--- a/src/FOLP/IFOLP.thy Thu Feb 28 13:33:01 2013 +0100
+++ b/src/FOLP/IFOLP.thy Thu Feb 28 13:46:45 2013 +0100
@@ -80,71 +80,84 @@
in [(@{const_syntax Proof}, proof_tr')] end
*}
-axioms
(**** Propositional logic ****)
(*Equality*)
(* Like Intensional Equality in MLTT - but proofs distinct from terms *)
-ieqI: "ideq(a) : a=a"
+axiomatization where
+ieqI: "ideq(a) : a=a" and
ieqE: "[| p : a=b; !!x. f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)"
(* Truth and Falsity *)
-TrueI: "tt : True"
+axiomatization where
+TrueI: "tt : True" and
FalseE: "a:False ==> contr(a):P"
(* Conjunction *)
-conjI: "[| a:P; b:Q |] ==> <a,b> : P&Q"
-conjunct1: "p:P&Q ==> fst(p):P"
+axiomatization where
+conjI: "[| a:P; b:Q |] ==> <a,b> : P&Q" and
+conjunct1: "p:P&Q ==> fst(p):P" and
conjunct2: "p:P&Q ==> snd(p):Q"
(* Disjunction *)
-disjI1: "a:P ==> inl(a):P|Q"
-disjI2: "b:Q ==> inr(b):P|Q"
+axiomatization where
+disjI1: "a:P ==> inl(a):P|Q" and
+disjI2: "b:Q ==> inr(b):P|Q" and
disjE: "[| a:P|Q; !!x. x:P ==> f(x):R; !!x. x:Q ==> g(x):R
|] ==> when(a,f,g):R"
(* Implication *)
-impI: "(!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q"
-mp: "[| f:P-->Q; a:P |] ==> f`a:Q"
+axiomatization where
+impI: "\<And>P Q f. (!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q" and
+mp: "\<And>P Q f. [| f:P-->Q; a:P |] ==> f`a:Q"
(*Quantifiers*)
-allI: "(!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)"
-spec: "(f:ALL x. P(x)) ==> f^x : P(x)"
+axiomatization where
+allI: "\<And>P. (!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)" and
+spec: "\<And>P f. (f:ALL x. P(x)) ==> f^x : P(x)"
-exI: "p : P(x) ==> [x,p] : EX x. P(x)"
+axiomatization where
+exI: "p : P(x) ==> [x,p] : EX x. P(x)" and
exE: "[| p: EX x. P(x); !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R"
(**** Equality between proofs ****)
-prefl: "a : P ==> a = a : P"
-psym: "a = b : P ==> b = a : P"
+axiomatization where
+prefl: "a : P ==> a = a : P" and
+psym: "a = b : P ==> b = a : P" and
ptrans: "[| a = b : P; b = c : P |] ==> a = c : P"
+axiomatization where
idpeelB: "[| !!x. f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)"
-fstB: "a:P ==> fst(<a,b>) = a : P"
-sndB: "b:Q ==> snd(<a,b>) = b : Q"
+axiomatization where
+fstB: "a:P ==> fst(<a,b>) = a : P" and
+sndB: "b:Q ==> snd(<a,b>) = b : Q" and
pairEC: "p:P&Q ==> p = <fst(p),snd(p)> : P&Q"
-whenBinl: "[| a:P; !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q"
-whenBinr: "[| b:P; !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q"
+axiomatization where
+whenBinl: "[| a:P; !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q" and
+whenBinr: "[| b:P; !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q" and
plusEC: "a:P|Q ==> when(a,%x. inl(x),%y. inr(y)) = a : P|Q"
-applyB: "[| a:P; !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q"
+axiomatization where
+applyB: "[| a:P; !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q" and
funEC: "f:P ==> f = lam x. f`x : P"
+axiomatization where
specB: "[| !!x. f(x) : P(x) |] ==> (all x. f(x)) ^ a = f(a) : P(a)"
(**** Definitions ****)
+defs
not_def: "~P == P-->False"
iff_def: "P<->Q == (P-->Q) & (Q-->P)"
@@ -152,7 +165,8 @@
ex1_def: "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"
(*Rewriting -- special constants to flag normalized terms and formulae*)
-norm_eq: "nrm : norm(x) = x"
+axiomatization where
+norm_eq: "nrm : norm(x) = x" and
NORM_iff: "NRM : NORM(P) <-> P"
(*** Sequent-style elimination rules for & --> and ALL ***)
--- a/src/FOLP/ex/Nat.thy Thu Feb 28 13:33:01 2013 +0100
+++ b/src/FOLP/ex/Nat.thy Thu Feb 28 13:46:45 2013 +0100
@@ -12,34 +12,30 @@
typedecl nat
arities nat :: "term"
-consts
- Zero :: nat ("0")
- Suc :: "nat => nat"
- rec :: "[nat, 'a, [nat, 'a] => 'a] => 'a"
- add :: "[nat, nat] => nat" (infixl "+" 60)
+axiomatization
+ Zero :: nat ("0") and
+ Suc :: "nat => nat" and
+ rec :: "[nat, 'a, [nat, 'a] => 'a] => 'a" and
(*Proof terms*)
- nrec :: "[nat, p, [nat, p] => p] => p"
- ninj :: "p => p"
- nneq :: "p => p"
- rec0 :: "p"
+ nrec :: "[nat, p, [nat, p] => p] => p" and
+ ninj :: "p => p" and
+ nneq :: "p => p" and
+ rec0 :: "p" and
recSuc :: "p"
-
-axioms
+where
induct: "[| b:P(0); !!x u. u:P(x) ==> c(x,u):P(Suc(x))
- |] ==> nrec(n,b,c):P(n)"
+ |] ==> nrec(n,b,c):P(n)" and
- Suc_inject: "p:Suc(m)=Suc(n) ==> ninj(p) : m=n"
- Suc_neq_0: "p:Suc(m)=0 ==> nneq(p) : R"
- rec_0: "rec0 : rec(0,a,f) = a"
- rec_Suc: "recSuc : rec(Suc(m), a, f) = f(m, rec(m,a,f))"
+ Suc_inject: "p:Suc(m)=Suc(n) ==> ninj(p) : m=n" and
+ Suc_neq_0: "p:Suc(m)=0 ==> nneq(p) : R" and
+ rec_0: "rec0 : rec(0,a,f) = a" and
+ rec_Suc: "recSuc : rec(Suc(m), a, f) = f(m, rec(m,a,f))" and
+ nrecB0: "b: A ==> nrec(0,b,c) = b : A" and
+ nrecBSuc: "c(n,nrec(n,b,c)) : A ==> nrec(Suc(n),b,c) = c(n,nrec(n,b,c)) : A"
-defs
- add_def: "m+n == rec(m, n, %x y. Suc(y))"
-
-axioms
- nrecB0: "b: A ==> nrec(0,b,c) = b : A"
- nrecBSuc: "c(n,nrec(n,b,c)) : A ==> nrec(Suc(n),b,c) = c(n,nrec(n,b,c)) : A"
+definition add :: "[nat, nat] => nat" (infixl "+" 60)
+ where "m + n == rec(m, n, %x y. Suc(y))"
subsection {* Proofs about the natural numbers *}