;
-    val b = Binding.conceal (Binding.qualify true prfx
-      (Binding.qualify true name (Binding.name "simps")));
-  in
-    lthy
-    |> random_aux_primrec_multi (name ^ prfx) proto_eqs
-    |-> (fn proto_simps => prove_simps proto_simps)
-    |-> (fn simps => Local_Theory.note
-      ((b, Code.add_default_eqn_attrib :: map (Attrib.internal o K)
-          [Simplifier.simp_add, Nitpick_Simps.add]), simps))
-    |> snd
-  end
-
-
-(* constructing random instances on datatypes *)
-
-val random_auxN = "random_aux";
-
-fun mk_random_aux_eqs thy descr vs tycos (names, auxnames) (Ts, Us) =
-  let
-    val mk_const = curry (Sign.mk_const thy);
-    val random_auxsN = map (prefix (random_auxN ^ "_")) (names @ auxnames);
-    val rTs = Ts @ Us;
-    fun random_resultT T = @{typ Random.seed}
-      --> HOLogic.mk_prodT (termifyT T,@{typ Random.seed});
-    val pTs = map random_resultT rTs;
-    fun sizeT T = @{typ code_numeral} --> @{typ code_numeral} --> T;
-    val random_auxT = sizeT o random_resultT;
-    val random_auxs = map2 (fn s => fn rT => Free (s, random_auxT rT))
-      random_auxsN rTs;
-    fun mk_random_call T = (NONE, (HOLogic.mk_random T size', T));
-    fun mk_random_aux_call fTs (k, _) (tyco, Ts) =
-      let
-        val T = Type (tyco, Ts);
-        fun mk_random_fun_lift [] t = t
-          | mk_random_fun_lift (fT :: fTs) t =
-              mk_const @{const_name random_fun_lift} [fTs ---> T, fT] $
-                mk_random_fun_lift fTs t;
-        val t = mk_random_fun_lift fTs (nth random_auxs k $ size_pred $ size');
-        val size = Option.map snd (Datatype_Aux.find_shortest_path descr k)
-          |> the_default 0;
-      in (SOME size, (t, fTs ---> T)) end;
-    val tss = Datatype_Aux.interpret_construction descr vs
-      { atyp = mk_random_call, dtyp = mk_random_aux_call };
-    fun mk_consexpr simpleT (c, xs) =
-      let
-        val (ks, simple_tTs) = split_list xs;
-        val T = termifyT simpleT;
-        val tTs = (map o apsnd) termifyT simple_tTs;
-        val is_rec = exists is_some ks;
-        val k = fold (fn NONE => I | SOME k => Integer.max k) ks 0;
-        val vs = Name.names Name.context "x" (map snd simple_tTs);
-        val tc = HOLogic.mk_return T @{typ Random.seed}
-          (HOLogic.mk_valtermify_app c vs simpleT);
-        val t = HOLogic.mk_ST
-          (map2 (fn (t, _) => fn (v, T') => ((t, @{typ Random.seed}), SOME ((v, termifyT T')))) tTs vs)
-            tc @{typ Random.seed} (SOME T, @{typ Random.seed});
-        val tk = if is_rec
-          then if k = 0 then size
-            else @{term "Quickcheck.beyond :: code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"}
-             $ HOLogic.mk_number @{typ code_numeral} k $ size
-          else @{term "1::code_numeral"}
-      in (is_rec, HOLogic.mk_prod (tk, t)) end;
-    fun sort_rec xs =
-      map_filter (fn (true, t) => SOME t | _ =>  NONE) xs
-      @ map_filter (fn (false, t) => SOME t | _ =>  NONE) xs;
-    val gen_exprss = tss
-      |> (map o apfst) Type
-      |> map (fn (T, cs) => (T, (sort_rec o map (mk_consexpr T)) cs));
-    fun mk_select (rT, xs) =
-      mk_const @{const_name Quickcheck.collapse} [@{typ "Random.seed"}, termifyT rT]
-      $ (mk_const @{const_name Random.select_weight} [random_resultT rT]
-        $ HOLogic.mk_list (HOLogic.mk_prodT (@{typ code_numeral}, random_resultT rT)) xs)
-          $ seed;
-    val auxs_lhss = map (fn t => t $ size $ size' $ seed) random_auxs;
-    val auxs_rhss = map mk_select gen_exprss;
-  in (random_auxs, auxs_lhss ~~ auxs_rhss) end;
-
-fun instantiate_random_datatype config descr vs tycos prfx (names, auxnames) (Ts, Us) thy =
-  let
-    val _ = Datatype_Aux.message config "Creating quickcheck generators ...";
-    val mk_prop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq;
-    fun mk_size_arg k = case Datatype_Aux.find_shortest_path descr k
-     of SOME (_, l) => if l = 0 then size
-          else @{term "max :: code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"}
-            $ HOLogic.mk_number @{typ code_numeral} l $ size
-      | NONE => size;
-    val (random_auxs, auxs_eqs) = (apsnd o map) mk_prop_eq
-      (mk_random_aux_eqs thy descr vs tycos (names, auxnames) (Ts, Us));
-    val random_defs = map_index (fn (k, T) => mk_prop_eq
-      (HOLogic.mk_random T size, nth random_auxs k $ mk_size_arg k $ size)) Ts;
-  in
-    thy
-    |> Class.instantiation (tycos, vs, @{sort random})
-    |> random_aux_specification prfx random_auxN auxs_eqs
-    |> `(fn lthy => map (Syntax.check_term lthy) random_defs)
-    |-> (fn random_defs' => fold_map (fn random_def =>
-          Specification.definition (NONE, (apfst Binding.conceal
-            Attrib.empty_binding, random_def))) random_defs')
-    |> snd
-    |> Class.prove_instantiation_exit (K (Class.intro_classes_tac []))
-  end;
-
-fun perhaps_constrain thy insts raw_vs =
-  let
-    fun meet (T, sort) = Sorts.meet_sort (Sign.classes_of thy) 
-      (Logic.varifyT_global T, sort);
-    val vtab = Vartab.empty
-      |> fold (fn (v, sort) => Vartab.update ((v, 0), sort)) raw_vs
-      |> fold meet insts;
-  in SOME (fn (v, _) => (v, (the o Vartab.lookup vtab) (v, 0)))
-  end handle Sorts.CLASS_ERROR _ => NONE;
-
-fun ensure_sort_datatype (sort, instantiate_datatype) config raw_tycos thy =
-  let
-    val algebra = Sign.classes_of thy;
-    val (descr, raw_vs, tycos, prfx, (names, auxnames), raw_TUs) =
-      Datatype.the_descr thy raw_tycos;
-    val typerep_vs = (map o apsnd)
-      (curry (Sorts.inter_sort algebra) @{sort typerep}) raw_vs;
-    val sort_insts = (map (rpair sort) o flat o maps snd o maps snd)
-      (Datatype_Aux.interpret_construction descr typerep_vs
-        { atyp = single, dtyp = (K o K o K) [] });
-    val term_of_insts = (map (rpair @{sort term_of}) o flat o maps snd o maps snd)
-      (Datatype_Aux.interpret_construction descr typerep_vs
-        { atyp = K [], dtyp = K o K });
-    val has_inst = exists (fn tyco =>
-      can (Sorts.mg_domain algebra tyco) sort) tycos;
-  in if has_inst then thy
-    else case perhaps_constrain thy (sort_insts @ term_of_insts) typerep_vs
-     of SOME constrain => instantiate_datatype config descr
-          (map constrain typerep_vs) tycos prfx (names, auxnames)
-            ((pairself o map o map_atyps) (fn TFree v => TFree (constrain v)) raw_TUs) thy
-      | NONE => thy
-  end;
-
-(** building and compiling generator expressions **)
-
-(* FIXME just one data slot (record) per program unit *)
-
-structure Counterexample = Proof_Data
-(
-  type T = unit -> int -> int * int -> term list option * (int * int)
-  (* FIXME avoid user error with non-user text *)
-  fun init _ () = error "Counterexample"
-);
-val put_counterexample = Counterexample.put;
-
-structure Counterexample_Report = Proof_Data
-(
-  type T = unit -> int -> seed -> (term list option * (bool list * bool)) * seed
-  (* FIXME avoid user error with non-user text *)
-  fun init _ () = error "Counterexample_Report"
-);
-val put_counterexample_report = Counterexample_Report.put;
-
-val target = "Quickcheck";
-
-fun mk_generator_expr thy prop Ts =
-  let
-    val bound_max = length Ts - 1;
-    val bounds = map_index (fn (i, ty) =>
-      (2 * (bound_max - i) + 1, 2 * (bound_max - i), 2 * i, ty)) Ts;
-    val result = list_comb (prop, map (fn (i, _, _, _) => Bound i) bounds);
-    val terms = HOLogic.mk_list @{typ term} (map (fn (_, i, _, _) => Bound i $ @{term "()"}) bounds);
-    val check = @{term "If :: bool => term list option => term list option => term list option"}
-      $ result $ @{term "None :: term list option"} $ (@{term "Some :: term list => term list option"} $ terms);
-    val return = @{term "Pair :: term list option => Random.seed => term list option * Random.seed"};
-    fun liftT T sT = sT --> HOLogic.mk_prodT (T, sT);
-    fun mk_termtyp T = HOLogic.mk_prodT (T, @{typ "unit => term"});
-    fun mk_scomp T1 T2 sT f g = Const (@{const_name scomp},
-      liftT T1 sT --> (T1 --> liftT T2 sT) --> liftT T2 sT) $ f $ g;
-    fun mk_split T = Sign.mk_const thy
-      (@{const_name prod_case}, [T, @{typ "unit => term"}, liftT @{typ "term list option"} @{typ Random.seed}]);
-    fun mk_scomp_split T t t' =
-      mk_scomp (mk_termtyp T) @{typ "term list option"} @{typ Random.seed} t
-        (mk_split T $ Abs ("", T, Abs ("", @{typ "unit => term"}, t')));
-    fun mk_bindclause (_, _, i, T) = mk_scomp_split T
-      (Sign.mk_const thy (@{const_name Quickcheck.random}, [T]) $ Bound i);
-  in Abs ("n", @{typ code_numeral}, fold_rev mk_bindclause bounds (return $ check)) end;
-
-fun mk_reporting_generator_expr thy prop Ts =
-  let
-    val bound_max = length Ts - 1;
-    val bounds = map_index (fn (i, ty) =>
-      (2 * (bound_max - i) + 1, 2 * (bound_max - i), 2 * i, ty)) Ts;
-    fun strip_imp (Const(@{const_name HOL.implies},_) $ A $ B) = apfst (cons A) (strip_imp B)
-      | strip_imp A = ([], A)
-    val prop' = betapplys (prop, map (fn (i, _, _, _) => Bound i) bounds);
-    val terms = HOLogic.mk_list @{typ term} (map (fn (_, i, _, _) => Bound i $ @{term "()"}) bounds)
-    val (assms, concl) = strip_imp prop'
-    val return =
-      @{term "Pair :: term list option * (bool list * bool) => Random.seed => (term list option * (bool list * bool)) * Random.seed"};
-    fun mk_assms_report i =
-      HOLogic.mk_prod (@{term "None :: term list option"},
-        HOLogic.mk_prod (HOLogic.mk_list HOLogic.boolT
-          (replicate i @{term True} @ replicate (length assms - i) @{term False}),
-        @{term False}))
-    fun mk_concl_report b =
-      HOLogic.mk_prod (HOLogic.mk_list HOLogic.boolT (replicate (length assms) @{term True}),
-        if b then @{term True} else @{term False})
-    val If =
-      @{term "If :: bool => term list option * (bool list * bool) => term list option * (bool list * bool) => term list option * (bool list * bool)"}
-    val concl_check = If $ concl $
-      HOLogic.mk_prod (@{term "None :: term list option"}, mk_concl_report true) $
-      HOLogic.mk_prod (@{term "Some :: term list  => term list option"} $ terms, mk_concl_report false)
-    val check = fold_rev (fn (i, assm) => fn t => If $ assm $ t $ mk_assms_report i)
-      (map_index I assms) concl_check
-    fun liftT T sT = sT --> HOLogic.mk_prodT (T, sT);
-    fun mk_termtyp T = HOLogic.mk_prodT (T, @{typ "unit => term"});
-    fun mk_scomp T1 T2 sT f g = Const (@{const_name scomp},
-      liftT T1 sT --> (T1 --> liftT T2 sT) --> liftT T2 sT) $ f $ g;
-    fun mk_split T = Sign.mk_const thy
-      (@{const_name prod_case}, [T, @{typ "unit => term"},
-        liftT @{typ "term list option * (bool list * bool)"} @{typ Random.seed}]);
-    fun mk_scomp_split T t t' =
-      mk_scomp (mk_termtyp T) @{typ "term list option * (bool list * bool)"} @{typ Random.seed} t
-        (mk_split T $ Abs ("", T, Abs ("", @{typ "unit => term"}, t')));
-    fun mk_bindclause (_, _, i, T) = mk_scomp_split T
-      (Sign.mk_const thy (@{const_name Quickcheck.random}, [T]) $ Bound i);
-  in
-    Abs ("n", @{typ code_numeral}, fold_rev mk_bindclause bounds (return $ check))
-  end
-
-(* single quickcheck report *)
-
-datatype single_report = Run of bool list * bool | MatchExc
-
-fun collect_single_report single_report
-    (Quickcheck.Report {iterations = iterations, raised_match_errors = raised_match_errors,
-    satisfied_assms = satisfied_assms, positive_concl_tests = positive_concl_tests}) =
-  case single_report
-  of MatchExc =>
-    Quickcheck.Report {iterations = iterations + 1, raised_match_errors = raised_match_errors + 1,
-      satisfied_assms = satisfied_assms, positive_concl_tests = positive_concl_tests}
-   | Run (assms, concl) =>
-    Quickcheck.Report {iterations = iterations + 1, raised_match_errors = raised_match_errors,
-      satisfied_assms =
-        map2 (fn b => fn s => if b then s + 1 else s) assms
-         (if null satisfied_assms then replicate (length assms) 0 else satisfied_assms),
-      positive_concl_tests = if concl then positive_concl_tests + 1 else positive_concl_tests}
-
-val empty_report = Quickcheck.Report { iterations = 0, raised_match_errors = 0,
-  satisfied_assms = [], positive_concl_tests = 0 }
-    
-fun compile_generator_expr ctxt t =
-  let
-    val Ts = (map snd o fst o strip_abs) t;
-    val thy = ProofContext.theory_of ctxt
-    val iterations = Config.get ctxt Quickcheck.iterations
-  in
-    if Config.get ctxt Quickcheck.report then
-      let
-        val t' = mk_reporting_generator_expr thy t Ts;
-        val compile = Code_Runtime.dynamic_value_strict
-          (Counterexample_Report.get, put_counterexample_report, "Quickcheck_Generators.put_counterexample_report")
-          thy (SOME target) (fn proc => fn g => fn s => g s #>> (apfst o Option.map o map) proc) t' [];
-        val single_tester = compile #> Random_Engine.run
-        fun iterate_and_collect size 0 report = (NONE, report)
-          | iterate_and_collect size j report =
-            let
-              val (test_result, single_report) = apsnd Run (single_tester size) handle Match => 
-                (if Config.get ctxt Quickcheck.quiet then ()
-                 else warning "Exception Match raised during quickcheck"; (NONE, MatchExc))
-              val report = collect_single_report single_report report
-            in
-              case test_result of NONE => iterate_and_collect size (j - 1) report
-                | SOME q => (SOME q, report)
-            end
-      in
-        fn size => apsnd SOME (iterate_and_collect size iterations empty_report)
-      end
-    else
-      let
-        val t' = mk_generator_expr thy t Ts;
-        val compile = Code_Runtime.dynamic_value_strict
-          (Counterexample.get, put_counterexample, "Quickcheck_Generators.put_counterexample")
-          thy (SOME target) (fn proc => fn g => fn s => g s #>> (Option.map o map) proc) t' [];
-        val single_tester = compile #> Random_Engine.run
-        fun iterate size 0 = NONE
-          | iterate size j =
-            let
-              val result = single_tester size handle Match => 
-                (if Config.get ctxt Quickcheck.quiet then ()
-                 else warning "Exception Match raised during quickcheck"; NONE)
-            in
-              case result of NONE => iterate size (j - 1) | SOME q => SOME q
-            end
-      in
-        fn size => (rpair NONE (iterate size iterations))
-      end
-  end;
-
-
-(** setup **)
-
-val setup =
-  Datatype.interpretation (ensure_sort_datatype (@{sort random}, instantiate_random_datatype))
-  #> Code_Target.extend_target (target, (Code_Runtime.target, K I))
-  #> Context.theory_map
-    (Quickcheck.add_generator ("random", compile_generator_expr));
-
-end;