tuned proofs;
authorwenzelm
Mon, 03 Sep 2012 09:15:58 +0200
changeset 49070 f00fee6d21d4
parent 49069 c0e298d05026
child 49071 c1ca931b3647
child 49095 7df19036392e
tuned proofs;
src/HOL/Decision_Procs/Ferrack.thy
src/HOL/Decision_Procs/ex/Commutative_Ring_Ex.thy
--- a/src/HOL/Decision_Procs/Ferrack.thy	Mon Sep 03 09:15:40 2012 +0200
+++ b/src/HOL/Decision_Procs/Ferrack.thy	Mon Sep 03 09:15:58 2012 +0200
@@ -2013,19 +2013,16 @@
 lemma
   fixes x :: real
   shows "2 * x \<le> 2 * x \<and> 2 * x \<le> 2 * x + 1"
-apply rferrack
-done
+  by rferrack
 
 lemma
   fixes x :: real
   shows "\<exists>y \<le> x. x = y + 1"
-apply rferrack
-done
+  by rferrack
 
 lemma
   fixes x :: real
   shows "\<not> (\<exists>z. x + z = x + z + 1)"
-apply rferrack
-done
+  by rferrack
 
 end
--- a/src/HOL/Decision_Procs/ex/Commutative_Ring_Ex.thy	Mon Sep 03 09:15:40 2012 +0200
+++ b/src/HOL/Decision_Procs/ex/Commutative_Ring_Ex.thy	Mon Sep 03 09:15:58 2012 +0200
@@ -7,42 +7,43 @@
 begin
 
 lemma "4*(x::int)^5*y^3*x^2*3 + x*z + 3^5 = 12*x^7*y^3 + z*x + 243"
-by comm_ring
+  by comm_ring
 
 lemma "((x::int) + y)^2  = x^2 + y^2 + 2*x*y"
-by comm_ring
+  by comm_ring
 
 lemma "((x::int) + y)^3  = x^3 + y^3 + 3*x^2*y + 3*y^2*x"
-by comm_ring
+  by comm_ring
 
 lemma "((x::int) - y)^3  = x^3 + 3*x*y^2 + (-3)*y*x^2 - y^3"
-by comm_ring
+  by comm_ring
 
 lemma "((x::int) - y)^2  = x^2 + y^2 - 2*x*y"
-by comm_ring
+  by comm_ring
 
 lemma " ((a::int) + b + c)^2 = a^2 + b^2 + c^2 + 2*a*b + 2*b*c + 2*a*c"
-by comm_ring
+  by comm_ring
 
 lemma "((a::int) - b - c)^2 = a^2 + b^2 + c^2 - 2*a*b + 2*b*c - 2*a*c"
-by comm_ring
+  by comm_ring
 
 lemma "(a::int)*b + a*c = a*(b+c)"
-by comm_ring
+  by comm_ring
 
 lemma "(a::int)^2 - b^2 = (a - b) * (a + b)"
-by comm_ring
+  by comm_ring
 
 lemma "(a::int)^3 - b^3 = (a - b) * (a^2 + a*b + b^2)"
-by comm_ring
+  by comm_ring
 
 lemma "(a::int)^3 + b^3 = (a + b) * (a^2 - a*b + b^2)"
-by comm_ring
+  by comm_ring
 
 lemma "(a::int)^4 - b^4 = (a - b) * (a + b)*(a^2 + b^2)"
-by comm_ring
+  by comm_ring
 
-lemma "(a::int)^10 - b^10 = (a - b) * (a^9 + a^8*b + a^7*b^2 + a^6*b^3 + a^5*b^4 + a^4*b^5 + a^3*b^6 + a^2*b^7 + a*b^8 + b^9 )"
-by comm_ring
+lemma "(a::int)^10 - b^10 =
+  (a - b) * (a^9 + a^8*b + a^7*b^2 + a^6*b^3 + a^5*b^4 + a^4*b^5 + a^3*b^6 + a^2*b^7 + a*b^8 + b^9)"
+  by comm_ring
 
 end